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Abstract: This paper analyzes the stability of fuzzy control systems with applications for electric
drives. Ensuring the stability of these systems is a necessity in practice. The purpose of the study is
the analysis of the dynamic characteristics of the speed control systems of electric drives based on
fuzzy PI controllers in the context of performing stability analyses, both internal and input-output,
finding solutions to stabilize these systems and provide guidance on fuzzy regulator design. The
main methods of treatment applied are as follows: framing the control system in the theory of stability
of multivariable non-linear systems, application of Lyapunov’s theory, performing an input-output
stability analysis, and verification of the stability domain. The article presents the conditions for
correcting the fuzzy controller to ensure internal and external stability, determines the limits of the
stability sector, and gives indications for choosing the parameters of the controller. The considerations
presented can be applied to various structures for regulating the speed of electric drives which use
various PI fuzzy controllers.

Keywords: fuzzy control systems; absolute global internal stability; Kalman—Yakubovich-Popov
lemma; Lyapunov’s functions; circle criterion; bounded input-bounded output external stability;
control of electric drives

1. Introduction

The study presented in this paper fits into the broader context of the mathematics of
fuzzy controllers, Mamdani structures, and the control of electric drives, as well as the
industrial application of fuzzy control systems. Various scientific papers have appeared in
the literature for many years, presenting examples of the use of fuzzy logic in regulating the
speed of electric drives [1,2]. The paper [3] addresses a variety of issues related to advances
in control techniques for electric drives in emerging fields such as electric vehicles, UAVs,
trains, and motion control. Fuzzy logic is an instrument of artificial intelligence which
translates human reasoning into numerical calculations [4,5]. In these studies, there are
particular cases of the use of fuzzy PI regulators. In practice, however, their widespread
application in commercial equipment to control electric drives is hampered by a number
of impediments, such as the lack of precise methods for designing control systems based
on fuzzy logic, the lack of precise methods of stability analysis, based on which one can
be confident that they can undoubtedly ensure a certain quality of stability of the control
systems of electric drives, and, finally, the increased complexity of the development systems
of driving equipment based on fuzzy logic.

The analysis of the stability of fuzzy control systems is approached in the literature
by using various methods of analysis: utilization of a small-signal state-space linearized
model [6] based on Lyapunov’s direct method [7,8], using the Toeplitz matrices and their
singular values [9], analyzing input-to-state stability and imposing some conditions [10],
and applying Lyapunov’s functions and theorem [11,12].

This paper provides solutions to eliminate the disadvantages in the implementation
of speed regulators based on fuzzy blocks. The analysis performed in the paper is intended
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for various types of fuzzy block, made with various membership functions, fuzzyfication
methods, rule bases, inferences, or defuzzification methods. In practice, many fuzzy blocks,
which have a general Mamdani structure, meet the sector conditions necessary to ensure
stability in accordance with the method of this paper. Several structures of fuzzy blocks that
have three, five, and seven membership functions, rule bases with 3 x 3,3 x 5,5 x 5, and
5 x 7 fuzzy values, inferences with min-max and prod-sum methods, and defuzzification
with the center of gravity meeting the sector conditions are necessary to ensure stability
in accordance with the methods of this paper. The stability analysis performed will
show which sector conditions the fuzzy blocks must meet to ensure the global asymptotic
internal stability of speed control systems. Answering these questions, it will be possible to
eliminate, at a later design stage, the empirical and unsystematic character of implementing
the knowledge of the operator and of the synthesis of the speed regulator based on fuzzy
logic. Another major disadvantage to which a solution is given is the impossibility of
demonstrating the stability of fuzzy control systems in general in the absence of valid
models for control systems based on fuzzy logic. Hence, it is impossible to determine
the quality of the stability of the control system. In the design of control structures with
regulators based on fuzzy logic, knowledge of automatic control engineering was applied,
despite the opinion of some that the use of fuzzy logic is possible without any knowledge
of the theory of control systems. No matter how much fuzzy logic-based control structures
have been developed, as will be seen in the paper, one cannot advance without using
knowledge from the theory of invariant linear and non-linear control systems, a theory
that is strong and well-structured and that meets practical requirements. Due to the fact
that control structures based on fuzzy logic can only be implemented by using digital
equipment, such as fast digital signal processors, it is necessary to use the theory of digital
control systems and apply theories for quasi-continuous systems.

The paper is further structured into four sections: preliminaries, stability analysis,
discussions, and conclusions. The steps followed in the stability analysis procedure are
presented below, in a step-by-step flowchart.

Steps

Results

Determination of the mathematical model of the

regulation system

Block diagram of the control system, mathematical models of the
components (motor, converter, sensors), parameter values

Determination of the fuzzy PI controller model

Block diagram of the fuzzy controller Calculation of the transfer
characteristics of the fuzzy non-linear block Equivalence of the
mathematical model of the fuzzy regulator Designing the coefficients
of the fuzzy regulator

Calculation of the mathematical model for stability analysis

Construction of the block scheme for stability analysis

Calculation of the transfer characteristics of the non-linear part

Analysis of the steady-state regime

Calculation of the steady-state regime values for the system variables

Analysis of the state portrait of the rule base

Demonstration of the existence of stable state trajectories

Calculation of the root locus of the linear part

Calculation of the poles and zeros of the linear part
Determination of the shape of the root locus

Correction of the non-linear part

Calculation of the transfer characteristics of the corrected
non-linear part

Calculation of the range of variation of the limits of the
stability sector in which the non-linearity falls

Calculation of the minimum and maximum values of
the sector domain

Construction of the block diagram for the analysis of
internal stability

Calculation of its mathematical model

Application of the Kalman-Yakubovich-Popov lemma

Determination of the positively defined function

Demonstration of internal stability applying
Lyapunov’s method

Choosing the Lyapunov function Demonstration of absolute global
internal stability
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Steps

Results

Application of the circle criterion

Construction of the linear part hodograph. Location of the circle

The procedure for correcting the characteristics of
non-linearity and determining the stability sector

Indication for correcting the sector limits

Simulation testing of the limits of the stability sector

Determining the transient regime characteristics for various values of
the scaling coefficient

Determining the equations of the regulation system for the analysis of

Demonstration of the external bounded-input the input-output stability Demonstration of the fulfillment of the

bounded-output (BIBO) stability

conditions for BIBO external stability Verification by simulation of the
BIBO external stability of the control system

2. Preliminaries
2.1. Control Structure

Figure 1 shows the speed control structure of the electric drive, with a speed regulator
based on fuzzy logic [13,14].

Lim

CONV um M, o
Q" eg ) ona K -1y lu | K | ua | MMLISI
- RF-Q BT Tgstl | | =]
- : Uamt MCC
an RG-i
Kn la
TfS+1
TQ T
Q.. Krg Q

CAN

Trgs+l

Figure 1. Block diagram of the speed control system with fuzzy regulator, used in stability analysis.

The meaning of the notations in the figure is as follows: MCC—DC motor, MM-
ISI—motor state-space equations, Ms—load torque, ()—rotational speed, u;—armature
voltage, +/—U,y—armature voltage limitations, CONV—electronic power convertor,
Kgg—convertor gain, Tgg—convertor time constant, s—Laplace transformation complex
variable, u.—control variable from the current controller, RG-i—current controller, Krg;
—current controller gain, Tr;—integrating time constant of the current regulator, Lim—non-
linear limiting block with anti-wind-up effect, e;—current error, CNA—digital to analog
convertor, i*—analog current reference, i,*—digital current reference, RF-Q)—fuzzy speed
controller, en—speed error, (Y*—speed reference, ()yn—digital measured speed, CAN
—analog to digital converter, TO>—speed sensor, Krn—speed sensor gain, Ttn—speed
sensor time constant. The speed control structure was classic [15], and it replaced the linear
PI speed controller with a fuzzy PI controller. The current control loop was dimensioned
based on the modulus optimum criterion, in the Kessler version [16].

The DC motor has the equations:

Uz = Ruiy +LQ% +e (1)
T = M — k;Q — M,

where
e =k.Q)
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The motor parameters are as follows: P, =1 kW, Uy =220V, n, = 3000 rot./min, n = 0.75,
p=2,]=0.006 kgmz, Mn =Pn/Qn =32Nm, O, =2 tn, /60 =314 rad/s, I, = Pn/n/Un =6 A,
Im=Iim=181,=108 A, R, =0.055 Upn/In=2.01Q), L, =5.6 Upn/nn/p/In=0.034 H, Ty = La/Ra
=0.017 ms, ke = (Un — InRa)/On =0.664 Vs, kyy = My /I, = 0.533 Nm/A, k¢ = 0.08 Mp/Qp =
8.10~* Nms. The parameters of the current regulator, those of the power converter and of
the current and speed sensors are: Krgj = 0.2, Trgi = Ta = 0.017 ms, Kgg = 22, Tgg = 0.8 ms,
Kri=1A"1, Ty =4ms, Krq =0.17/Vs, Tt = 10 ms. The analog-to-digital and digital-to-
analog converters used in the control structure were considered to be 12 bits and have a
maximum analog voltage of 10 V. In this case, for the values of the amplifications introduced
by these converters, the following values resulted as: Kcan =211/10 = 204.8 bit/Volt and
Kena = 1/KCAN = 0.0049 Volt/bit.

2.2. Speed Fuzzy PI Controller

The block diagram of the speed controller based on fuzzy logic had a structure as
shown in Figure 2 [17-19].

0 - e e
£ — di b
d Iy BF [—% ¢4 -
z-1 [%q o de ] de
hz c 1

Figure 2. The block diagram of the fuzzy PI speed controller.

The speed controller is a PI fuzzy controller with integration (summation) at the
output. A circuit with a negative reaction anti-wind-up, denoted AW, was introduced in
this scheme. The meanings of the notations in the figure are as follows: en—speed error,
deqg—error derivative, c. and cqje—scaling coefficients, BE—fuzzy block, di;—defuzzified
value, current increment, cz;i—control output gain, Kaw—gain coefficient, +/ —I—the
maximum limit current prescribed in transient regime, in*—digital current reference, ¢,
de—fuzzy block inputs. The values at the fuzzy bloc inputs are scaled in the universes
of discourse.

For the amplification coefficients ce and c4., from the two inputs of the fuzzy block,
values obtained by a pseudo-equivalence of the fuzzy PI regulator with a linear PI regulator
dimensioned with the symmetrical optimal criterion in Kessler’s variant were adopted,
after iterative tests.

2.3. Transfer Characteristics of the Fuzzy Block

The fuzzy block BF from Figure 2 may be developed using Mamdani’s structure, with
different membership functions, fuzzyfication methods, rule bases, inference methods and
defuzzification methods [17-19]. In this paper, an example of fuzzy block with membership
functions from Figure 3a, a rule base with nine rules, min-max inference and defuzzification
with center of gravity is taken in consideration. It has the highest non-linear character. Its
transfer characteristics are presented in Figure 3b-d, where x4 = e + de [17-19].

2.4. Pseudo-Equivalence of the Fuzzy PI Controller

A pseudo-equivalence with a linear PI controller is used to design the fuzzy PI
controller, in accordance with [20-23]. The fuzzy block BF is linearized around the steady
state operating point: (e = 0, de = 0, diy = 0). Its output is given by Equation (3):

did =Ky (e + de) (3)
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Ky is calculated from the characteristic families Kgr = (x1; de) with Equation (4):

Ko = limOKBp(xtl} 0) 4)

X1 —

The characteristic of the fuzzy block linearized around the origin is:

dig = cgiKo(e +de), czi = c4iKo )
T T T T T 1'5
g A -
0 H H
2¢em)  -1Cew) 0 1(en) 2(em)
e
T T ! T T
'8 1 _________ : _________ M m m o RREEREES |
€05 B Y oot -
0 H L . H H
-2 (dety -1{(-dec) 0 1(dec) {det) 2

-
S R bt
: -

1(diN) (dﬂVI)é 4?2 _»; 6 »; 2

(c) (d)

Figure 3. Fuzzy block characteristics: (a) membership functions, (b) fe(e; de), (c) f(xs1; de) (d) Kpp(xs1; de).

The transfer function of the fuzzy speed controller RF-Q) in the z domain is:

S Caile(z) +de(z)] = Zilaﬁ {Ce+cdezh_zl]€n(z) (6)

i (2) =

The transfer function of the fuzzy speed controller RE-() is:

~ -1
Hgr(z) = ezg((zz)) =3 i 1 Cai <Ce + Cdezhz> @)
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The linear PI controller has the transfer function:

HRQ(S) = KRQ <1 + STt{Q) (8)

With a quasi-continuous form:

Ce

i*(s) Cui h
H = v/ — H sh =4 A 1 9
RF(S) ea(s) RF(Z)‘Z:% A (Cde 5 | |1+ e T ci/2)s )
In accordance with [20-22], the relationships for controller coefficients are:
= =" = Ce(Trq — h/2 10
Ce = o KoTrg” ce(Tra —h/2) (10)

were h is the sampling period.

2.5. Model of the Control System Used in Stability Analysis

For the analysis of the stability of the speed control system of electric drives based on
fuzzy speed controller, we worked with a quasi-continuous model of the control system, as
shown in Figure 4.

r-— - ---=-=-=- 1?—‘—_—1 _________ i
ol eq E":" e |
" TR
- .- Ca=
: - ~ ]_de BF | di
|
| 1+hs/2 m 1 __/%C | ~
! Wi .N.__. N
| L - - =
|
| OQon
|
|
l L
L L L

Figure 4. Block diagram of the motor speed control system with fuzzy regulator, used in stability analysis.

The elements of derivation and numerical integration have been replaced by continu-
ous transfer functions [20-23]. The sampling step was denoted by h.
The system from Figure 4 has the equations:

an - TTQ an + 7KCAI¥KTQ Q
5(111 = _2218 Quun — %xal +%ilde Qr
Q=0 i, — 1y
io = — Q0 — §ig + Lu,
g = — gt + FExgp KETEE’;R" iam + KET% Bi x5 + KEERRIECNA
Xpo = TR Lfm + TR] Xa3 + 7R1KCNA dig (11)
lgm = _%flam + T7f a
Xgs = Keang,
y1 =€ = —CeQn + c. Q"
o =de = =280y, — Fxg + B

dig = cyidig = cqifpr(e, de) = fx (¢, de)
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where .
Xg1 = Cgely — pde
eQ - Q* - an
Xa2 = uc — Kgje; (12)
€ = " —igm

Xg3 = Z>|< — LCZNA dld

In the block diagram in Figure 3, the fuzzy block, BE, together with the saturated
elements at its inputs form a nonlinear part are symbolized with N. The non-linear part
N, with the increment coefficient of the current cy;, forms the global non-linearity N. The
linear L part is formed by the rest of the blocks. In the structure in Figure 3, the block AW
was not taken into account. In the above equations the fuzzy bloc is described by the two
variable non-linear functions fgr(e, de), and fﬁ (¢,de). The function of two variables of N

Figure 5 shows the structure of Figure 4, reconfigured into a structure specific to
addressing the problem of absolute stability, recommended in [24-27], for systems with a
non-linearity.

+
di o
dm ¥
@, (A, by, by by, €, d)
L
r--- - - - - = '__ = = = = - ;‘
oy 1
| : . [l
di di
d d ¥ ,
| Cgi | BF k= [+
| | '
= 1
|_ :ﬁ— _______ |__ - = = E e — __ﬂ
Figure 5. Block diagram for stability analysis.
In Figure 5, the linear part L has digyy = —diy as an input variable. The block L

differs from the block L by the placement of an inverter block at the entrance. Its output is

T=1[n ) = [E&]T. The non-linearity N is placed in the negative feedback. The fuzzy
block BF has the inputs y = [y; y2]” = [e de]”. Equations (11) and (12) of the control system
can be reproduced and concentrated, following the inserting of the input inverter block by
the mathematical model:

X(t) = A-x(t) 4 by-digy (t) + b-OF (£) + by-Ms(t)
_y(t) = Cox(t) +d-Qr(t)
digy = —f (€, de) = —cgi-diy
dig = fn(€, de)

(13)
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where
X = [ Omn X1 Q g Ug Xg2 dam X3 ]
ath)
[ - 0 Xk o 0 0 0 |
Zgﬂ 2 TQ
e 2 0o 0 0 0 0
0 0 —’;,i B0 0 0 0
e Rq 1
A= ) ° b e fﬁ KO KO K K OK ;
0 0 0 O _ AFE EEINR{ EEQRi
Tee T?E Tk Tee
0 0 0 o o0 —hu 0 Kri
Ri Ig{]
0 0 0 0 0 0 — ;f ' (14)
0 0 0 0 0 0 0 0
L r A
KppKgiK KgiK K
br — |: 0 0 0 0 _ EEZ%EECNA _ RZTISiNA OT _ C}i\IA :|
b=]0 %= 00000 0]
T
bz,:[()o-%ooooo}
I 0 00 O0O0OO0OTPO
T -%= -2 0000 0 0
2Cd T
=] % |
The non-linear function of two variables was attached to the fuzzy block:
did = fBF(E, de) (15)
with the universes of discourse U,, Uy, and Uy; from Figure 3a.
With the compound variable x;:
xn=[1 1]y=e+de (16)
and the function of variable x;; and parameter de:
,d
Kpp(x11;de) = fmtf:]e)/ xp 70 (17)
the variable dij; is expressed under the form:
. | Kpr(xp;de)xp, pt.xp #0
dig = { 0, pt.x1 =0 (18)

The families of characteristics dj; = f(x41; de), from Figure 3¢, have the property that
they are only in quadrants I and III [20-22].

The values of the function Kgr(xy1; de) may be determined from the family of char-
acteristics from Figure 3d [20-22]. This family of characteristics induces the need for
the relationship:

0< KBp(xﬂ,'de) < KM (19)

The values of Kj; may be determined from Figure 3d [17-19].
The new structure obtained from Figure 5 after the transformation with the Equations (16)—(18)
is presented in Figure 6.
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e
d"i B2
O (4, by, b, by, C,d) | y
T
r-- - - - -—7—- - — — — /1
i G %
! - ~ || X
d, C i d H| f(Xj:de) il
| I I
| | 1 '
| | | |
1 |
| IN II
™ L. — - - —— _ —
L __ —

Figure 6. The first equivalent control structure.

The fuzzy block works on the discourse universe [—1, 1], xy1 € [—2, 2]. The family of
characteristics diy = f (x}1; de) is shown in Figure 7.

1.5

15 i i i
-2 -1 0 1 2

Figure 7. The family of characteristics dij = f (x;1; de).

If the fuzzy block is working on the extended universe of discourse, the “indetermi-
nacy syndrome” appears. This is due to the saturations of the membership functions at the
extremities of universes of discourse. Therefore, di; is 0 for any e > 1, and de < —1 for any
e < —1 and de > 1. This behavior can be observed in Figure 3b,c.

In the analysis of the stability of the speed control system of the direct current machine,
it must be taken into account that the non-linearity N has saturation parts.

It has the non-linear function:

dig = fn(2,de) (20)
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With a new compound variable:
Tn=[1 1]g=¢+de (21)
and a new function Ky of the compound variable X}; and parameter de

Kn (% de) = fN(é,lde)’ Xy 7# 0 (22)

the variable di; may be expressed under the form:

. Kn(Fn;de)%y, pt. X #0
A = { 0, pt. ¥ — 0 @)

The family of characteristics diy = f(fﬂ ; d~e) has the property that it is only in quad-
rants I and III. Figure 8a shows the family of characteristics diy = f(Xy; de) for the fuzzy
block, where Xx;1,de € R.

de=

dig

4 2 0 2 4

(a)

Figure 8. Families of characteristics (a) diy = f(}?ﬂ ;de), (b) Ky (Xp; de).
The family of characteristics Ky (¥;1; de) induces the consideration of the relationship:
0 < K (Tn;de) < Ky (24)

The family of characteristics Ky (%31; de), for %1 # 0 is presented in Figure 8b.
The non-linearity N has a spatial sector property (25) deduced from (20):

fn (@ de){ fu(E de) - Knm[11] ['evie]T} <0, V[¢de] € R? (25)
With Equation (25) the non-linearity may be seen with two inputs and one output. The

theory for multivariable non-linearities from [26] may be applied. Using Equations (21)—(23),
the equivalent block diagram of the system can be drawn up, as shown in Figure 9.
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Figure 9. The second equivalent block diagram of the non-linear control system.

From the analysis of the family of characteristics in Figure 8a, it is observed that
portions of characteristics of the non-linearity N with zero intervention (non-intervention)
appear again, due to the limiting elements with saturation from the inputs: di; is 0 for
X € [-1, 1], for ‘je’: 1; 1,5; 2 at the limits of the universe of discourse.

To determine a Lyapunov function on the basis of which to prove the absolute internal
stability of the nonlinear control system, according [24,26,27], the non-linearity fN(E; de)
or with the equivalent notation fﬁ(ﬁ) can be time-variant or invariant, but it must be
continuous in time intervals and must locally satisfy Lipschitz’s property with respect to v,
i.e., there must be a finite v > 0 such that:

If5@) = fx@) | <viga—l, Yih=[& de Jandfo=[& dex]  (26)

In this case the non-linearity, fﬁ@’) is not time variant. The output values depend at

any time only on the values at its two inputs & and de.
N satisfies a condition of space sector:

fr(@ de)[fg (6 de) —Kmax[ 1 1 ]5] <0, ¥t >0, Vj € R? 27)

and
Kmax = ¢4iKy >0 (28)

2.6. The Steady State of the System

It will be shown below that the steady state of the fuzzy control system considered
in Figures 4, 6 and 9 is the only equilibrium state of the system for null entries. For this
purpose, the unforced system are described by Equations (11)—=(14), in which, on the one
hand they are replaced (3* = 0 and M; = 0, and on the other hand, it is considered that
the system is in steady state. It is observed that de = de = 0. Additionally, it follows from
Equation (11) that diy = 0. In these conditions, the following relationship results:

fx(€0)=0 (29)

The dependence di; = f;(E, 0) is bijective, and Equation (29) has a unique solution
e=0.
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It results that absolutely all the variables take the value zero. Therefore, the point of
steady state is an equilibrium point. € = 0 is the unique solution of Equation (29); therefore,
it is the only equilibrium point.

Therefore, it is necessary that when de = 0, the fuzzy block to give the output of di; =0
only when ¢ = 0. Analyzing the single-input-single-output characteristics di; = f (e; de), for
de = 0, we may see the condition is fulfilled when defuzzification with the center of gravity
is used [17-19]. Fuzzy blocks that use defuzzification with the mean of maximum method,
for example, do not meet this condition.

2.7. The Vague State Portrait of the Rule Base

Qualitatively, a first stability analysis can be performed on the rule base chosen for
the fuzzy block, in the space of vague states [28]. The rule bases may be seen as the vague
state portrait. Figure 10 presents the primary rule base with 3 x 3 rules.

. e
d NTzE [ P
N« N[IZE
N (2) (4) (6)
N{|ZE?| P
deZEl 11D ®
PlZE| P | P
(7) (5) (3)

Figure 10. The vague state portrait of the rule base.

Thus, if it is assumed that the initial conditions are ¢y = P and dey = P, according to
Equation (3), the command is di; = P. If the speed control system is stable and controllable,
the state path can follow the following rules in order: (9), (6), (4), with rule (1) in the
steady state. If the system has initial condition specific to rules (9), (6) or (4), the specified
state trajectory can only be traversed from these initial positions. Another possible route
example for an ‘aperiodic linguistic behavior” would be (2), (8), (7), (5) and (1). The rule
base contains the vague state trajectories which, due to the integrative character of the
controller, lead the system, from any point of the rule base from which one would start
to the steady state rule. Analyzing other rule bases with 3 x 5,5 x 5 or 5 x 7 fuzzy
values [17-19], it is observed that they can ensure the linguistic trajectories of the fuzzy
variable e, de and di;, similar to those described above.

2.8. Observations on the Linear Part

Considering the structures of Figures 4 and 9, in the situation (2* = 0, the transfer
matrix of the linear part L is Hy(s), and §(s) = Ho(s)digy(s). Its characteristic polynomial
has a zero at the origin, due to the integrative character introduced in the dynamics of the
fuzzy speed regulator, thus Hy(s) is not Hurwitz. The non-linearity fﬁ (¥), multivariable
at the input and single-variable at the output, can be assimilated with an equivalent non-
linearity fﬁ(ﬁtl; de), single-variable at the input and output. The influence of de makes it
time-variant. The transfer function from the input variable 0Tidm to the calculation variable
Xt1, which is required in connection with the block diagram in Figure 9, is obtained with
the relationship:

_ Xa(s)
Ho(s)==—"=[1 1 |Hy(s) (30)
di gy, (S)
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Imag Axis

and it has the expression:

_1+hs/2 ' ki 5
Ho(s) = s Hz(S)]S+kam(S)<Ce+Cde1+hs/2) (31)

In deducing the above expression, the equality Kcan = 1/Kcna was taken into account.

With H;(s), the transfer function equivalent to the current control loop was noted. Hrq (s)
is the transfer function of the speed sensor.

The structure from Figure 11 was used in the analysis of the possibility of stabilizing

the system.

M

d'idm

(4, by, by by, €, d) [11]

ol

L

K

Figure 11. Block diagram of the linear part stabilized with a linear feedback.

Additionally, for this structure the root locus drawn for the equation 1 + KHp; (s) =0,

was used, which had the form of Figure 12a.

800 | 200 , | :
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400 100}~ boeeennnaees boeeenneens T
200 o B0 R e . =
é 1 i .
0 o O B--b e &
iy :
£ :
-200 70| R S S — B
-400 =100} boeeennnaees boeeenneens ™
-600 B0 S T — S
800 | | | | | -200 5 3 5 3
800 -600 -400  -200 0 200 400 -800  -600  -400  -200 0 200
Real Axis Real Axis
(a) (b)

Figure 12. (a) Root locus of the function 1 + KHy1(s); (b) detail for K € [0, 4795].

The eigenvalues of the linear part are poles: —666.67; —100; —562.66; —63.25 + 140.40 j;
—63.25, —140.40 j; —69.64; —0.11; 0, and zeros: —8.51; —58.82; —666.67; —200. The root
locus intersects the imaginary axis for K = Ky = 4794. The detail obtained for K € [0; 4795]
is represented in Figure 12b. The linear part can be made stable with linear negative
feedback, as shown in Figure 11. The coefficient K € [¢; 4794), where ¢ > 0, no matter how
small. This is an e-stability situation.

In Figure 9, the nonlinear block N must stabilize the linear part L, unstable due to

the existence of the pole at the origin. According to [26], the non-linearity fN () must



Mathematics 2021, 9, 1246

14 of 32

be situated into a sector of the form [Kyin, Kmax], of which the sector cannot exceed the
Hurwitz sector [¢, Ky):
[Kmin/ Kmax] - [51 KH) (32)

In other words, K,,,;, must be chosen to obtain a Hurwitz matrix:

Hy (s) = Hoq (s)

= — 33
1+ KininHo1 (s) (33)

associable with the system of Figure 11. The next section will present the solution adopted
to ensure stability.

2.9. Correction of Non-Linearity Characteristics

According to [29], the relationship that characterizes the fuzzy block depends primarily
on the rule base. However, the relationship fpr (e, de) that describes the fuzzy block also
depends on the form of the chosen membership functions. The characteristics of the fuzzy
block, defined only on the set [-1, 1], is characteristically situated into a sector of the
form [Kj, K3], 0 < K7 < K3, as can be seen from Figure 7. When introducing the saturation
elements with a limiting role before the fuzzy block, the resulting non-linearity N is situated
within [0, K], as seen in Figure 8a. In order to meet the sector condition of the shape (32)
necessary to ensure stability, a correction of the non-linearity characteristic according to
Figure 13 is made.

S

di
. (A by,bby, G d) |5
L

_ T T T RS SSEEEE eI SRS E =
. . 1 |
dig, | dig, | dig' Xq N
~H €4 T — fp{xq;de) (CH= - i:!

| H [
| : ' f ! 1 N lll
I l IdE |
! | || [ N I II‘“«— L
| | | :_EF | 1y
| | Miuntionieginiatiefiesti el S B RTR
[ — — [
| | Ogi P s | W |
| c L |
| N Ne \T/ g
C L J
L _ _ _ T T TTTT T T T - - T -

Figure 13. The structure of the correction system of the non-linearity N.

The correction is made with the added variable §;:

54 = Ke[(Z— €) + (de — de)] = Ke(Fnn — x) (34)



Mathematics 2021, 9, 1246 15 of 32

In this case, an important observation must be made. The correction is non-linear,
it is on the feedforward channel, and it does not affect the non-linear character of the
fuzzy block. It only works if there are limitations to the two inputs of the fuzzy block. It
does not affect the action of the fuzzy block. It removes the action of non-linearity from
the area of non-intervention. The stability is assured with the coefficient Kc [26,27]. The
nonlinear correction moves the characteristics di; = f(xy1; de), from Figure 8a, eliminating
the non-intervention area, which may be seen on the x axis, with zero value for dij when e
and de are different from zero.

The coefficient K. > 0 must be chosen for the characteristics of the non-linear part NC
to be situated within a suitable sector [Kinin, Kmax]- B

Two examples of the family of characteristics diy. = f(Xy1; de), for K. =0.1 and K. =1,
are presented in Figure 14a,b, respectively. This shows the placement in quadrants I and III
and a sector condition of the form:

[fy(@de) —Ku[ 1 1]7][fg(Ede) —Ku[ 1 1]9)]<0,VyeR? (35)

(a) (b)

Figure 14. Family of corrected characteristics diy = f(¥y; de), (a) for K. = 0.1, (b) for K¢ = 1.

This condition can be transcribed as:
(dige — KiXp1)(dige — Kpxn) <0, VX € R (36)

In order to determine K;;, and K}, the families of characteristics are considered:
- dige -
Kne(Xp; de) = ?ﬂ’ X #0 (37)

from Figure 15, associated with the features of Figure 14.

It can be observed that the family of characteristics Kn.(X1; d~e), has the limits K;;, and
Ky of the sector in which it is situated, variable depending on the coefficient K..

Figure 16 shows how these two limits vary depending on the value of K. € [0, 1].
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do | | s s s L e

(a) (b)

Figure 15. Family of characteristics Kn.(X1; Je), (a) for K. =0.1, (b) for K. = 1.
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0l5:_?__—_:_-__‘i:_—_:__—__—_d:"_:__—_ ___J;__________;L _________ =
0 | | | |
0 0.2 0.4 0.6 0.8 1

Figure 16. The variation of the sector limits, depending on K.,

Analyzing Figure 16, it can be seen that the value of K), is constant, being approxi-
mately 1.17, for any K. Therefore, the correction does not change the maximum associated
with the family of functions Kn(¥1; de). The value of K, varies linearly with K¢, from 0 to
Kyum =2 0.52, for K. = 0.55. K;;; is constant at about 0.52 for K, values greater than 0.55. The
ratio between Kj;, and Kj, varies depending on K. between 0 and about 0.32. Corroborating
this result with condition (32), it follows that ¢;; and K. must be adopted so that:

[caiKim, c4iKp] C [Kmin, Kmax] C [&, KR) (38)

As can be seen from the developed equivalent block diagrams, the c;; current incre-
ment coefficient is included in the non-linearity structure. It simultaneously affects both
limits of the sector in which the non-linearity N, falls, according to Equation (38). The
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lower limit of the sector in which the non-linearity N falls is also corrected with the help
of the correction coefficient K.. The accessible values of Kyin, Kmax and ¢ ; for the speed
control system of the DC machine will be determined following a stability analysis.

3. Stability Analysis
3.1. Internal Stability Analysis

In order to analyze the stability of the DC motor fuzzy speed regulation system, a
fictitious transformation of the control loop of Figure 13, shown in Figure 17 [26,27], is used.

e
- r 1
. P

dm ¥

O_H'O_) (A, hr: h, hv: C,d)

.
| d

=2
=

L]
=
i
p

Figure 17. Block diagram for applying the circle criterion.

A negative feedback (block 1) Kyn[1 1] is applied to the linear part, and also for its
total compensation on the non-linear part (block 2). The result is a modified linear part Ly,
and a non-linear part Ny,. The linear part L has the non-Hurwitz state matrix A, and the
non-linear part fN (y) satisfies:

Un@ K[ 1 1 ]G0 —Ku[ 1 1]9)] <0, vy e R (39)
The linear part L, has the mathematical model:

= (A=bKmin[ 1 1]C)x +bydigy + bQ* + by M,

y=Cx+4d-QF 40
Let Kiyin be such that the matrix of the system Lo
A=A—bKmn[ 1 1]C (41)
is Hurwitz. Then, the nonlinear part Ny, has the relationship:
@) = 3@ —Kain[ 1 1 ]7 (42)
It can be clearly seen that from Equation (39) this results in:
fu@ @) —K[1 1]9)]<0,Vye R? (43)

with K = Kmax — Kmin-
For the analysis of the internal stability the unforced (autonomous) system was con-
sidered, in which ()* = 0 and M; = 0. The mathematical model of the unforced system is:

X = Ax + bygidm
y=Cx (44)
didm = _fm(@
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The system (Equation (44)) has a non-linearity with two input variables and one
output variable. In [26], it is recommended to use the circle criterion for multivariable
systems in which the non-linearity has an equal number of inputs and outputs. That is
not the case here. Using the change of non-linearity made in the paper from the form
with two input variables (20) to the form with a single input variable and a parameter
((21) + (23)), the circle criterion proposed in [24,26,27] can be used, for systems with a
single input-single output non-linearity, but time-variant. Furthermore, it will be shown
that a statement of the circle criterion can be given even if the non-linearity has two input
variables and only one output variable, but satisfies Equation (38). The demonstration
occurs in three stages.

Stage I. In the first stage, the following particular variant of the Kalman—Yakubovich-
Popov lemma [24-27] may be used:

Lemma 1. Let it be:
F(s) =1+KH (s) =1+K[ 1 1]C(sI—A) 'b, (45)

with H(s) defined by (33), A is a Hurwitz matrix, (A, b,) controllable and ([11]C, A) observable.
Then, F(s) is strictly positive if and only if there is a positively defined symmetric matrix P with
(P = PT > 0), a vector M and a constant ¢ > 0 such that:

PA+ ATP = —MTM — &P

46
Ph, =CTK[1 1] —v2mT (46)
Taking into account Equations (31) and (33), this results in:
Hyq (s 1 4+ KmaxHo1 (s 1+ K 1 1 |Hy(s
1+ (Kmax - Kmin) Ol( ) = _ Ol( ) = maX[ ] ( ) (47)

T+ KminHo1(s) 1+ KminHo1(s) 1+ Kmin[ 1 1 [Ho(s)
Stage II. It is assumed that the conditions in the Kalman—Yakubovich-Popov lemma
are met and there are matrices P and M. Then, with the matrices P and M, a Lyapunov

function V(x) is constructed, and it is proved that its derivative V(x) is negative when the
sector condition is fulfilled [30].
Thus, the Lyapunov function is chosen:

V(x) = x"Px (48)

where x = x(t) is given by Equation (44).
Consequently:
V(x) = xT(PA+ ATP)x — 2x"Pb, £, (7)) (49)
Increasing the right parameter of Equation (49) by =2, (¥) (fu(7) —K[ 1 1 ]y) >0,
see (43), we obtain:

V(x) < xT(PA+ ATP)x — 2xTPb, fu () — 2fu () { f(7) —K[ 1 1 ]7}
= xT(PA+ ATP)x — 2xTPb, fs(§) — 2fm (@) {fu(¥) — K[ 1 1 ]Cx} (50)
— xT(PA+ATP)x+2xT(CTK[ 1 11" = Pb,) fu(¥) — 2£2(%)

Making substitutions in the right member of the Equation (50) in the first and second
term based on Equation (46), using the matrices P and M and the number ¢, results in:

V(x) < xT(=MTM — eP)x +2v2xTMT £, (§) — 2f2(¥)
= —exTPx — xTMTMx + 2v/2x"MT £, (1)) — 2f2.(7) (51)
= —exTPx — [Mx — V2 ()] [Mx — V2fu(§)] < —exTPx
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Therefore, the existence of P, M and ¢ that satisfy (46) makes V(x) negative. Con-
sequence. Consider the system (44), where Ais Hurwitz, (g, by) is stabilizable and f,(y)
satisfies the sector conditions (42) and (43) on R3. Then, the system (44) is globally abso-
lutely stable if the transfer function F(s), given by (45) and (47), is strictly positive real.

Stage III. After the above demonstration, it can be stated that the following state-
ment for the circle criterion is valid, if the non-linearity has two input variables and one
output variable:

Theorem 1 (Circle criterion). It is considered that the non-linear system with the linear part
e-stable, is controllable and observable, with the transfer function Hy;(s) and the non-linearity of
the fuzzy block satisfying the sector condition (39). The system is globally absolutely stable if Hy(s)
is Hurwitz and F(s) is strictly positive real.

The transfer matrix Hy(s) is a transfer matrix of a linear part with one input variable
and two output variables.

In these conditions, the system is absolutely stable in the sector [Kmin, Kmax] if the
hodograph Hj(jw) is located to the right of a vertical line passing through the point of
abscissa (—1/K, 0), with K > Knax—Kmin. A stability analysis based on a graphical method
is performed in [31], but for a fuzzy controller with two inputs and two outputs.

To use the circle criterion, the hodograph of the linear part Hp; (jw) is drawn, which
has the shape of Figure 18a, with detail shown in Figure 18b.
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Figure 18. (a) The hodograph Hy (jw); (b) detail of hodograph Hy, (jw).

The hodograph of the linear part Hy;(jw) imposes a dependence between Kmax and
Kmin. The circles must be to the left and most tangent to the hodograph. If there is no
correction, the non-linear part remains in the sector [0, K] and we cannot tell from the
equilibrium point x = 0 whether it is stable or unstable. There are states of the system with
V(x) > 0and V(x) > 0, but we do not know whether or not the system passes to states in

which V(x) > 0and V(x) < 0.

3.2. Determining the Limits of the Stability Sector

In Figure 18b, it is observed that the hodograph intersects the real axis at the point
Dy, of coordinates x; = —1/2500 and y; = 0. Analysis of the properties of the sector is
conducted for Re{H(jw)} < xj, to ensure that the stability the circles would be located to
the left of the point Dy. To ensure stability, the circles must have a radius R, less than
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the distance d from their center to the hodograph. The analysis is made with reference to
Figure 19.
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Figure 19. Positioning the circle with respect to the hodograph.

For a certain frequency w;, i =1, ..., n, there is determined by calculations a point on
the hodograph denoted P;, of coordinates (u;, v;). At this point, the hodograph admits a
tangent denoted dy; and a normal denoted d,,;. The distance from the center C; of a circle that
can be built to the left of the hodograph is calculated on the normal d,,; to the hodograph. It
is the distance between the point on the hodograph P; at which the normal d,; rises and the
point C; at which the normal intersects the real axis. If circles are constructed on the real
axis with center in x,;, these circles must have radius R,; less than the distance d;. Circles
that can be constructed with the center in x,; intersect the real axis to the left at the point
M,;, of coordinates y,,, = 0 and,
Xmi = —1/Kmini (52)

and to the right at the point My of coordinates 1,1 = 0 and,
xmi = —1/Kaxi (53)

The extreme values of the x,,; and x); coordinates are limited by the distance d; to
the hodograph:
(Xmi ) min = Xci — di
54
(xMi)max =X+ di ( )

Additionally, the values of the extreme limits of the sector are limited:

(Kmini)min = _1/(xmi)min
(Kmaxi)max = _1/(xMi)max (55)

Below are the graphs of the dependencies between the parameters that characterize
the location of the circles relative to the hodograph.

Figure 20a shows how the abscissa x. of the center of the circle varies, located on the
normal taken at a point on the hodograph. The point on the hodograph is defined by the
value of the real coordinate Re{Hp; (jw)}. It is natural that as the position on the hodograph
moves to the left, the position of the center of the circle must move to the left. On the central
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part of the characteristic, the dependence is almost linear. In the vicinity of the intersection
of the hodograph with the real axis, there is a portion on which there is a wider margin of
location of the center of the circle. To the left of the hodograph asymptote, the center of the
circle can be located as far to the left as the real axis. This figure shows that the dependence
between the position on the hodograph and the center of the circle is univocal, i.e., from a
point on the real axis, only one normal can be taken to the hodograph. Figure 20b shows
how the distance from the center of the circle varies from normal to hodograph, depending
on the position of a point on the hodograph. Figure 20c shows the dependence between
the extreme values of Kmax and Kpin. This feature is plotted parametrically, depending
on the position on the hodograph. Figure 20d shows how Kpax and Ky, depend on the
abscissa Re{Hp; (jw)} of the tangent point of the circle at the hodograph.
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Figure 20. (a) Variation of the position of the center of the circle with respect to the hodograph; (b) variation of the distance
from the center of the circle to the hodograph, depending on the position on the hodograph; (c) dependence between the
extreme values of Kmax and K ; (d) extreme values of Kmax and Kp,jn, depending on the position on the hodograph.
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It is observed, as is natural, that for points on the hodograph located closer to the
Dy point (from Figure 18b), the maximum limit of the stability sector increases, tending
to the Hurwitz value, the maximum limit of the sector Ky = 2500. It is observed that
the Kmax/Kmin ratio has the maximum value, of approximately 12, next to the point of
intersection with the real axis. The ratio decreases in the central area of the hodograph.
The ratio obviously increases to the left of the asymptote at the hodograph. The constraint
imposed by the non-linear part depends on K¢, as shown in Figure 16 and the value of the
current increment coefficient ¢z;. A maximum cy;; value can be determined for the current
increment coefficient. The maximum cy;3; value is limited by the capability of the speed
control system to control the motor supply current. It is determined by the maximum
numerical value of the prescribed current:

caim = IMKcanKTi (56)

Kmax is given by the product c¢;;.Kp;. The maximum value of Kj is constant, and at
the same time, it depends on K.. Additionally, K,,5s varies with K.

The maximum range in which a stability sector can be chosen is determined using
Figure 21.

C .
4 100/KM i 102/KM Caim

Kmax=Ccq4iKpy
Figure 21. The domain of the stability sector.

In this figure, the characteristics are represented in logarithmic coordinates, to high-
light the various portions of it. The values of ¢;; can also be placed on the abscissa axis (see
the upper side), because:

Cdi = Kmax/KM (57)

Additionally, in Figure 21, the characteristic:

Kminm = ¢4iKium (58)

is drawn in which K,,5s (see Figure 16) depends on Kj. The value of Kyiny increases as
K, increases.

The stability sector can be chosen only in the field shaded in the figure, because
only these domains are located between the graph of Kyin = f(Kmax) and the graph of
Kininm = f(Cai)-

The domain is limited to:

Kmaxm = cgimKm (59)
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The verification of the findings regarding the stability domains is presented in the
paper by transient regime analyses of the unforced system.

3.3. Indications for Correction Characteristics of Non-Linearity and Determination of the Stability Sector

To establish an acceptable dynamic behavior for the closed loop control system, the
values of the scaling coefficients ce, c4e and c;; may be chosen. Additionally, to correct the
non-linearity characteristics, the value of the coefficient K. may be modified. Below are
some indications for choosing the parameters c;; and K., considering the previously chosen
values of the parameters ce and cq4e, for the case of the electric drive taken as an example in
the paper.

(1) For a certain type of fuzzy block, the values K, and Kj; may be chosen from the
characteristics Ky = f(X1), or dig. = f(X1; de).

(2) The current incremental coefficient is limited by the capability of the control system
to regulate the current through the electric machine. The prescribed current difference at a
sampling step F is:

Niygq = fugpr = Bk (60)

The current increment coefficient can be determined with the relationship that de-
scribes the numerical integration function:

Ai*
;= k4l (61)
digr41

For the example taken in consideration, the maximum value of the prescribed current
may not exceed: I}; = KcanI,mKr = 204.8 x 10.8 = 2211.84. This value is dimensionless.
It only appears in calculations. The maximum value at the fuzzy block output is approx-
imately dizy; = 1.4. Therefore, at an integration step, on a sampling period #, a value
greater than cg;p = Iy, /digy = 1579.89 is not justified for the current coefficient. For this
maximum value of the current increment coefficient, a maximum value of the upper limit
of the non-linearity of cj;s.Ky = 1848.47 can be chosen.

(3) The values of the coefficients c;; and K are chosen so that Kiyin < ¢4 Ky < ¢4;Kpr <
Kmax < Ky = 4794.

In practice, this choice will be made following repeated transient regime analyses,
establishing a value of cy; that will ensure an acceptable dynamic behavior.

(4) In choosing c;;, the maximum value Kj; of the upper limit of non-linearity for a
certain fuzzy block must be taken into account. For a fuzzy block with 3 x 3 fuzzy variables,
max-min inference and defuzzification with center of gravity, with transfer characteristics
from Figure 3, Kys = 1.17, and results in:

Cqi = Kmax/KM (62)

This value must be less than cyj;.
(5) K, is chosen with the relationship:

KC = rkKM (63)

where the ratio,
7K = Kmin/ Kmax (64)

is taken into account.

If K, results in relatively small values, the non-linearity of the fuzzy block does not
change significantly. The non-linear character of the fuzzy block, the main attribute of the
fuzzy controller, remains.

It is recommended that the family of characteristics fn.(X1; d~€) be included in the
stability sector; therefore, at variations of the parameters of the electric drives, these
characteristics do not leave the stability sector.
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The placement of a circle with the following coordinates: x, = —0.0048 and xy; =
—6.416 x 1074, close to —1/Kp, is shown in Figure 22.

oX 10° Xpp=4.8x107 xy=-6.42x1074

Im{Hp4 (@)}

Re{Hg1(o)} 107
Figure 22. Example of a circle located close to —1/KH.

In this case, the limits of the stability sector are: Kpin = 206.26 and Kmax = 1558.4.
The center of the circle has the abscissa x. = —0.0027. The distance from the center to the
hodograph has the value d = 0.0021. The tangent of the circle at the hodograph has the
coordinates (—0.0016; —0.0017). The ratio between the extreme values of the sector limits
has the value rx = 7.5553. For this circle, cg; = 1332 and K. = 0.1 may be approximated.

Figure 23 presents an example of the location of the characteristics diy (Xy; dNe) in
quadrants I and III, in the sector [Kj;, Kjs] admitted.

1.5

24 2 0 2 4

Figure 23. Framing the characteristics of N non-linearity in the stability sector.
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3.4. Testing the Domain of Stability Sector Limits

Verification of the findings made in the previous paragraphs regarding the internal
stability was performed for some cases specific to the domain in which the correction
parameters of the non-linearity K. and c4; can take values. This verification consisted of
performing transient analyses on the model in Figure 1, in which the speed controller was
numerically implemented. The unforced regime was taken into account, because it was
considered when the internal stability analysis was performed. The values chosen for the
correction parameters are presented in Table 1.

Table 1. Stability verification cases.

Case Cdi K.
1 1500 0.1
2 100 0.55
3 10 0.55
4 1 0.55
5 5000 0.55

The values chosen for c;; place the non-linearity in various parts of the stability
domain, as in Figure 21.

Following the correction made on the non-linearity, the PI fuzzy speed controller has
the block diagram shown in Figure 24 [13,14,26,27].

Figure 24. Block diagram of fuzzy speed controller corrected.

It is observed that the correction performed resulted in a quasi-fuzzy structure, in
which a linear structure was introduced in parallel with the fuzzy block.

The Matlab/Simulink program was used to simulate the fuzzy control system.

An unforced control system, with (3* = 0 and Ms = 0, was considered. It was also
considered that the control system was brought to a certain initial state, for example,
in0 =1 A si )y =100rad/s. In the analysis of the transient regime, the behavior over time of
the state variables i, and ) and of the variables ¢, de and c%'d was analyzed. In Figure 25a—e,
the characteristics in the unforced regime for the variables chosen above are presented in
cases 1, 2, 3, 4 and 5 of Table 1, respectively.

It is observed that in cases 1, 2, 3 and 4, the steady state is a state of stable equilibrium,
and in case 5, it is at the limit of stability, practically unstable. The f,;(yy) function is null
outside that neighborhood. Continuing the reasoning, one can take this neighborhood
no matter how small around the steady state, and then the fuzzy block can be linearized
around the steady state. It follows that in this vicinity, in the stability analysis of the speed
control system of the electric drive based on fuzzy regulator, criteria from the stability
analysis for linear systems might be used. Moreover, the above findings could suggest
that the fuzzy regulator-based control system is asymptotically internal stable even in the
Hurwitz sector [0, Kg).
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Figure 25. Transient characteristics: (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5 from Table 1.
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3.5. Input—Output Stability Analysis

For analysis of the input—-output stability of the speed control system of the DC ma-
chine based on the fuzzy PI controller, the block diagram in Figure 4 and the mathematical
input-state—output model given by Equations (11) and (12) considered these relations
written in a general form:

(1) = f(x(0),u()) -
Q(t) = falx(t),u(t))
where non-linearity was considered introduced in fx.
The input variables were:
u=[Q" M]" (66)

and the output variable was ().

In the analysis of internal stability, the emphasis was on the behavior of state variables
for the unforced system. The mathematical input-state—output model connected the output
() and the inputs, grouped in the vector of the input variables u, by means of the internal
structure of the speed regulation system based on the fuzzy regulator. In the analysis
of input-output stability, the system is seen as a black box, which can be accessed only
through inputs and outputs.

According to the application considered, the grouped inputs in the vector of the input
variables u belong, according to the theory [26], to a normed linear signal space £2 of
functions u:[0, +c0] — R?. Such a space is, for example, the space of uniformly bounded
functions £, provided by the norm:

[[#4]loo = supllu(t)]| < e (67)
t>0

If u € £2 is considered to be a suitable input, which ‘behaves well’, the question is
whether the output () “will behave well’, meaning whether () will belong to a function
space with a similar norm as to Equation (67). A system that has the property that any
input with ‘good behavior” generates an output with ‘good behavior” is called a stable
input-output system [26]. For the case when the inputs and outputs belong to uniformly
bounded function spaces, the definition of input—output stability becomes the notion of
bounded input-bounded output (BIBO) stability. In other words, the system is £.,—stable
if for any bounded input, the output is bounded.

The following theorem [24,26,27] is used in the study of input—output stability.

Theorem 2. Let the dynamic system given by the Equation (65), where x € R, u € R?, Q € R,
f:R® x R? — R® is derivable and fo: R® x R> — R is continuous. Suppose that:

1. x=0isan equilibrium point of (65) with u =0, i.e., f(0, 0) =0, Vt > 0;
2. x =0is an equilibrium point global exponential stable of the autonomous (unforced) system:

x = fx(x,0) (68)

3. The Jacobian matrix [dfx/0x], evaluated for u = 0 and [0 f /du| are globally bounded;
4. falt, x, u) satisfies:
1 fa (e u) || < kallx[l + ka[ul] + ks (69)
globally, for kq, ky, k3 > 0.
Then, for any ||x(0)|| < 5, there exist the constants v > 0 and B = B(n,k3) > 0 such that

sup||Q(t)|| < supllu(t)|| + B (70)
£>0 10

Condition 1 is met, as shown in Section 3.1;
For condition 2, the following theorem [26] can be taken into account.
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Theorem 3. Let x = 0 be a point of equilibrium of the nonlinear system, where f is derivable with
respect to the state variables and the Jacobian matrix [0 f/0x] is bounded and Lipschitz. Thus,

i, = %

Then, the origin is a stable exponential equilibrium point for the control system, if it is a stable
exponential equilibrium point for the linear system:

X = Avox (72)
The matrix Ag in this case is given by the relationship:
Ay=A-1b(cgiKo)[ 1 1]C (73)

where
Ko = Kpr(0;0) (74)

In this case, the linearized system around the origin was considered, and for the fuzzy
block, the value in Equation (74) of function Kpr(x;;; de) was considered.
The linear system is exponentially stable because all its poles have a real negative side.

e The Jacobian matrices in condition 3 have, as elements, the coefficients of the state
and input variables in Equations (13) and (14), respectively, and the partial derivatives
of fu(e, de) in relation to the state variables and with respect to the input variables.
The coefficients of the system are constant, and therefore limited. Fuzzy blocks with
max-min inference and defuzzification with the center of gravity method have contin-
uous multi-input-single output (MISO) characteristics on the universes of discourse,
as can be seen from Figure 3a—c [17-19]. The non-linearities resulting from the use of
these fuzzy blocks and limiting elements also have the continuous MISO characteristic
on R2. Therefore, the partial derivatives of the non-linearities, in the composition of
which such fuzzy blocks are introduced, are bounded. It can be said that condition 3
is also met in the case of using fuzzy blocks with max—min or sum—prod inference,
and defuzzification based on the center of gravity method [17-19]. In other cases, for
example, in the case of fuzzy blocks that use the defuzzification with the mean of max-
ima method, the partial derivatives are infinite at the points where the characteristics
exhibit jumps, and the third condition is not met;

e  Condition 4 is met because the output variable () is also the state variable in this case;
thus, it is a component of the vector x. Equation (69) is, in fact, a necessary condition
for the vector space to which the vectors x and u belong to be linearly normal.

It has been shown that the speed control system of the electric drive based on a
fuzzy PI controller in which the non-linearity has a correction is globally asymptotically
internal stable; therefore, the conditions can be determined for which this system is ensured,
and input-output stability, within the concept of ‘bounded input-bounded output’, for
any variable applied to the reference input, is part of the normal space of uniformly
bounded functions.

In this case, the steady state values for the closed-loop system, for steady state values
Qo and Mseo of the input variables, are given by the following relationships:

, k 1 .
Qnoo = KcaNKTa o, Xg100 =0, igeo = kT{,Qw - HMsoo/ Ugeo = Ralgoo + keQoo,
1 . . . T ~
Ucoco = gy Uacos Xa2eo = 0, iameo = Krilaco, Xa300 = Tno, Aigmeo =0, € =€ =0, (75)
do — - — 1 *
de=de=0, Qx = T Q

The verification of the input—output stability was performed by transient regime
analysis on the model from Figure 1, with the numerical fuzzy controller in Figure 23,
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having the fuzzy block corrected, in a forced regime, applying step signals at the speed
reference input (3* and at the load torque disturbance input M, as in Figure 26.

400 . , .
) : : :
EZOO --------------- dernamennoane -------------- -
G 0 ! ! :

0 1 2 3 4
E
S2p e o o .
o : : ;

= ! ! :

0 H H H
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B 200 -+l AR S— - :
G 0 ' g :

0 1 2 3 4

tI[S]

Figure 26. Characteristics of the transient regime for verification of the input—output stability.

Figure 26 shows, in case 1 from Table 1, the variations of the input variable (3* and
Ms, which fall into bounded domains, and the way in which the output variable () varies.
It can be observed, obviously, that the output variable falls within a bounded domain.

The presented characteristics suggest a stable behavior in relation to the control
variable ()* and in relation to the external disturbance M.

4. Discussion

The transfer characteristics used in the paper can be obtained by calculations, and
they characterize a wide range of fuzzy blocks developed based on the general structure of
Mamdani, with various membership functions, rule basesas 3 x 3,3 x 5,5 x 5,5 x 7, and
inference methods as prod-sum and min-max, and combinations with defuzzification and
the center of gravity. It is recommended to use the defuzzification method with the center
of gravity method, which ensures continuous transfer characteristics. Their use allows
a grapho-analytical treatment of the stability analysis. These characteristics suggest the
existence of the sector property of fuzzy blocks.

The fuzzy PI-type controller can easily be equated with a linear PI controller, for an
initial choice of parameters. Equivalence relationships can be used for various types of
fuzzy blocks.

The steady state of the fuzzy controller assures a stable equilibrium point.

The vague state portrait of the rule base assures a stable behavior. The rule bases used
for the fuzzy controller ensure, in general, the stabilization of the speed regulation system.

The analysis performed on the linear part of the control system shows that it is e-stable
and requires a non-linear part located in a sector [Kin, Kmax]-

The non-linearity of the control structure, which contains a fuzzy block, falls into a
sector of the form [0, K]. There are two causes: one, the use of trapezoidal membership
functions, which introduce saturations at the ends of universes of discourse; and two, the
use of saturation elements at the inputs of the fuzzy block. It is specified that in order to
ensure stability, the characteristic of non-linearity must be corrected, so that it is located in
a sector of the form [Kpin, Kmax]-

The correction made on the non-linear part does not change the non-linear character
of the fuzzy block, and it can place the non-linearity in a domain that can be conveniently
chosen. The values of the two correction coefficients can be chosen according to the type of
fuzzy block, so that the characteristic of non-linearity is found in the sector [Kin, Kmax],
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which ensures the absolute global internal stability of the control system. The stability
analysis shows that the system can be globally asymptotically internally stable if the
recommended correction is applied.

The circle criterion can easily be applied in practice, requiring the frequency character-
istics of the linear part, which can be obtained by experimental measurements.

Ensuring internal stability leads to obtaining external stability.

5. Conclusions

The object of the stability analysis performed in the paper was a speed regulation
system of an electric drive with a direct current motor, in which a speed regulator of PI
fuzzy-type was used. The analysis was undertaken theoretically for the general case, and
was applied on a particular case for which the experimental values of the parameters taken
into account were given. Any other particular case could be approached with the method
presented in the paper. Mamdani’s structure is general, and a multitude of regulator
configurations can be considered for such an analysis. The method can be applied to any
type of fuzzy controller that has a Mamdani structure, to any type of rule base, for example,
3x3,3x5,5x50r7 x 7, formin-max and sum—prod inferences, or combinations
thereof. The most common fuzzy blocks in practice often have the property of the sector
on their universes of discourse, and therefore, the method of analyzing the stability of the
motor speed control system presented in the paper can be widely used in practice. The
paper demonstrates that the non-linearity of the fuzzy controller can be framed in a sector
that ensures the stability of the control system. All the fuzzy controllers mentioned above
have transfer characteristics with the sector property. The transfer characteristics provide
values, data, and information that can be used in the equivalence of the regulator and in
the stability analysis.

The relationships for equivalence of the fuzzy PI controller may be used for any kind
of fuzzy block, and may be also used in the equivalence of PD and PID fuzzy controllers.

The characteristic of the regulator can be corrected with the help of two correction
coefficients. The values of the two correction coefficients can be chosen depending on
the type of fuzzy block, so that the characteristic of non-linearity is found in the sector
[Kmin, Kmax], which ensures the absolute global asymptotic stability of the system.

The paper offers detailed indications for correction characteristics of non-linearity and
determination of the stability sector.

The limitations of the method appear when a mathematical model of the linear part
cannot be determined, when the frequency characteristics of the linear part cannot be
drawn, and when the fuzzy block does not meet the required sector conditions.

The corrections made in the paper on fuzzy blocks can be widely applied to other
control systems based on fuzzy PI controllers. This can provide stabilization for wider
classes of control systems based on fuzzy logic.

If internal stability is ensured, the external BIBO type stability can be demonstrated.

The presented method uses the frequency characteristics of the linear part, which are
easy to obtain in practice by frequency analysis, for various types of electric drive.

The analysis can be developed similarly in the cases of other electric motors widely
used in practice, such as induction or permanent magnet synchronous motors.

The most common fuzzy blocks in practice often have sector property over their
universes of discourse, and therefore the method of analyzing the stability of the DC motor
speed control system presented in the paper can be widely used in practice.

This analysis could be developed similarly in other cases of industrial processes.
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