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Abstract: The large deflection phenomenon of an initially flat circular membrane under out-of-plane
gas pressure loading is usually involved in many technical applications, such as the pressure blister
or bulge tests, where a uniform in-plane stress is often present in the initially flat circular membrane
before deflection. However, there is still a lack of an effective closed-form solution for the large
deflection problem with initial uniform in-plane stress. In this study, the problem is formulated and is
solved analytically. The initial uniform in-plane stress is first modelled by stretching or compressing
an initially flat, stress-free circular membrane radially in the plane in which the initially flat circular
membrane is located, and based on this, the boundary conditions, under which the large deflection
problem of an initially flat circular membrane under in-plane radial stretching or compressing and
out-of-plane gas pressure loading can be solved, are determined. Therefore, the closed-form solution
presented in this paper can be applied to the case where the initially flat circular membrane may,
or may not, have a uniform in-plane stress before deflection, and the in-plane stress can be either
tensile or compressive. The numerical example conducted shows that the closed-form solution
presented has satisfactory convergence.

Keywords: circular membrane; initial stress; gas pressure loading; large deflection; closed-form
solution

1. Introduction

A thin elastic film is, in mechanics, called a “membrane” when used as a structure
or a structural component, because it usually has no resistance to bending and is usually
in a stress state of full tension. Elastic membrane structures, or structural components,
often exhibit large deflection phenomena when subjected to out-of-plane loads, giving
rise to the nonlinear equations that are usually difficult to be solved analytically. Among
them, the problem of axisymmetric deformation and deflection of an initially flat circular
membrane fixed at its perimeter (attached at its perimeter to a stiff ring) and subjected
to uniform out-of-plane loads has been widely concerned by scholars. This problem is
usually called circular membrane problem for short, and Hencky is the first scholar to deal
with this problem analytically [1]. Chien [2] and Alekseev [3], respectively, corrected a
mistake in the solution presented originally by Hencky. This solution is usually called
the well-known Hencky solution and is often cited in some related studies [4–10]. The
well-known Hencky solution has been modified several times to improve its computational
accuracy and adaptability, including modifying the out-of-plane equilibrium equation [11],
in-plane equilibrium equation [12], and geometric equations [13], as well as extending
the adaptability to the cases with a tensile or compressive pre-stress [14–16]. The ana-
lytical solutions are necessary in the field of mechanical properties characterization for
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freestanding thin films, or thin-film/substrate systems based on pressured bulge or blister
tests [8,14,15,17–22], and can provide these technical applications with a required analytical
relationship between loads and stress or deflection, or an analytical relationship between
radius and deflection of a blister that is gradually getting larger (which is usually difficult
to achieve by a numerical analysis). Therefore, the well-known Hencky solution, as well as
its modified solutions, are often used in this field to explain the results of bulge or blister
tests, by which the mechanical properties of freestanding thin films, or thin film/substrate
systems, can be characterized.

The well-known Hencky solution, as well as its modified solutions, are actually
suitable for uniform lateral loading, where the direction of the loads applied to the deflected
membrane is constant and is always perpendicular to the plane in which the membrane
before deflection is located. However, in bulge or blister tests, the bulging or blistering
thin film is loaded usually by gas pressure, where the direction of the loads applied to
the deflected thin film continuously alters and is always perpendicular to the deflected
thin film, usually named uniform normal loading. Therefore, if the well-known Hencky
solution or its modified solutions is used to explain the results of bulge or blister tests,
then this actually means that only the vertical (lateral) component of the applied gas
pressure is taken into account and the horizontal component of the applied gas pressure is
neglected. Obviously, in order to reduce the analytical errors during bulge or blister tests,
it is necessary to develop an analytical solution which is suitable for the circular membrane
problem under gas pressure loading, i.e., the problem of axisymmetric deformation and
deflection of an initially flat circular membrane, fixed at its perimeter and subjected to
gas pressure. Fichter [23] dealt with the circular membrane problem under gas pressure
loading analytically, where the horizontal component of the applied gas pressure, which
was neglected in the well-known Hencky solution, was included. However, Fichter failed
to consider the case where the circular membrane was pre-stressed. In blister tests for
characterizing thin film/substrate systems, the thin film adhering to its substrate is often
pre-stressed, i.e., it often has a so-called residual stress due to the changes in processing
conditions, such as humidity, temperature, or the sequence of fabrication procedures. In
bulge tests for characterizing freestanding thin films, the pre-stress may also be present due
to the error in preparation of test samples, or the different temperature when preparing
and loading test samples.

It should be said that, long before Fichter, Campbell [24] dealt with the problem of
circular membrane under uniform pressure and considered the case where the circular
membrane was pre-stressed. Unfortunately, there are three shortcomings in Campbell’s
work. First of all, from the in-plane equilibrium equation established by Campbell, it can
be seen that the horizontal component of the applied gas pressure, which is neglected
in the well-known Hencky solution, was still not included. This means that the solution
obtained by Campbell is still not suitable for the circular membrane problem under gas
pressure loading. Secondly, based on the linear division of resultant stress /strain into
initial stress/strain and incremental stress/strain, Campbell let the incremental stress and
strain satisfy the generalized Hooke’s theorem, resulting in an inconsistent definition of
incremental strain with initial strain. Thirdly, it is unreasonable that the initial stress is
considered only in the out-of-plane equilibrium equation and excluded from the in-plane
equilibrium equation. In fact, it is difficult to divide resultant strain into initial strain and
incremental strain in practical problems, while in classical theory of elasticity, the physical
relations of stress and strain for isotropic linear elastic materials, the so-called generalized
Hooke’s theorem, are derived from the basic assumptions and definitions of theory of
elasticity. In other words, the stress and strain in the generalized Hooke’s theorem refer to
the resultant stress and strain of a point on a deformed elastomer, emphasizing the state of
stress and strain for any point on the deformed elastomer.

In fact, as far as the solution to the circular membrane problem with pre-stress is
concerned, it is not necessary to divide resultant stress/strain into initial stress/strain
and incremental stress/strain. In order to make the solution process clear and easy to
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understand, this paper strictly follows the classical theory of elasticity to solve the circular
membrane problem under gas pressure loading analytically and presents a new closed-form
solution of the problem under consideration. The originality of this study is mainly reflected
in the following two points. In comparison with Fichter’s study [23], this study takes
pre-stress into account, while Fichter’s study does not. In comparison with Campbell’s
study [24], this study establishes the correct membrane equations from the perspective of
mechanics and determines the reasonable boundary conditions according to the physical
phenomena; while Campbell, from the perspective of mathematics, modified the Hencky’s
membrane equations [1] (suitable for the case without pre-stress) and directly used the
boundary conditions, suitable for the case without pre-stress. In addition, this study
not only presents the correct membrane equations considering gas pressure loading and
pre-stress, but also presents universal boundary conditions that are suitable for the case,
without or with pre-stress, and even with tensile pre-stress or with compressive pre-stress.
Therefore, the closed-form solution presented in this paper is suitable for the case where the
gas pressure loaded circular membrane may, or may not, have pre-stress, and the pre-stress
can be either tensile or compressive.

Since in the existing literature there is no such closed-form solution as the one pre-
sented in this paper, which considers pre-stress and gas pressure loading, the mechanical
properties characterization based on pressured bulge or blister tests [8,14,15,17–22] has
to use the well-known Hencky solution or its modified solutions, which are suitable
for uniform lateral loading, rather than the gas pressure loading. Therefore, with the
closed-form solution presented in this paper, the above-mentioned mechanical properties
characterization does not have to continue to rely on the well-known Hencky solution or
its modified solutions. This is also the significance of this study. The paper is organized as
follows. In the following section, the membrane equations are established, the universal
boundary conditions are derived, and the closed-form solution for stress and deflection is
presented. In Section 3, some important issues, such as the effectiveness and convergence
of the presented closed-form solution and the difference between the existing solution and
the presented closed-form solution, are discussed, and a simple experiment is conducted.
Concluding remarks are given in Section 4.

2. Membrane Equation and Its Solution

An initially flat, rotationally symmetric, linearly elastic, stress-free circular membrane
with Poisson’s ratio ν, Young’s modulus of elasticity E, thickness h is stretched (or com-
pressed) radially in the plane in which the initially flat circular membrane is located, and
then is fixed at the edge of radius a, resulting in an exact radial plane displacement u0
at the radius a, as shown in Figure 1 (exemplified only by the case of stretching), where
the dotted line represents the initially flat stress-free (un-stretched) circular membrane.
The in-plane stress or strain of the plane-radially stretched circular membrane structure,
shown in Figure 1, is uniformly distributed, and at any point on the circular membrane,
the circumferential stress or strain is equal to the radial stress or strain, which is confirmed
by a detailed derivation that follows. We here focus on the problem of axisymmetric
deformation of this plane-radially stretched circular membrane, under the action of gas
pressure q, as shown in Figure 2, where the dot dashed line represents the geometric
intermediate plane of the plane-radially stretched circular membrane, or the initially flat
stress-free (un-stretched) circular membrane, i.e., the plane bisecting the thickness of the
plane-radially stretched circular membrane, or the initially flat stress-free (un-stretched) cir-
cular membrane. Obviously, relative to the stress caused by the gas pressure q, the in-plane
stress before the action of the gas pressure q could be called initial stress or pre-stress. Thus
the plane-radially stretched circular membrane is usually called the circular membrane
with initial stress, or more briefly the pre-stressed circular membrane. In fact, the initially
flat circular membrane could also be plane-radially compressed (shrunk), which could be
thought of as being negatively stretched and corresponds to the case of u0 < 0. Therefore,
the so-called initial stress or pre-stress could be less than zero, equal to zero, or greater than
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zero, corresponding to compressing case (u0 < 0), classic case (u0 = 0), and stretching case
(u0 > 0), respectively.
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To solve the axisymmetric deformation problem shown in Figure 2 analytically, we
employ a cylindrical polar coordinate system (r, ϕ, w), where r and ϕ denote the radial and
circumferential coordinates of the polar coordinate system (r, ϕ), w denotes the cylindrical
coordinate, the origin of the cylindrical polar coordinate system (r, ϕ, w) is placed in the
centroid of the geometric intermediate plane of the initially flat circular membrane, the
polar coordinate plane (r, ϕ) is placed in the plane in which the geometric intermediate
plane is located, the positive direction of the w-axis corresponds to the deflecting direction
of the pre-stressed circular membrane, and w also denotes the deflection or transverse
displacement of any point on the geometric intermediate surface of the deflected pre-
stressed circular membrane, as shown in Figure 2. The so-called geometric intermediate
surface of the deflected pre-stressed circular membrane refers to the curved surface that
bisects its thickness, and is actually the one after the geometric intermediate plane of the
initially flat pre-stressed circular membrane is deflected under the action of gas pressure q.
Therefore, after ignoring the change in thickness of the membrane during axisymmetric
deformation, the problem of axisymmetric deformation of the initially flat pre-stressed
circular membrane under gas pressure q can be simplified into a deflection problem of its
geometric intermediate plane under gas pressure q.

The geometric intermediate surface of the deflected pre-stressed circular membrane,
which is endowed with all materials and their mechanical responses, is taken away a
free body from its central portion, to study the static equilibrium problem of this free
body under the joint action of the gas pressure q and the membrane force σrh acted on
the boundary of the free body, just as it is shown in Figure 3, where σr denotes radial
stress, h denotes the thickness of the membrane, and θ is the slope angle of the deflected
pre-stressed circular membrane, which varies with radial coordinate r. Right here there are
two vertical (transverse) forces whose direction is perpendicular to the polar coordinate
plane, i.e., the total vertical force πr2q (0 ≤ r ≤ a) of the gas pressure q [23] and the total
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vertical force 2πrσrhsinθ that is produced by the membrane force σrh. Therefore, from
the condition of the resultant force being zero at the direction perpendicular to the polar
coordinate plane we may have

2πrσrh sin θ = πr2q. (1)

Equation (1) is the usually so-called out-of-plane equilibrium equation, where

sin θ = −dw/dr. (2)

Substituting Equation (2) into Equation (1), one has

1
2

rq + σrh
dw
dr

= 0. (3)

In the horizontal direction parallel to the polar coordinate plane, for any infinitesimal
element taken away from the geometric intermediate surface of the deflected pre-stressed
circular membrane, there are two kinds of horizontal forces: one is from the membrane
force, including the horizontal component of radial membrane force σrh and the circum-
ferential membrane force σth (here σt is the circumferential stress), and the other is from
the horizontal component of the gas pressure q acted on the infinitesimal element. The
so-called in-plane equilibrium equation can be obtained by summing the horizontal forces
on the infinitesimal element, which is seen to be [23].

σth =
d
dr

(rσrh)− qr
dw
dr

. (4)

Suppose that er is the radial strain, et is the circumferential strain, u(r) is the radial
displacement at r, and w(r) is the transversal displacement at r. Then the usually so-called
geometric equations, i.e., the relations of the strain and displacement, may be written as

er =
du
dr

+
1
2
(

dw
dr

)
2

(5)

and
et =

u
r

. (6)

Furthermore, the relations of the stress and strain, i.e., the usually so-called physical
equations, satisfy the generalized Hooke’s law due to the membrane assumed to be linearly
elastic, and can be written as

σr =
E

1 − ν2 (er + νet) (7)

and
σt =

E
1 − ν2 (et + νer). (8)

Substituting Equations (5) and (6) into Equations (7) and (8) yields

σr =
E

1 − ν2 [
du
dr

+
1
2
(

dw
dr

)
2
+ ν

u
r
] (9)

and

σt =
E

1 − ν2 [
u
r
+ ν

du
dr

+
ν

2
(

dw
dr

)
2
]. (10)

By means of Equations (9), (10) and (4), one has

u
r
=

1
Eh

(σth − νσrh) =
1

Eh

[
d
dr

(rσrh)− νσrh − qr
dw
dr

]
. (11)
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After substituting the u in Equation (11) into Equation (9), the usually so-called
consistency equation can be written as

3r
d
dr

(σrh) + r2 d2

dr2 (σrh) +
Eh
2

(
dw
dr

)2
−
[

r
d2w
dr2 + (ν + 2)

dw
dr

]
qr = 0. (12)

Equations (3), (4) and (12) are three equations for the solutions of σr, σt and w.
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Based on the following solution to the problem of the plane-radially stretching of
the initially flat, stress-free circular membrane, the boundary conditions, under which
Equations (3), (4) and (12) can be solved, can be determined. For the case where the initially
flat, stress-free circular membrane is plane-radially stretched and produces a radial plane
displacement u0 at r = a, obviously dw/dr = 0. Therefore, substituting dw/dr = 0 into
Equation (4) yields

d
dr

(rσr)− σt = 0. (13)

Equation (13) is the classic in-plane equilibrium equation which is suitable for the
problem of the axisymmetric deformation of the transversely loaded circular membrane.
Further, substituting dw/dr = 0 into Equation (5) yields

er =
du
dr

. (14)

Substituting Equations (14) and (6) into Equations (7) and (8), one has

σr =
E

1 − ν2 (
du
dr

+ ν
u
r
) (15)

and
σt =

E
1 − ν2 (

u
r
+ ν

du
dr

). (16)

By substituting Equations (15) and (16) into Equation (13) and using the condition of
dw/dr = 0, we can obtain a Euler equation that contains only the radial displacement u

r2 d2u
dr2 + r

du
dr

− u = 0. (17)

As is known, the general solution of Equation (17) may be written as

u = C1r + C2/r, (18)

where C1 and C2 are two undetermined constants. According to the physical characteristics
of the axisymmetric in-plane deformation of the plane-radially stretched or compressed
circular membrane, the conditions for determining C1 and C2 are

u = 0 at r = 0 (19)
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and
u = u0 at r = a. (20)

Obviously, the radial displacement u is finite at r = 0, therefore it can be found from
Equation (19) that C2 has to be equal to zero. Further, with C2 = 0 we can, from Equation (20),
obtain C1 = u0/a. Therefore, the special solution of Equation (17) is

u =
u0

a
r. (21)

Substituting Equation (21) into Equations (6) and (14)–(16), it is found that

er = et =
u0

a
= e0 (22)

and
σr = σt =

E
1 − ν

u0

a
= σ0. (23)

Here, σ0 denotes the so-called initial stress or pre-stress in the initially flat, plane-radially
stretched or compressed circular membrane, and e0 is the initial strain. Equations (22) and (23)
indicate that the result of plane-radially stretching or compressing an initially flat, stress-free
circular membrane is that the stress or strain in the plane-radially stretched or compressed
circular membrane is uniformly distributed, i.e., at all points on the membrane the stress or
strain is the same, especially the circumferential stress σt is equal to the radial stress σr and
the circumferential strain et is equal to the radial strain er. Therefore, after the plane-radially
stretched or compressed circular membrane is fixed at the edge of radius a, the membrane
remains flat and has a uniform in-plane stress σ0 and strain e0. Thus, the boundary conditions
for solving Equations (3), (4) and (12) can finally be written as

dw
dr

= 0 at r = 0, (24)

et =
u
r
=

1
Eh

[
d
dr

(rσrh)− νσrh − qr
dw
dr

]
= e0 =

1 − ν

E
σ0 at r = a (25)

and
w = 0 at r = a. (26)

Here, the uniform in-plane stress σ0 is the so-called pre-stress, which is usually used
as a parameter to describe a circular membrane problem with pre-stress (in place of the
parameter u0, the radial plane displacement).

Now, let us introduce the following nondimensionalization

Q =
aq
hE

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, S0 =

σ0

E
, x =

r
a

, (27)

and transform Equations (3), (4), (12) and (24)–(26) into

1
2

xQ + Sr
dW
dx

= 0, (28)

d
dx

(xSr)− St − xQ
dW
dx

= 0, (29)

3x
d

dx
(Sr) + x2 d2

dx2 (Sr) +
1
2
(

dW
dx

)
2
− Qx

[
x

d2

dx2 (W) + (ν + 2)
dW
dx

]
= 0, (30)

dW
dx

= 0 at x = 0, (31)

(1 − ν)(Sr − S0) + x
dSr

dx
− Qx

dW
dx

= 0 at x = 1 (32)
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and
W = 0 at x = 1. (33)

Obviously, the stress and deflection are both finite at x = 0, therefore Sr and W can be
expanded into the power series in x

Sr(x) =
∞

∑
i=0

cixi (34)

and

W(x) =
∞

∑
i=0

dixi. (35)

After substituting Equations (34) and (35) into Equations (28) and (30), it is found, by
using the mathematical software Maple 2018, that ci ≡ 0 and di ≡ 0 when i is odd, and
when i is even, the coefficients ci and di can be expressed into the polynomial function
with regard to the coefficient c0, which is, respectively, listed in Appendix A (for ci) and
Appendix B (for di).

The remaining two coefficients c0 and d0 are two undetermined constants depending
on the specific problem addressed and can be determined by using the boundary conditions
of Equations (32) and (33) as follows. From Equations (34) and (35), the boundary condition
of Equation (32) gives

(1 − ν)
∞

∑
i=0

ci +
∞

∑
i=1

ici − Q
∞

∑
i=1

idi= (1 − ν)S0. (36)

Substituting all expressions of ci and di (i = 2, 4, 6, . . . ) into Equation (36), we can
obtain an equation that contains only the undetermined constant c0. Therefore, c0 can be
determined by solving this univariate equation for c0, and as a result, the expression of Sr
can also be determined. Further, from Equation (35) the condition of Equation (33) gives

d0 =
∞

∑
i=1

di. (37)

Obviously, at this time, all the coefficients di are known, because di ≡ 0 when i is odd
and when i is even di can be determined with the known c0. Therefore, after substituting
all the known coefficients di into Equation (37), the remaining undetermined constant d0
can finally be determined, and also the expression of W can be determined. Furthermore,
with the known expressions of Sr and W, the expression of St can easily be determined by
using Equation (29).

At this point, the problem addressed here has been analytically solved perfectly, and
its closed-form solutions for stress and deflection has been given.

3. Results and Discussions

Firstly, let us see whether the analytical solution obtained in Section 2 meets Equation
(24) or Equation (31), the boundary condition that has not been used yet during the
derivation, that is, dw/dr = 0 at r = 0. The dimensional form of the deflection w(r) can be
written as, from Equations (27) and (35)

w(r) =
∞

∑
i=0

di

ai−1 ri, (38)

and the first derivative on both sides of Equation (38) is

dw
dr

=
∞

∑
i=1

idi

ai−1 ri−1. (39)
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Obviously, from Equation (39) it can be found that dw/dr ≡ d1 at r = 0. However,
from Section 2, we know that d1 ≡ 0 due to di ≡ 0 (i = 1, 3, 5, . . . ). Thus, dw/dr ≡ 0 at
r = 0, which indicates that the analytical solution obtained in Section 2 can automatically
meet Equation (24) or Equation (31) and is reliable to some extent.

Now, let us consider a circular membrane with Poisson’s ratio ν = 0.45, Young’s
modulus of elasticity E = 7.84 MPa , thickness h = 0.2 mm and radius a = 70 mm, as a
numerical example to illustrate how to use the closed-form solution presented in Section 2.
Suppose that the circular membrane is subjected to a gas pressure q = 0.008 MPa and
is pre-stressed with σ0 = −0.2 MPa , σ0 = 0 MPa and σ0 = 0.2 MPa, respectively. For
convenience of operation, the infinite power series in Equations (36) and (37) have to be
truncated to n terms, that is,

(1 − ν)
n

∑
i=0

ci +
n

∑
i=1

ici −
aq
hE

n

∑
i=1

idi= (1 − ν)
σ0

E
(40)

and

d0 =
n

∑
i=1

di. (41)

Equations (40) and (41) are used to determine the specific numerical values of the unde-
termined constants c0 and d0 for this three circular membrane problems. Here, a so-called
asymptotic approximant is used to find the more accurate numerical values of the undetermined
constants c0 and d0. To this end, the parameter n in Equations (40) and (41) has to take its
value from a relatively small number (usually from n = 4). A pair of numerical values of the
undetermined constants c0 and d0 can first be obtained by using Equations (40) and (41) with
n = 4, and the second pair of numerical values of the undetermined constants c0 and d0 can also
be obtained by using Equations (40) and (41), with n = 6 (skip n = 5 because ci ≡ 0 and di ≡ 0
when i is odd). Continue the numerical value calculation of the undetermined constants c0 and
d0 with n = 8, if the difference between the numerical values of c0 or d0, which are obtained with
n = 4 and n = 6, is not as small as you wish. If the difference between the numerical values of c0
or d0, which are obtained with n = 6 and n = 8, is as small as you wish, stop the numerical value
calculation of the undetermined constants c0 and d0, otherwise, continue the numerical value
calculation with the next value of the parameter n until the difference between the obtained
numerical values of c0 or d0 is small enough as you wish.

The obtained numerical values of the undetermined constants c0 and d0 under dif-
ferent parameter n and pre-stress σ0 are listed in Tables 1 and 2. It may be seen, from
Tables 1 and 2, that the difference between the numerical values of c0 or d0, which are
obtained with n = 48 and n = 50, is very small. Their convergence trend is shown in
Figures 4 and 5. It may be seen, from Figure 4 or Figure 5, that as the parameter n is
increased, the data sequence for σ0 = 0.2 MPa converge rapidly to the theoretical values
(unknown exact values) of the undetermined constants c0 or d0, whereas the data sequence
for σ0 = 0 MPa converge relatively slowly, and the convergence rate of the data sequence
for σ0 = −0.2 MPa is the slowest of the three cases. This means that the pre-stress σ0 has an
effect on the convergence rate. Meanwhile, it may also be seen, from Figure 4 or Figure 5,
that the pre-stress σ0 also has an effect on the size of the unknown exact values of the
undetermined constants c0 and d0, that is, it affects the determination of the theoretical
values of the undetermined constants c0 and d0.
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Table 1. Numerical values of c0 under different parameter n and pre-stress σ0.

n c0 (σ0 = −0.2 MPa) c0 (σ0 = 0 MPa) c0 (σ0 = 0.2 MPa)

4 0.033575757 0.036718983 0.040895160
6 0.034571798 0.037437982 0.041351580
8 0.034937506 0.037668787 0.041471936
10 0.035090915 0.037752220 0.041506960
12 0.035160346 0.037784376 0.041517690
14 0.035193278 0.037797245 0.041521070
16 0.035209381 0.037802520 0.041522156
18 0.035217421 0.037804718 0.041522510
20 0.035221493 0.037805644 0.041522626
22 0.035223579 0.037806037 0.041522665
24 0.035224656 0.037806206 0.041522678
26 0.035225216 0.037806279 0.041522682
28 0.035225508 0.037806310 0.041522684
30 0.035225662 0.037806324 0.041522684
32 0.291048183 0.294766104 0.299135074
34 0.291111023 0.294823088 0.299173082
36 0.291160458 0.294866648 0.299201321
38 0.291199517 0.294900099 0.299222391
40 0.291230497 0.294925891 0.299238168
42 0.291255153 0.294945846 0.299250020
44 0.291274833 0.294961334 0.299258948
46 0.291290585 0.294973386 0.299265689
48 0.291301202 0.294982788 0.299270792
50 0.291303222 0.294990139 0.299274660

Table 2. Numerical values of d0 under different parameter n and pre-stress σ0.

n d0 (σ0 = −0.2 MPa) d0 (σ0 = 0 MPa) d0 (σ0 = 0.2 MPa)

4 0.191259377 0.170013719 0.148629681
6 0.190695512 0.169946392 0.148823819
8 0.190025293 0.169675311 0.148764097
10 0.189609686 0.169517042 0.148725927
12 0.189376490 0.169439316 0.148709778
14 0.189249321 0.169403143 0.148703640
16 0.189180665 0.169386685 0.148701407
18 0.189143746 0.169379280 0.148700612
20 0.189123924 0.169375968 0.148700331
22 0.189113288 0.169374491 0.148700233
24 0.189107580 0.169373833 0.148700199
26 0.189104516 0.169373541 0.148700187
28 0.189102870 0.169373411 0.148700183
30 0.189101985 0.169487693 0.148700182
32 0.433731681 0.419987899 0.405828941
34 0.433578999 0.419888878 0.405769100
36 0.433455904 0.419810953 0.405723345
38 0.433356458 0.419749529 0.405688320
40 0.433275966 0.419701040 0.405661478
42 0.433210705 0.419662710 0.405640887
44 0.433157713 0.419632375 0.405625077
46 0.433114625 0.419608340 0.405612927
48 0.433079546 0.419589278 0.405603582
50 0.433050957 0.419574146 0.405596390
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The very good convergence exhibited in Figures 4 and 5 allows the undetermined
constants c0 and d0 to take 0.291303222 and 0.433050957 as the approximations for the
case of σ0 = −0.2MPa, 0.294990139 and 0.419574146 for σ0 = 0MPa, and 0.299274660
and 0.405596390 for σ0 = 0.2MPa (see Tables 1 and 2). Thus, the special solutions of the
deflection w(r) and radial stress σr(r) can finally be determined. The geometry of the
deflected circular membrane along the radius of the circular membrane is depicted in
Figure 6, and the distribution of radial stress along the radius of the circular membrane is
shown in Figure 7.
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Now, let us show the difference between the solution presented in this paper and the
solutions presented by Fichter [23] and Campbell [24]. Figures 8 and 9 show the variations
of the deflection w(r) and radial stress σr(r) with the radius r, where the solution 1 refers
to the solution presented by Fichter [23], the solution 2 refers to the solution presented by
Campbell [24], and the solution 3 refers to the solution presented in this paper.

From Figures 8b and 9b, it may be seen that when σ0 = 0 MPa the deflection or stress
curve by solution 3 (which is presented by this paper) basically coincides with the curve by
solution 1 (which is presented by Fichter [23]). This proves to some extent that the process
of solving in Section 2 of this paper is correct and the closed-form solution presented is
reliable, because solution 3 should be returned to solution 1 when the pre-stress is equal to
zero. However, it may also be seen from Figures 8 and 9 that the deflection and stress curves
by solution 2 (which is presented by Campbell [24]) are far from the curves by solution 1
or 3, especially the stress curve (the maximum relative error of solution 2 to solution 1 or
3 is about 25% for σ0 = −0.2 MPa , 24% for σ0 = 0 MPa and 23% for σ0 = 0.2 MPa). This
means that if solution 1 is reliable, then solution 3 should also be reliable, and therefore
solution 2 must be unreliable.
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Now, let us consider a simple experiment to test the accuracy of the solutions pre-
sented by Fichter [23], Campbell [24] and this paper. An initially flat stress-free circular
natural latex thin film with Young’s modulus of elasticity E = 0.941 MPa, Poisson’s ratio
ν = 0.43, thickness h = 0.8, and radius a = 70 mm is subjected to the action of gas pressure
q = 0.008 MPa, as shown in Figure 10. A non-contact laser displacement sensor (ZSY Group
Ltd., London, UK) is employed to measure the membrane deflection. The measured mem-
brane deflection along the radius of the circular membrane is shown in Figure 11, where
solution 1 refers to the solution presented by Fichter [23], solution 2 by Campbell [24],
and solution 3 by this paper. From Figure 11, it may be seen that within r = 20 mm the
Campbell’s solution outperforms the solutions presented by Fichter [23] and by this paper,
but it becomes worse and worse as r becomes bigger, especially on the scale of r = 40–60 mm.
This is because the Campbell’s solution uses Hencky’s in-plane equilibrium equation [1,24],
thus neglecting the horizontal component of the applied gas pressure q, performing poorly
on both sides. Table 3 shows the measured and calculated results of deflection and the
relative errors of calculation to measurement. It may be seen from Figure 11 or Table 3 that
the overall effect of the closed-form solution presented in this paper is better than that of
Campbell’s solution [24].
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Table 3. The measured and calculated results of deflection and relative errors.

r (mm) Measured Results (mm)

Calculated Results by Solution 2 and
Relative Errors to Measured Results

Calculated Results by Solution 3 or 1 and
Relative Errors to Measured Results

Results (mm) Error Results (mm) Error

0 39.52 39.02 1.27% 37.85 4.22%
10 38.94 38.40 1.39% 36.98 5.02%
20 37.39 36.21 3.13% 35.48 5.11%
30 35.03 32.53 7.16% 32.86 6.20%
40 31.49 27.14 13.81% 28.94 8.09%
50 26.43 20.07 24.06% 23.42 11.39%
60 18.32 11.13 39.25% 15.12 17.47%

4. Concluding Remarks

In this study, the problem of axisymmetric deformation and deflection of an initially
flat circular membrane under in-plane radial stretching or compressing and out-of-plane
gas pressure loading is solved analytically, and a new closed-form solution of the problem
is presented. From this study, the following conclusions can be drawn.

From Tables 1 and 2 or Figures 4 and 5, it may be seen that the initial in-plane
stress or pre-stress will affect the convergence of the undetermined constants c0 and d0,
and the greater the pre-stress, the faster the undetermined constants c0 and d0 converge.
Therefore, in order to make sure that a more accurate numerical value can be obtained for
the undetermined constants c0 and d0, the parameter n in Equations (40) and (41) must
start from a relatively small number and eventually reach a number as large as possible,
especially when the pre-stress is negative or zero.

From Figures 8, 9 and 11, it may be seen that the difference between the solution
presented by Campbell [24] and the solution presented in this paper is not very significant
for deflection calculation (see Figure 8) but is quite significant for stress calculation (see
Figure 9). However, the shape of the deflection curve calculated by the solution presented
by Campbell [24] is too different from the experimental results (see Figure 11 or Table 3),
which will affect some technical applications, such as using closed-form solutions to
predict the shape of orbiting inflatable reflectors [23]. Therefore, the solution presented by
Campbell [24] is generally unreliable and should not be recommended.

From the derivation of the boundary conditions in Section 2, it may be seen that the
derived boundary conditions, Equations (24)–(26), can be called universal boundary condi-
tions, because the case of σ0 = 0 in Equation (25) corresponds to the circular membrane
without pre-stress, σ0 > 0 corresponds to the circular membrane with tensile pre-stress,
and σ0 < 0 corresponds to the circular membrane with compressive pre-stress. Therefore,
the closed-form solution obtained in Section 2 can be applied to the case where the initially
flat circular membrane may or may not have a uniform in-plane stress before deflection,
and the in-plane stress can be either tensile or compressive.

The closed-form solutions are often found to be necessary in many technical appli-
cations, such as the above-mentioned shape prediction of the orbiting inflatable reflec-
tor [23], and the characterization of mechanical properties of freestanding thin films, or
thin-film/substrate systems based on pressured bulge or blister tests [8,14,15,17–22], while
a numerical analysis is helpless in these technical applications due to the rigid demand for
analytical relationships. The closed-form solutions of stress and deflection presented in
this paper can provide these technical applications with a required analytical relationship
between deflection or stress and loads or blister radius. However, it may also be seen from
Figure 11 or Table 3 that the computational accuracy of this closed-form solution is still not
very satisfactory and needs further improvement.
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Nomenclature

a Radius of the circular membrane
h Thickness of the circular membrane
E Young’s modulus of elasticity
ν Poisson’s ratio
r Radial coordinate of the cylindrical coordinate system
ϕ Circumferential coordinate of the cylindrical coordinate system

w
Axial coordinate of the cylindrical coordinate system as well as transverse
displacement of the deflected membrane

u Radial displacement of the deflected membrane
u0 Radial plane displacement at r = a
q Gas pressure
σr Radial stress
σt Circumferential stress
σ0 Initial stress or pre-stress
er Radial strain
et Circumferential strain
e0 Initial strain
θ Slope angle of the deflected membrane
π Pi (ratio of circumference to diameter)
W Dimensionless transverse displacement (w/a)
Sr Dimensionless radial stress (σr/E)
St Dimensionless circumferential stress (σt/E)
S0 Dimensionless initial stress (σ0/E)
x Dimensionless radial coordinate (r/a)
ci Coefficients of the power series for Sr
di Coefficients of the power series for W
C1,C2 Undetermined constants

Appendix A

c2 = − Q2

64c2
0
(4νc0 + 12c0 + 1),

c4 = − Q4

6144c0
5 (8ν2c2

0 + 64νc2
0 + 120c2

0 + 22c0 + 1),

c6 = − Q6

4718592c8
0
(256ν3c3

0 + 3456ν2c3
0 + 320ν2c2

0 + 14336νc3
0 + 2592νc2

0

+18816c3
0 + 116νc0 + 5024c2

0 + 444c0 + 13)
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c8 = − Q8

1509949440c11
0
(4352ν4c4

0 + 83712ν3c4
0 + 7616ν3c3

0 + 551680ν2c4
0

+98304ν2c3
0 + 1526016νc4

0 + 4344ν2c2
0 + 402240νc3

0 + 1520640c4
0

+35136νc2
0 + 529152c3

0 + 1018νc0 + 68744c2
0 + 3954c0 + 85)

c10 = − Q10

724775731200c14
0
(126464ν5c5

0 + 3176448ν4c5
0 + 284544ν4c4

0

+29005824ν3c5
0 + 5107072ν3c4

0 + 124705792ν2c5
0 + 223344ν3c3

0

+32551808ν2c4
0 + 257014272νc5

0 + 2818704ν2c3
0 + 88694400νc4

0

+205286400c5
0 + 81020ν2c2

0 + 11435280νc3
0 + 87984384c4

0

+653120νc2
0 + 15038960c3

0 + 13948νc0 + 1281892c2
0 + 54504c0 + 925)

c12 = − Q12

974098582732800c17
0
(11175936ν6c6

0 + 347617280ν5c6
0

+30733824ν5c5
0 + 4081364992ν4c6

0 + 711585792ν4c5
0 + 24022552576ν3c6

0

+30848704ν4c4
0 + 6222377984ν3c5

0 + 76160141312ν2c6
0 + 535040768ν3c4

0

+26117672960ν2c5
0 + 124652795904νc6

0 + 15279568ν3c3
0 + 3347822464ν2c4

0

+53143508480νc5
0 + 82859212800c6

0 + 190169808ν2c3
0 + 9038859520νc4

0

+42206527488c5
0 + 4040232ν2c2

0 + 766848688νc3
0 + 8938373568c4

0

+32458592νc2
0 + 1007558064c3

0 + 548456νc0 + 63768952c2
0

+2148888c0 + 30125),

c14 = − Q14

6982338641028710400c20
0
(5577637888ν7c7

0 + 207326412800ν6c6
7

+18127323136ν6c6
0 + 2985798926336ν5c7

0 + 516311449600ν5c6
0

+22428865527808ν4c7
0 + 22216175616ν5c5

0 + 5772845744128ν4c6
0

+96725884993536ν3c7
0 + 493483753472ν4c5

0 + 33003266080768ν3c6
0

+242124441649152ν2c7
0 + 14015162368ν4c4

0 + 4210481491968ν3c5
0

+102801255464960ν2c6
0 + 328036645601280νc7

0 + 238099001344ν3c4
0

+17416836780032ν2c5
0 + 166522125484032νc6

0 + 186457227264000c7
0

+5036592256ν3c3
0 + 1472110832640ν2c4

0 + 35150233100288νc5
0

+110091808604160c6
0 + 62084097536ν2c3

0 + 3949691574272νc4
0

+27810036166656c5
0 + 1045292736ν2c2

0 + 249203778688νc3
0

+3896482882560c4
0 + 8371934560νc2

0 + 327066386688c3
0

+117005980νc0 + 16448610656c2
0 + 458947140c0 + 5481025)

c16 = − Q16

8043654114465074380800c23
0
(466591416320ν8c8

0 + 20204583649280ν7c8
0

+1749717811200ν7c7
0 + 345544314060800ν6c8

0 + 59334186172416ν6c7
0

+3168154050887680ν5c8
0 + 2536446754816ν6c6

0 + 811068216377344ν5c7
0

+17362341332254720ν4c8
0 + 68983883456512ν5c6

0 + 5899157488271360ν4c7
0

+58888665306234880ν3c8
0 + 1949742430208ν5c5

0 + 749592850530304ν4c6
0

+24918517491630080ν3c7
0 + 121577800744304640ν2c8

0 + 42225600202752ν4c5
0
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+4208106414899200ν3c6
0 + 61547086844329984ν2c7

0 + 140366438569082880νc8
0

+889855181568ν4c4
0 + 354563060168704ν3c5

0 + 12957153189085184ν2c6
0

+82689903393570816νc7
0 + 69629171938099200c8

0 + 14907095787776ν3c4
0

+1452168234838016ν2c5
0 + 20842026450690048νc6

0 + 46775737303695360c7
0

+250218401152ν3c3
0 + 91389003610368ν2c4

0 + 2913853121646592νc5
0

+13727635318259712c6
0 + 3062333027264ν2c3

0 + 244057775836928νc4
0

+2298960641101824c5
0 + 42688763192ν2c2

0 + 12247410798208νc3
0+

240311056002048c4
0 + 340976718304νc2

0 + 16056352171584c3
0

+4063053534νc0 + 669688412520c2
0 + 15942364582c0+165851725)

c18 = − Q18

115828619248297071083520006c26
0
(12597341323264ν8c8

0

+585622460039168ν7c8
0 + 50389365293056ν7c7

0 + 10609346739175424ν6c8
0

+1812937769680896ν6c7
0 + 102350738482397184ν5c8

0

+77104054239232ν6c6
0 + 26100267646386176ν5c7

0

+587739736090476544ν4c8
0 + 2210676913352704ν5c6

0

+199031279897018368ν4c7
0 + 2082702718806261760ν3c8

0

+62203391650816ν5c5
0 + 25200284400254976ν4c6

0

+878673209391841280ν3c7
0 + 4482228137195995136ν2c8

0

+1414123653640192ν4c5
0 + 147911742247239680ν3c6

0

+2262816471158685696ν2c7
0 + 5384650767667691520νc8

0

+29678031935872ν4c4
0 + 12419791462680576ν3c5

0

+474965184942022656ν2c6
0 + 3163729910486335488νc7

0

+2775074863841280000c8
0 + 520243137614208ν3c4

0

+53061960618463232ν2c5
0 + 795160212678004736νc6

0

+1859422907258634240c7
0 + 8697740135776ν3c3

0

+3327929960200064ν2c4
0 + 110831345127762944νc5

0

+544188272424148992c6
0 + 111107194957280ν2c3

0

+9252897222565504νc4
0 + 90865956490174464c5

0

+1542781497268ν2c2
0 + 462729106373920νc3

0

+9468439364079360c4
0 + 12835397273328νc2

0

+630526957083552c3
0 + 152349465220νc0

+26205778851452c2
0 + 621524149560c0 + 6440470375)
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c20 = − Q20

40771673975400569021399040000c29
0
(3411518378475520ν9c9

0

+179851422276780032ν8c9
0 + 15351832703139840ν8c8

0

+3756054774032629760ν7c9
0 + 638169929962749952ν7c8

0

+42656033297476878336ν6c9
0 + 26994343126892544ν7c7

0

+10831338222619459584ν6c8
0 + 296647795884798509056ν5c9

0

+913696350454300672ν6c7
0 + 100132465356021170176ν5c8

0

+1326272779390291542016ν4c9
0 + 25608943979974656ν6c6

0

+12639261589764259840ν5c7
0 + 558169119813558599680ν4c8

0

+3841598905595224653824ν3c9
0 + 707146956028637184ν5c6

0

+93738980981878620160ν4c7
0 + 1935796709626564837376ν3c8

0

+6988135572798511251456ν2c9
0 + 14797465732419072ν5c5

0

+7853096729473277952ν4c6
0 + 405598963418799505408ν3c7

0

+4100168758215974060032ν2c8
0 + 7271330185263513600000νc9

0

+328214211861499904ν4c5
0 + 45233756152398471168ν3c6

0

+1029146218240403259392ν2c7
0 + 4867241776252869672960νc8

0

+3306647384877957120000c9
0 + 5474997464025984ν4c4

0

+2832084598701003776ν3c5
0 + 143257311190764032000ν2c6

0

+1423090985320262615040νc7
0 + 2486117140696085299200c8

0

+94389806251865600ν3c4
0 + 11944458278947254272ν2c5

0

+237393439714874503168νc6
0 + 829566473517045743616c7

0

+1308359221695216ν3c3
0 + 596547209676685568ν2c4

0

+24713152476609256960νc5
0 + 161248207498965270528c6

0

+16525095543887920ν2c3
0 + 1644097081746014720νc4

0

+20121810448046555136c5
0 + 195872187870552ν2c2

0

+68262292712083600νc3
0 + 1671770088552147840c4

0

+1617269100688992νc2
0 + 92477498850003792c3

0

+16740085653750νc0 + 3284446773852808c2
0

+67962049083750c0 + 624247690625)
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c22 = 1
24 Qνd22 +

23
24 Qd22 − 1

12 d2d22 − 5
33 d4d20 − 9

44 d6d18 − 8
33 d8d16 − 35

132 d10d14 − 3
22 d12

2,

c24 = 1
26 Qd24ν + 25

26 Qd24 − 1
13 d2d24 − 11

78 d4d22 − 5
26 d6d20 − 3

13 d8d18 − 10
39 d10d16 − 7

26 d12d14,

c26 = 1
28 Qνd26 +

27
28 Qd26 − 1

14 d2d26 − 12
91 d4d24 − 33

182 d6d22 − 20
91 d8d20 − 45

182 d10d18 − 24
91 d12d16 − 7

52 d14
2,

c28 = 1
30 Qd28ν + 29

30 Qd28 − 1
15 d2d28 − 13

105 d4d26 − 6
35 d6d24 − 22

105 d8d22 − 5
21 d10d20

− 9
35 d12d18 − 4

15 d14d16

c30 = 1
32 Qd30ν + 31

32 Qd30 − 1
16 d2d30 − 7

60 d4d28 − 13
80 d6d26 − 1

5 d8d24 − 11
48 d10d22 − 1

4 d12d20

− 21
80 d14d18 − 2

15 d16
2,

c32 = 1
34 Qd32ν + 33

34 Qd32 − 1
17 d2d32 − 15

136 d4d30 − 21
136 d6d28 − 13

68 d8d26 − 15
68 d10d24

− 33
136 d12d22 − 35

136 d14d20 − 9
34 d16d18

c34 = 1
36 Qd34ν + 35

36 Qd34 − 1
18 d2d34 − 16

153 d4d32 − 5
34 d6d30 − 28

153 d8d28 − 65
306 d10d26

− 4
17 d12d24 − 77

306 d14d22 − 40
153 d16d20 − 9

68 d18
2

c36 = 1
38 Qd36ν + 37

38 Qd36 − 1
19 d2d36 − 17

171 d4d34 − 8
57 d6d32 − 10

57 d8d30 − 35
171 d10d28

− 13
57 d12d26 − 14

57 d14d24 − 44
171 d16d22 − 5

19 d18d20

c38 = 1
40 Qd38ν + 39

40 Qd38 − 1
20 d2d38 − 9

95 d4d36 − 51
380 d6d34 − 16

95 d8d32 − 15
76 d10d30 − 21

95 d12d28

− 91
380 d14d26 − 24

95 d16d24 − 99
380 d18d22 − 5

38 d20
2

c40 = 1
42 Qd40ν + 41

42 Qd40 − 1
21 d2d40 − 19

210 d4d38 − 9
70 d6d36 − 17

105 d8d34 − 4
21 d10d32 − 3

14 d12d30

− 7
30 d14d28 − 26

105 d16d26 − 9
35 d18d24 − 11

42 d20d22

c42 = 1
44 Qd42ν + 43

44 Qd42 − 1
22 d2d42 − 20

231 d4d40 − 19
154 d6d38 − 12

77 d8d36 − 85
462 d10d34

− 16
77 d12d32 − 5

22 d14d30 − 8
33 d16d28 − 39

154 d18d26 − 20
77 d20d24 − 11

84 d22
2

c44 = 1
46 Qd44ν + 45

46 Qd44 − 1
23 d2d44 − 21

253 d4d42 − 30
253 d6d40 − 38

253 d8d38 − 45
253 d10d36

− 51
253 d12d34 − 56

253 d14d32 − 60
253 d16d30 − 63

253 d18d28 − 65
253 d20d26 − 6

23 d22d24

c46 = 1
48 Qd46ν + 47

48 Qd46 − 1
24 d2d46 − 11

138 d4d44 − 21
184 d6d42 − 10

69 d8d40 − 95
552 d10d38

− 9
46 d12d36 − 119

552 d14d34 − 16
69 d16d32 − 45

184 d18d30 − 35
138 d20d28 − 143

552 d22d26 − 3
23 d24

2

c48 = 1
50 Qd48ν + 49

50 Qd48 − 1
25 d2d48 − 23

300 d4d46 − 11
100 d6d44 − 7

50 d8d42 − 1
6 d10d40

− 19
100 d12d38 − 21

100 d14d36 − 17
75 d16d34 − 6

25 d18d32 − 1
4 d20d30 − 77

300 d22d28 − 13
50 d24d26

c50 = 1
52 Qd50ν + 51

52 Qd50 − 1
26 d2d50 − 24

325 d4d48 − 69
650 d6d46 − 44

325 d8d44 − 21
130 d10d42

− 12
65 d12d40 − 133

650 d14d38 − 72
325 d16d36 − 153

650 d18d34 − 16
65 d20d32 − 33

130 d22d30 − 84
325 d24d28

− 13
100 d26

2
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Appendix B

d2 = − Q
4c0

,

d4 = − Q3

512c4
0
(4vc0+12c0 + 1),

d6 = − Q5

147456c7
0
(64ν2c2

0 + 416νc2
0 + 36νc0 + 672c2

0 + 116c0 + 5),

d8 = − Q7

75497472c10
0
(2176ν3c3

0 + 22272ν2c3
0 + 1952ν2c2

0 + 75392νc3
0

+13152νc2
0 + 84480c3

0 + 572νc0 + 22016c2
0 + 1908c0 + 55)

d10 = − Q9

30198988800c13
0
(63232ν4c4

0 + 892672ν3c4
0 + 78656ν3c3

0

+4683520ν2c4
0 + 820864ν2c3

0 + 10834176νc4
0 + 35864ν2c2

0

+2834880νc3
0 + 9331200c4

0 + 246656νc2
0 + 3242112c3

0

+7138νc0 + 421544c2
0 + 24314c0 + 525)

d12 = − Q11

34789235097600c16
0
(5587968ν5c5

0 + 101165056ν4c5
0 + 8935168ν4c4

0

+725536768ν3c5
0 + 127449344ν3c4

0 + 2579298304ν2c5
0 + 5582048ν3c3

0

+676326656ν2c4
0 + 4549192704νc5

0 + 58979488ν2c3
0 + 1583691520νc4

0

+31868928004c5
0 + 1710920ν2c2

0 + 206343200νc3
0 + 1381567488c4

0)

d14 = − Q13

109099041266073600c19
0
(1394409472ν6c6

0 + 30915461120ν5c6
0

+2733162496ν5c5
0 + 282717814784ν4c6

0 + 49715343360ν4c5
0

+1366449160192ν3c6
0 + 2180315136ν4c4

0 + 358700404736ν3c5
0

+3684733845504ν2c6
0 + 31322101760ν3c4

0 + 1284211871744ν2c5
0

+5260102729728νc6
0 + 909970304ν3c3

0 + 167542129664ν2c4
0

+2282934267904νc5
0 + 3107620454400c6

0 + 9698780544ν2c3
0

+395713392640νc4
0 + 1613026492416c5

0 + 210225344ν2c2
0

+34246650496νc3
0 + 348383755264c4

0 + 1479965024νc2
0

+40080240768c3
0 + 25551228νc0 + 2590723808c2

0 + 89215644c0

+1278825)
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d16 = − Q15

223434836512918732800c22
0
(233295708160ν7c7

0 + 6136264785920ν6c7
0

+542608162816ν6c6
0 + 68455655669760ν5c7

0 + 12042589175808ν5c6
0

+420330879057920ν4c7
0 + 528482697216ν5c5

0 + 110398882152448ν4c6
0

+1535545722142720ν3c7
0 + 9647309942784ν4c5

0 + 535518767775744ν3c6
0

+3340055376691200ν2c7
0 + 280528792576ν4c4

0 + 69922034995200ν3c5
0

+1450668638273536ν2c6
0 + 4007958968401920νc7

0 + 4051518984192ν3c4
0

+251668030697472ν2c5
0 + 2081977704480768νc6

0 + 2047916821708800c7
0

+87911443840ν3c3
0 + 21801459577856ν2c4

0 + 450067875065856νc5
0

+1237400652349440c6
0 + 943145998080ν2c3

0 + 51829227345920νb4
0

+320077918642176c5
0 + 16301687232ν2c2

0 + 3353685088128νc3
0

+45949729044480c4
0 + 115618173408νc2

0 + 3954060131328c3
0

+1659215740νc0 + 203967822816c2
0 + 5840327620c0+71612125)

d18 = − Q17

289571548120742677708800c25
0
(25194682646528ν8c8

0
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0
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0
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0
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0

+1739249961852928ν5c6
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0
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0
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0
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0 + 926342225356800ν4c5

0

+77730358600302592ν3c6
0 + 977006422902243328ν2c7

0

+1946406047526420480νc8
0 + 20114369125632ν4c4

0

+6738088997926912ν3c5
0 + 211335855360327680ν2c6

0

+1176776583635337216νc7
0 + 876339430686720000c8

0

+291713277344000ν3c4
0 + 24354507800274944ν2c5

0

+304603997666058240νc6
0 + 603905675018895360c7

0

+5046242101888ν3c3
0 + 1577127727416576ν2c4

0

+43761063128068096νc5
0 + 181907109573083136c6

0

+54417277715648ν2c3
0 + 3768754858770176νc4

0

+31283823338778624c5
0 + 781631613080ν2c2

0

+194575045273984νc3
0 + 3359833825248768c4

0

+5576371068448νc2
0 + 230760871288128c3

0

+68439289950νc0 + 9898518822984c2
0

+242459851750c0 + 2596581625)
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d20 = − Q19

463314476993188284334080000c28
0
(3411518378475520ν9c9

0

+118444091464220672ν8c9
0 + 10466637514932224ν8c8

0

+1808283120114335744ν7c9
0 + 318041734543572992ν7c8

0

+15950252097173716992ν6c9
0 + 13959906513256448ν7c7

0

+4189933602104147968ν6c8
0 + 89660601736581087232ν5c9

0

+366320570899972096ν6c7
0 + 31283051174786891776ν5c8

0

+333343530576484237312ν4c9
0 + 10660326004723712ν6c6

0

+4087549265824563200ν5c7
0 + 144879502690136752128ν4c8

0

+820203101659930296320ν3c9
0 + 237073839796183040ν5c6

0

+25157292769029586944ν4c7
0 + 426441218245230592000ν3c8

0

+1288667154725648990208ν2c9
0 + 5150105050374656ν5c5

0

+2181734662441721856ν4c6
0 + 92283627097896747008ν3c7

0

+779455773856190431232ν2c8
0 + 1173726654420418560000νc9

0

+94503473460990976ν4c5
0 + 10640271960689336320ν3c6

0

+201861353282457387008ν2c7
0 + 809252870022897991680νc8

0

+472378197839708160000c9
0 + 1635746902436096ν4c4

0

+689430080960804864ν3c5
0 + 29016945395490123776ν2c6

0+

243898727806524506112νc7
0 + 365535324502858137600c8

0

+23803164534008192ν3c4
0 + 2500522430794411008ν2c5

0

+41970629357141245952νc6
0 + 125618317750237298688c7

0

+342133796910224ν3c3
0 + 129184061762454144ν2c4

0

+4510530267662435840νc5
0 + 25163812990336770048c6

0

+3704927888954480ν2c3
0 + 310007430884899456νc4

0

+3238267923602939904c5
0 + 45504574139540ν2c2

0

+13307430159905520νc3
0 + 277632644812324992c4

0

+326204522097600νc2
0 + 15858535555177488c3

0

+3496139957750νc0 + 581980835136140c2
0

+12451492202250c0 + 118334925625)
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d22 = − 1
11c0

(10c2d20 + 9c4d18 + 8c6d16 + 7c8d14 + 6c10d12 + 5c12d10 + 4c14d8 + 3c16d6 + 2c18d4

+c20d2)

d24 = − 1
12c0

(11c2d22 + 10c4d20 + 9c6d18 + 8c8d16 + 7c10d14 + 6c12d12 + 5c14d10 + 4c16d8 + 3c18d6

+2c20d4 + c22d2)

d26 = − 1
13c0

(12c2d24 + 11c4d22 + 10c6d20 + 9c8d18 + 8c10d16 + 7c12d14 + 6c14d12 + 5c16d10

+4c18d8 + 3c20d6 + 2c22d4 + c24d2)

d28 = − 1
14c0

(13c2d26 + 12c4d24 + 11c6d22 + 10c8d20 + 9c10d18 + 8c12d16 + 7c14d14 + 6c16d12

+5c18d10 + 4c20d8 + 3c22d6 + 2c24d4 + c26d2)

d30 = − 1
15c0

(14c2d28 + 13c4d26 + 12c6d24 + 11c8d22 + 10c10d20 + 9c12d18 + 8c14d16 + 7c16d14

+6c18d12 + 5c20d10 + 4c22d8 + 3c24d6 + 2c26d4 + c28d2)

d32 = − 1
16c0

(15c2d30 + 14c4d28 + 13c6d26 + 12c8d24 + 11c10d22 + 10c12d20 + 9c14d18 + 8c16d16

+7c18d14 + 6c20d12 + 5c22d10 + 4c24d8 + 3c26d6 + 2c28d4 + c30d2)

d34 = − 1
17c0

(16c2d32 + 15c4d30 + 14c6d28 + 13c8d26 + 12c10d24 + 11c12d22 + 10c14d20 + 9c16d18

+8c18d16 + 7c20d14 + 5c24d10 + 4c26d8 + 3c28d6 + 2c30d4 + c32d2 + 6c22d12)

d36 = − 1
18c0

(c34d2 + 2c32d4 + 4c28d8 + 3c30d6 + 6c24d12 + 5c26d10 + 8c20d16 + 7c22d14

+10c16d20 + 9c18d18 + 14c8d28 + 13c10d26 + 12c12d24 + 11c14d22 + 17c2d34 + 16c4d32 + 15c6d30)

d38 = − 1
19c0

18c2d36 + 17c4d34 + 16c6d32 + 15c8d30 + 14c10d28 + 13c12d26 + 12c14d24 + 9c20d18

+8c22d16 + 6c26d12 + 5c28d10 + 4c30d8 + 3c32d6 + 2c34d4 + c36d2 + 11c16d22 + 10c18d20 + 7c24d14

d40 = − 1
20c0

(8c24d16 + 7c26d14 + 6c28d12 + 19c2d38 + 18c4d36 + 13c14d26 + 12c16d24 + 11c18d22

+4c32d8 + 17c6d34 + 16c8d32 + 15c10d30 + 14c12d28 + 2c36d4 + c38d2 + 9c22d18 + 5c30d10 + 3c34d6

+10c20d20)

d42 = − 1
21c0

(20c2d40 + 19c4d38 + 18c6d36 + 17c8d34 + 16c10d32 + 15c12d30 + 14c14d28 + 12c18d24

+11c20d22 + 10c22d20 + 9c24d18 + 8c26d16 + 7c28d14 + 3c36d6 + 2c38d4 + 6c30d12 + 5c32d10 + c40d2

+4c34d8 + 13c16d26)

d44 = − 1
22c0

(8c28d16 + 7c30d14 + c42d2 + 11c22d22 + 10c24d20 + 9c26d18 + 13c18d26 + 12c20d24

+5c34d10 + 21c2d42 + 20c4d40 + 19c6d38 + 3c38d6 + 2c40d4 + 18c8d36 + 17c10d34 + 16c12d32

+15c14d30 + 14c16d28 + 4c36d8 + 6c32d12)

d46 = − 1
23c23

(11c24d22 + 10c26d20 + 2c42d4 + 3c40d6 + 4c38d8 + 5c36d10 + 6c34d12 + 7c32d14

+9c28d18 + 8c30d16 + 13c20d26 + 12c22d24 + 15c16d30 + 14c18d28 + 19c8d38 + 18c10d36 + 17c12d34

+16c14d32 + c44d2 + 22c2d44 + 21c4d42 + 20c6d40)

d48 = − 1
44c0

(c46d2 + 2c44d4 + 3c42d6 + 4c40d8 + 5c38d10 + 7c34d14 + 6c36d12 + 8c32d16

+9c30d18 + 11c26d22 + 10c28d20 + 13c22d26 + 12c24d24 + 15c18d30 + 14c20d28 + 18c12d36

+17c14d34 + 16c16d32 + 22c4d44 + 21c6d42 + 20c8d40 + 19c10d38 + 23c2d46)

d50 = − 1
25c25

(24c2d48 + 23c4d46 + 22c6d44 + 21c8d42 + 20c10d40 + 19c12d38 + 18c14d36

+10c30d20 + 9c32d18 + 8c34d16 + 7c36d14 + 6c38d12 + 5c40d10 + 4c42d8 + 3c44d6 + 2c46d4 + c48d2

+14c22d28 + 11c28d22 + 12c26d24 + 13c24d26 + 15c20d30 + 16c18d32 + 17c16d34)
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