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Abstract: This paper proposes a novel passivity cascade technique (PCT)-based control for nonlinear
inverted pendulum systems. Its main objective is to stabilize the pendulum’s upward states despite
uncertainties and exogenous disturbances. The proposed framework combines the estimation
properties of radial basis function neural networks (RBFNs) with the passivity attributes of the
cascade control framework. The unknown terms of the nonlinear system are estimated using an
RBFN approximator. The performance of the closed-loop system is further enhanced by using the
integral of angular position as a virtual state variable. The lumped uncertainties (NN—Neural
Network approximation, external disturbances and parametric uncertainty) are compensated for by
adding a robustifying adaptive rule-based signal to the PCT-based control. The boundedness of the
states is confirmed using the passivity theorem. The performance of the proposed approach was
assessed using a nonlinear inverted pendulum system under both nominal and disturbed conditions.

Keywords: passivity cascade control; RBFN approximator; nonlinear systems; inverted pendulum

1. Introduction

Inverted pendulums have long been considered to be interesting case studies for
nonlinear control design. They owe their popularity to their inherently unstable and highly
nonlinear dynamics [1–3]. Additionally, they have a vast range of applicability in various
practical systems such as seismographs, humanoid robots, omni-wheel robots, satellite,
etc. [4,5]. Various kinds of inverted pendulum systems can be found in the literature. The
cart, rotational single arm and double inverted pendulum are a few examples [6,7]. In this
paper, we implement our design for the cart inverted pendulum.

The stabilization of the cart inverted pendulum is a challenging task, especially when
the system is subjected to model uncertainties and unknown exogenous disturbances.
Various control techniques were proposed in the literature for the control and stabilization
of inverted pendulum. The approach proposed in [8] combined a linear quadratic regulator
(LQR) approach with a PID controller to control an inverted pendulum system. The
gains of both controllers were tuned using an ant colony optimization (ANO) technique.
Two fractional order PID controllers were raised in [9] for the control of a cart inverted
pendulum. In [10], a sliding mode control (SMC) method was developed to achieve
balance in a cart inverted pendulum system. Similarly, a second-order SMC approach was
proposed in [11] for the same system. Intelligent control methods were explored in [12,13]
to ensure the stability of the inverted pendulum. Besides the control approaches discussed
above, in fact, the robust control of nonlinear inverted pendulum systems with matched
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and unmatched disturbances, which are common to many applications, remains an open
problem of high practical relevance.

Cascade control has recently emerged as a potential easy to implement approach
whose main property is its hierarchical structure. With the aid of cascade control, balancing
of the inverted pendulum system was realized in [14]. In addition to this, the robust behav-
ior of the closed-loop system is obtained based on active disturbance rejection technique.
In [15], a cascade fuzzy controller was proposed to control the inverted pendulum system.

All the previous schemes were developed based on the Lyapunov theorem. Recently,
passivity-based control has been gaining interest as a powerful tool to achieve system
stabilization by passivation of the closed-loop system. Furthermore, with the use of passive
property, the process of controller design is simpler. It is worth noting that some researchers
have tried to find a suitable way to turn a non-passive system into a passive one, because
of the value of passivity property [16,17]. Composition of passivity property and proposed
controllers was reported in the literature in order to construct a robust passivity-based
controller [18–22]. However, this control technique was seldom considered for the inverted
pendulum [23].

Motivated by the above discussion, we propose a new robust passivity cascade tech-
nique, (PCT)-based control for a nonlinear inverted pendulum system subject to uncer-
tainties. The framework of the proposed method is constructed based on cascade-RBFN
technique. The main contributions of this paper are as follows:

• A robust model-free control design formulated using RBFN approximators and pas-
sivity framework.

• A design that enhances the performance of the closed-loop system by augmenting its
dynamics with virtual states and an adaptive robustifying signal.

• An approach that guarantees the boundedness of all the states via the output of strictly
passive (OSP) property.

The remainder of the paper is organized as follows. Section 2 briefly summarizes NN
approximators and the passivity theorem. The proposed controller is detailed in Section 3.
Simulation results are discussed in Section 4. Some concluding remarks are finally provided
in Section 5.

2. Preliminaries and Control Objectives
2.1. RBFN Approximator

In order to approximate the unknown nonlinear terms, in this study, we consider an
RBFN algorithm. This latter is composed of three layers, i.e., inputs ζ = (ζ1, ζ2, . . . , ζn)

T ,
hidden nodes and one output. Consider the Gaussian function:

hj(ζ) = exp

(
‖ ζ − cj ‖2

2b2
j

)
(1)

where j = 1, 2, , . . . , n and C = [c1, . . . , cn]. h(ζ) is also defined as
[
hj(ζ)

]T . Hence, the
output of RBFN can be described as:

y = θTh(x) + w (2)

where θ = [θ1, . . . , θn]
T is derived using an adaptation mechanism.

Consider a nonlinear system in which the unknown values of g and f are estimated by
a neural network system.

Lemma 1 [24]: For a set Ω, on any continuous function f (ζ), there is an NN system to satisfy:

sup
x∈Ω

∣∣∣ f (ζ)− θTh(ζ)
∣∣∣ ≤ w , ∀ w > 0 (3)
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2.2. Passivity Theorem

Definition 1 [25]: For the below nonlinear affine system:

.
ζ = S(ζ) + T(ζ)u , ζ ∈ Rn

y = R(ζ)
(4)

Passivity property is expressed as:

.
π 6 yTu (5)

where π, y and u are, respectively, positive semidefinite function, the output and input vectors of
the system. If there exists a storage function π that satisfies (6), the system (4) output is strictly
passive (OSP).

.
π 6 yTu− yTKy (6)

where K is a symmetric matrix with all positive eigenvalues.

Definition 2 [25]: The system (4) is zero-state observable (ZSO), if the solution ζ(t) ≡ 0 is the
only answer of equation

.
ζ = S(ζ) and R(ζ) = 0.

Our control objective is to design a robust model-free controller based on the cascade
technique and propose the passivity theorem framework to ensure that all closed-loop
variables are bounded and the upward states are well balanced and stabilized in the
presence of uncertainties.

3. Proposed PCT-Based Control Design

It is well known that the system’s relative degree is one of the restrictive conditions for
the passivation procedure [17,26]. Hence, in the proposed approach, we consider a cascade
control technique to remove this problem.

3.1. State-Space Model of the System

In what follows, the integral of the angular joint position is added to as a virtual state
to further improve the effectiveness of the system. The state-space model of the augmented
system is as follows:

.
ζ1 = ζ2
.
ζ2 = ζ3

.
ζ3 = f + gu + φ

(7)

where ζ1 is the integral of angular position, ζ2 denotes the angular position and ζ3 is the
angular velocity of the system. φ is regarded as external disturbances. f and g are also two
nonlinear terms expressed as:

f =
sin(ζ2)(g(M+m)−mlζ2

3cos(ζ2))
4
3 l(M+m)−mlcos2(ζ2)

g = cos(ζ2)
4
3 l(M+m)−mlcos2(ζ2)

(8)

To achieve the control objectives set forth, we propose the PCT-based control approach
detailed in the next section.
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3.2. The PCT-Based Control

Based on the cascade technique, the passivation procedure is achieved using three
loops. Define the tracking errors as follows:

ν1 = ζ1 − ζ1d

ν2 = ζ2 −
.
ζ1d

ν3 = ζ3 −
..
ζ1d

(9)

where the desired signal ζid is set to zero to ensure a balanced system.
Inner Loop: The first subsystem can be represented by defining σ1 = ν1 based on the

cascade technique, as follows:
.
σ1 = −k1σ1 + σ2

y1 = σ1
(10)

in which σ2 is a virtual input defined by: σ2 = k1σ1 + ν2 = u1, whereas y1 = σ1 is a virtual
output. Thus, system (10) is both OSP and ZSO via π1:

π1 = 0.5 σ2
1 (11)

The time derivative of the innermost storage function yields:

.
π1 = σ1

.
σ1 = −k1σ2

1 + σ1σ2 = −k1y2
1 + y1u1 (12)

where k1 is a positive constant.
Middle Loop: Based on the cascade technique, the second step of design is repre-

sented as: .
σ1 = −k1σ1 + σ2
.
σ2 = −k2σ2 + σ3

y2 = [σ1 σ2]

(13)

in which σ3 = ν3 + k1ν2 + k2σ2, u2 = [σ2 σ3] and y2 are, respectively, the virtual input and
output of (13). Note that (13) is also OSP. This property is proven by derivative of below
storage function with respect to time in the following

π2 = π1 + 0.5 σ2
2 (14)

.
π2 = −k1σ2

1 − k2σ2
2 + σ1σ2 + σ2σ3 = yT

2 u2 − yT
2 Ky2 (15)

where K = diag(k1, k2). Based on Definition 2, It is obvious that (13) is ZSO.
Outer Loop: In the last step of design, the entire system can be introduced as:

.
σ1 = −k1σ1 + σ2
.
σ2 = −k2σ2 + σ3

.
σ3 =

(
f − f̂

)
+ (g− ĝ)u + (φ− ur)− k3σ3 + up

y3 = [σ1 σ2 σ3]

(16)

in which ur is the augmented robustifying signal and up is the passivation control input,
such that:

up = f̂ + ĝu + ur + k3σ3 −
...
ζ 1d + (k1 + k2)ν3

+k1k2ν2
(17)
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where u3 =
[
σ2 σ3 up

]
is the input vector of (16). In the outer loop, NN approximators are

used to estimate the unknown terms. The unknown upper bound of lumped uncertainties
is considered as η∗. Then, η̃ is defined as:

η̃ = η∗ − η (18)

The NN approximation errors for f and g are represented as:

f − f̂ = P̃Tϑ1 + w1

g− ĝ = θ̃Tϑ2 + w2
(19)

where p̃ = p− p̂ (neural regressor of f ), θ̃ = θ − θ̂ and w1 and w2 are the neural network
approximation errors.

Regarding the final storage function π3, the OSP property of (16) is verified between
π3 and u3.

π3 = π2 + 0.5 σ2
3 +

1
2r1

P̃T P̃ +
1

2r2
θ̃T θ̃ +

1
2r3

η̃2 (20)

The time derivative of π3 is given by:

.
π3 =

.
π2 + σ3

.
σ3 +

1
r1

P̃T
.
P̃ +

1
r2

θ̃T
.
θ̃ +

1
r3

η̃
.
η̃ (21)

Based on (16)–(21),
.

π3 can be simplified as:

.
π3 6

.
S2 − k3σ2

3 + σ3up + P̃T
(

1
r1

.
P̃ + σ3ϑ1

)
+ θ̃T

(
1
r2

.
θ̃ + σ3ϑ2u

)
+ σ3η − σ3ur

+η̃
(

1
r3

.
η̃ + σ3

) (22)

Therefore, one can choose the adaptive rules as follows:

.
P̂ = r1σ3ϑ1
.
θ̂ = r2σ3ϑ2u

.
η = r3σ3

(23)

The value of σ3η − σ3ur should lead to the negative domain. Hence,

σ3η − σ3ur 6 0 −→ σ3η 6 σ3ur (24)

It is clear that:
σ3η 6 ‖ σ3 ‖η (25)

Thus, one can write the robustifying signal as

ur = norm(σ3)η (26)

Finally, (22) can be represented by the following equation:

.
π3 6

.
π2 − k3σ2

3 + σup (27)

Substituting (12) and (15) into (27), one can conclude that the outer loop (16) is OSP.

.
π3 6 yT

3 u3 − yT
3 K′y3 (28)

where K′ = diag(k1, k2, k3). It is noteworthy to point out that (16) is ZSO due to the NN
systems identifying unknown values acceptably. Moreover, the robust signal is utilized in
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compensation of the NN estimation errors. The block diagram of the proposed controller is
shown in Figure 1.
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3.3. Stability Analysis

The stability conditions for output of strictly passive systems are illustrated using
Lemma 2, as follows:

Lemma 2 [25]: Consider system (4) for which the origin is assumed to be the equilibrium point.
If (4) is output as strictly passive with positive definite storage function and zero-state observable
(ZSO), then the origin of (4) is globally asymptotically stable for u ≡ 0.

Based on Lemma 2, the control input for (7) is determined by replacing up = 0 in (17) as
follows:

u = ĝ−1
(
− f̂ +

...
ζ 1d − k3σ3 − (k1 + k2)ν3 − k1k2ν2 − ur

)
(29)

The asymptotic stability of (16) yields the convergence of σ1, σ2, σ3 to zero. Hence, ν1
converges to zero. The convergence of ν2 to zero is also concluded, since ν2 = σ2 − k1σ1.
Moreover, ν3 converges to zero, since ν3 = σ3 − k1ν2 − k2σ2. Then, the boundedness of
ζ1, ζ2 and ζ3 is also guaranteed.

Remark 1: By defining the NN approximation errors (w1(ζ) = f (ζ) − f̂ (ζ|p∗), w2(ζ) =
g(ζ)− Ĝ(ζ|θ∗)) and also according to Lemma 1, the |φ + w1 + w2u|max is equal to η∗, which is
regarded as an optimal parameter of uncertainties.

The upper band is unknown which was derived in (23).

4. Simulation Results

The performance of the proposed approach was assessed using the cart system in-
verted pendulum, the parameters of which are listed in Table 1. Two cases were considered:
a normal case which assesses its performance under nomination conditions and an abnor-
mal case which considers external disturbances (rectangular shape). In order to achieve
proper tracking performance, the control parameters are fine-tuned using a trial and error
approach. The obtained values are as follows:

r1 = 10, r2 = 5, r3 = 4

k1 = 12, k2 = 9, k3 = 6
(30)
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Table 1. The inverted pendulum parameters.

Symbol Parameter Value

m Mass of pendulum 0.2

M Mass of cart 0.5

l Half-length of pendulum 0.5

g Gravity acceleration 9.8

4.1. Normal Case

The pendulum’s tracking performance under nominal conditions is illustrated in
Figure 2 through Figure 5. As shown in Figure 2, the pendulum’s angle is able to perfectly
track the desired position. Figures 3 and 4 show the angular velocity and phase plane,
respectively. From Figure 4, it is understood that the system is stable since the trajectory
tends from the initial conditions to the origin. The force (control effort) applied to the
system is also depicted in Figure 5. Based on the above results, it can be concluded that the
pendulum’s upright states are perfectly balanced under nominal conditions.
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4.2. Abnormal Case (Existence of External Disturbances)

In this case, the system is subjected to the following external disturbance:

φ(t) =

{
10 2.5s < t < 7.5s, 12.5s < t < 17.5s
0 o.w

(31)

The performance of the closed-loop system in this case is illustrated in Figures 6–9.
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Figures 6 and 7 show the angular position and velocity of the system, respectively.
The control signal is depicted in Figure 8, where the abrupt jumps refer to the shape of
external disturbance. As shown in Figure 9, the phase plane trajectory of the system moves
away from the origin and moves again to the origin, which indicates that the closed-loop
system is stable. Finally, it can be concluded that the system has a robust behavior in the
presence of a large external disturbance.

5. Conclusions

A new passivity-based cascade neural network controller was proposed in this pa-
per to stabilize the pendulum’s upward states despite uncertainties and exogenous dis-
turbances. The proposed approach uses RBFN approximators to estimate the system’s
unknown nonlinear terms. It considers the passivity framework to design a PCT-based
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control approach. The lumped uncertainties are compensated for by augmenting the PCT
with a robustifying adaptive rule signal. The boundedness of all the states is guaranteed
via the strictly passive (OSP) property output. The controller’s performance was assessed
using a nonlinear inverted pendulum system under both nominal and disturbed condi-
tions. The obtained results confirmed the ability of the proposed approach to stabilize the
pendulum’s upward states despite uncertainties and exogenous disturbances. Robustness
to disturbances, acceptable tracking performance and fast response are among the positive
features of the proposed approach.
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