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Abstract: The increasing consumption of fossil fuel resources in the world has placed emphasis on
flow measurements in the oil industry. This has generated a growing niche in the flowmeter industry.
In this regard, in this study, an artificial neural network (ANN) and various feature extractions have
been utilized to enhance the precision of X-ray radiation-based two-phase flowmeters. The detection
system proposed in this article comprises an X-ray tube, a Nal detector to record the photons, and a
Pyrex-glass pipe, which is placed between detector and source. To model the mentioned geometry,
the Monte Carlo MCNP-X code was utilized. Five features in the time domain were derived from the
collected data to be used as the neural network input. Multi-Layer Perceptron (MLP) was applied to
approximate the function related to the input-output relationship. Finally, the introduced approach
was able to correctly recognize the flow pattern and predict the volume fraction of two-phase flow’s
components with root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) of less than 0.51, 0.4 and 1.16%, respectively. The obtained precision of the
proposed system in this study is better than those reported in previous works.

Keywords: radiation-based flowmeter; two-phase flow; feature extraction; artificial intelligence;
time domain

1. Introduction

Optimization of separation processes is not possible except with enough knowledge
of the quantitative measurement of gas and oil components. The type of flow pattern
impacts the efficiency of the separation process in such a way that the percentage of each
component indicates whether the drilling needs to be stopped or not. The mixture of
gamma radiation and ANNs have contributed in a lot of researches as a practical tool [1-7].
In [1], a calculation of volumetric percentages in three-phase flows was performed by
using a dual-energy source and three detectors. Simulations were performed by MCNP-4C
code. In addition, Abro and Johansen [2] researched the gas volume ratio by measuring
two-phase flows. Their method consisted of a single ! Am source and three detectors.
The MRE% achieved was less than 3%. Adineh et al. presented a method to study the
two-phase flow by a two-detector model of Nal and a single '3’Cs source [3]. The use
of feature extraction methods can definitely lead to a qualitative improvement in the
accuracy of flowmetry. In this regard, Sattari et al. [4] introduced a '¥’Cs source and a
single Nal detector to perform the flow measurement. In the research, the input ports of
the GMDH neural network were time-domain features, which were extracted from the
recorded spectrum. In similar studies, to establish the volume percentages and type of
flow patterns with high accuracy, researchers evaluated many time- and frequency-domain
characteristics, and they presented the best separator characteristics using an innovative
method [5,6]. Some structures of MLP neural networks were investigated for the volume
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fraction calculation in 3-phase flows [7]. In that research, annular and homogeneous flow
patterns were considered as the main flow regime. Complete diagnosis of the kind of
flow regime and determining the volume fraction with an RMSE of 1.28 were the research
findings. In addition to radioisotope sources, it has been proved that X-ray tubes can
be potentially used in radiation-based multiphase flowmeters [8,9]. The X-ray tube has
some advantages over radioisotope sources, for example, it has the capability of energy
adjustment of emitted photons, it releases photons more intensely than fundamental
radioisotope sources; it has the capability of turning on and off, etc.

Although X-ray radiation-based two-phase flowmeters have a lot of advantages over
the radioisotope-based ones, they suffer from lower measurement accuracy. One reason
might be that the registered X-ray spectrum has been analyzed in a simple way. The X-ray
sources generate multi-energy photons despite radioisotopes that generate single energy
photons. Therefore, data analysis of radioisotope sources would be easier than X-ray ones.
As mentioned, one of the problems researchers have encountered is the lower measurement
accuracy of the X-ray radiation-based two-phase flowmeters. The current project’s goal is
to resolve this problem by improving the precision of the X-ray radiation-based two-phase
flowmeter using an artificial neural network (ANN) and feature extraction techniques.

In Section 2.1, the details of the modeled detection system, including one X-ray tube
and one detector, will be discussed. Sections 2.2 and 2.3 are dedicated to processing and
extracting features of the registered signals. In Section 2.4, the employment of ANN for
flow pattern identification and volume ratio prediction will be explained. The results of all
four sub-sections in part 2, will be discussed in Section 3. Figure 1 depicts the flowchart of
the presented methodology used in the current investigation.

Identification of

——» flow pattern’s
type
= . Feature
—— Processing signal — extraction — ANN
Predicting the
volume fraction

= of two-phase
flow’s
components

Figure 1. Flowchart of the presented methodology in this investigation.

2. Materials and Methods
2.1. X-ray System

In present article, the detection system that is consisted of an X-ray tube and a Nal
detector which are located on both sides of the Pyrex-glass pipe, was modeled using the
MCNP code. This code has been employed for modeling measuring instruments based on
ionizing radiation [10-16].

In Figure 2, a geometric sketch of the designed system is shown. The emitted photons
from the X-ray tube pass through the pipe, in which the two-phase flow components are
being examined, and then, the portion of them that is not attenuated inside the pipe is
detected by the detector. In fact, the attenuation of the radiation beam is based on the
quantity of gas and liquid components inside the pipe.
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Figure 2. Modeled detection system using the MCNP code.

Since perfect modeling of an industrial X-ray tube including a cathode (electron source)
and an anode (tungsten target) embedded in a cylindrical shield, using the MCNPX code
is time consuming, in this work, a more efficient geometry including a photon source
mounted inside a metal shield was defined. In other words, since photon tracking in
the MCNPX code is much faster than electron tracking, a photon source mounted in a
metal shield was just deemed in the present investigation instead of modeling the cathode-
anode accumulation. To provide the X-ray energy spectrum for the photon source, the
acquired spectrum by the TASMIC, a free software represented by Hernandez et al. [17],
was employed. The employed X-ray spectrum including the X-ray characteristic peaks
related to the tungsten anode is depicted in Figure 3. Fundamentally, the X-ray tube’s
cylinder-shaped shields are usually made of steel or lead to prevent leakage of radiation.
On the shield surface, a section is left open, which is described as the output window to
emit congenially produced X-ray photons. The output window’s radius of the simulated
X-ray in this study is 5 cm. To filter the low energy photons with the aim of reducing
scattering, an aluminum filter having 2.5 mm thickness was embedded in front of the
output window.

1.0 4
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0.0 T T ¥ T ¥ |
0 50 100 150
Energy (keV)

Figure 3. The applied X-ray energy spectrum in simulations obtained by the TASMIC package [17].

2.2. Signal Processing

In this investigation, 3 typical flow patterns (shown in Figure 4) and 19 different
volume fractions from 5% void fraction to 95% with the step of 5%, are simulated (57 sim-
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ulations were used in total). As an example, the recorded spectra in the detector for the
4 different void fractions of 25%, 45%, 65%, and 95% are shown in Figure 5.
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Figure 4. Simulated flow regimes.
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Figure 5. Recorded spectra in the detector for different void fractions of: (a) 25%, (b) 45%, (c) 65%, (d) 95%.

The tremendous data are collected for each simulation, as can be seen in Figure 5.
In this context, to minimize the amount of data and preserve the data specifications
simultaneously, the feature extraction techniques in the time domain have been employed.
The extracted aspects are explained in detail in the following sections.

2.3. Feature Extraction

In this scrutiny, 12 time-domain characteristics (average value, variance, 4th-order
moment, root mean square, skewness, kurtosis, median, waveform length (WL), SSR, MSR,
SVER, and maximum value) were extracted from the recorded data. These characteristics
were used as network inputs to determine the flow pattern and the volume percentages.
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Therefore, an attempt was made to determine the efficient characteristics. To do this,
various neural networks were configured with different combinations of the extracted
features, and finally, it was observed that use of the Variance, Skewness, Kurtosis, SSR, and
SVER can provide sufficient and high accuracy in detecting the mentioned parameters.

Five effective characteristics were extracted from the registered signals using the
following equations. (x;), n =1,---, N, where N is the number of datasets:

e  Variance:

» 1 % 2 1 %
- = — (xp —m)*, m=— Xy 1)
N n=1 N n=1
e  Skewness:
_ m3 1 ¥ 3
gl—gr"%—ﬁngl[xn—m] )
o Kurtosis:
_ma LN
& = o my = Nn;l[xn m] 3)

e  Summation of square roots (SSR):

1
SSR = 37,0 () @)

e  Summation of variable exponent roots (SVER):

N { 0.05 if (n > 0.25-N and n < 0.75-N) )

- 1 exp —
SVER = n;(xn) , exp = 0.75 otherwise

The extracted features are indicated in Figure 6.

Two variables that are uncorrelated are not certainly independent, however, they
may have a nonlinear relationship. In fact, two variables that have a little or insufficient
correlation may have a strong nonlinear relationship. Since in this study there is not
sufficient linear relation between the input and target, an MLP network with nonlinear
parameters was used to find the relationship between input and output with high accuracy.
Correlation analysis of each feature with respect to the target value is shown in Figure 7.
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Figure 6. Extracted characteristics: (a) SVER, (b) SSR, (c) variance, (d) skewness, (e) kurtosis.

2.4. Artificial Intelligence

In the last few years, various computational techniques have been utilized for various
applications in the engineering research area [18-32]. In this study, ANN has been imple-
mented for flow pattern identification and volume ratio prediction. As a mathematical
system, ANNs are described to be formed by the plain processing components called
neurons acting in parallel and are produced as one or multiple layers [23,24]. MLP acquires
nonlinear function mappings and could learn the abundant diversity of nonlinear decision
surfaces as well. Figure 8 depicts the presented MLP model, in which the inputs are the
extracted features described in the former section, and the outputs are the volume fraction
ratios regardless of the flow pattern. The neuron output in the output layer is achieved by
the following equations [33,34]:

u
X = Zaiwij+bj: 1,2,-
i=1

yi=f() . awi+b)j=1,

output = Lzl(ynwn)

..,m

2’...,m

+b

(6)

@)
®)
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The equation related to the tansig activation function is given below:

2

tansig() = o5

-1

©)

where g, b, w, and f present the input parameters, the bias term, the weighting factor, and
the activation function, respectively. The index i is the input number, and j is the neuron
number in every hidden layer. The Levenberg—Marquardt algorithm was used for training
of the presented MLP networks, where the 1st and 2nd derivatives (i.e., the gradient and
Hessian) were utilized for network weight correction [35]. The available data are organized

into three categories: training, validation, and testing data.

Correlation Matrix

Correlation Matrix

o °
s

1000.7 0.72 0.74 0.76 0.78
var2

0 20 40 60 80 100 23 24 25 26 27
var1 var2

(b)

Correlation Matrix

var1
varl

0.045

var2
var2

0.035

00251 4% °

20 40 60 80 100 120 O 2 4 6 8 10 0 20 40 60 80 100 0.025 0.03 0.035 0.04 0.045 0.05
vart var2 x10¢ varl var2

(c) (d)

Correlation Matrix

(e)

Figure 7. Correlation analysis of extracted features: (a) Skewness, (b) Kurtosis, (c) Variance, (d) SVER, and (e) SSR.



Mathematics 2021, 9, 1227

8 of 15

Input Layer First Hidden Layer Second Hidden Layer Output Layer

A4
7
S HAD < =
N EX X
WSS

EIELS SOEH
ERREERAN @B SSKEK

SN S
ExN\el A
/7
\ g ///
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Training dataset: The sample of data utilized to fit the model. The model sees and

learns from these data.

Validation dataset: The validation set is utilized to assess the performance of a model,
but this is for frequent evaluation. The model encounters these data on occasion, but never

does it “Learn” from these data.

Testing dataset: The sample of data utilized to offer an unbiased assessment of a final
model fit on the training dataset. The test dataset serves as the gold standard against which

the model is assessed. It is only utilized once after completing the network training.

The use of validation data in the network training process as well as final network
testing using test datasets will give us the reassurance to avoid under-fitting and over-
fitting problems. The training, validation, and testing samples data are 39 (70% of data),
9 (15% of data), and 9 (about 15% of data), respectively. In the present article, two ANN
models of MLP were trained to recognize the type of flow regime and to predict the
volumetric fraction. Several ANN configurations were tested and enhanced to obtain
the optimum ANN configuration with the least error. Several configurations with 1,
2, and 3 hidden layers owning different neuron numbers in every layer and diverse
activation functions were examined. MATLAB-2018b was utilized for training the ANN
model. The structure of neurons as predictors and clarifiers of ANNs are indicated in
Figures 8 and 9, respectively. The specification of the implemented MLP ANNSs is described
in Tables 1 and 2. The outputs of the classifier network are the type of flow patterns: 1, 2
and 3 were deemed as the annular, homogenous and stratified flow pattern, respectively.
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Figure 9. The configuration of presented ANN for classifying the flow regimes.
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Table 1. Specifications of the presented network for void fraction prediction.

Neural Network MLP
Nodes number in input layer 5
Nodes number in 1st latent layer 8
Nodes number in 2nd latent layer 5
Nodes number in output layer 1
Number of epochs 450
Activation function applied for hidden neurons Tansig
Activation function applied for output neuron purelin

Table 2. Characteristics of the presented flow regime classifier network.

Neural Network MLP
Nodes number in input layer 5
Nodes number in 1st latent layer 8
Nodes number in output layer 1
Number of epochs 380
Activation function applied for hidden neurons Tansig
Activation function applied for output neuron purelin

Many different architectures with different configurations were tested based on the

algorithm detailed below in order to find the optimized structure:

1.
(2).
®).
(4).
(5).
(6).

7).
).

The dataset is defined;

The counter parameters with zero initial value are defined;

The root mean square error is defined;

The initial values of other parameters in order to break loops are set;

Several nested loops are generated to test all of the structures;

The ANN with various number of hidden layers, various number of neurons in each
layer, various epochs and various activation functions are tested in created loops
utilizing the specified counter parameters and other parameters’ initial values;

The network’s effectiveness in each step is checked utilizing the specified error;

The best network with lowest error is saved.

3. Results and Discussions

The function of the enacted network to the volumetric fraction project is displayed in

Figures 10-12 using a fitting, regression, and histogram diagram. Both the given output
and the network output are plotted in the fitting diagram. The blue star in the regression
diagram depicts the network output, and the red line depicts the given output. Apparently,
as the blue star is close to the red line, the planned network is more precise. The diagram of
error histogram illustrates the error distribution. To show the precision of the flow regime
classifier network, the confusion matrix is utilized and depicted in Figure 13 for training,
validation, and testing of the dataset.

The MAPE, MAE, and RMSE of the network are computed by:

1 «nN |Xj(Exp) — X;(Pred)
APE% =1 —) .
M / 00 x N 2121 X;(Exp)

(10)
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0.5
YN, (X;(Exp) — X;(Pred))?
N

RMSE =

(11)

N
MAE = % X ]Z%|Xj(Exp) — X;(Pred)| (12)
where X(Exp) and X(Pred) denote the experimental and forecasted (ANN) void fractions,
respectively. The errors of the given predictor network are listed in Table 3.
The results of the relevant investigations and the work are listed in Table 4. As it
can be seen, the precision of the presented system in this paper is significantly higher
than all of the previous meters in this category which demonstrates the superiority of the

proposed method.
100 I T T T T T T
train data
— — — Outputs
— Targets
50 1
0 | 1 1 1 1 | |
0 o) 10 15 20 25 30 35 40
(a)
MAPE%= 1.1645 ' g RMSE= 0.38699, MAE=0.34385
100 i ! '
% Output
Target
50
0 1
0 50 100 2

(b) (c)

Figure 10. (a) Fitting, (b) regression, and (c) error histogram diagram for training the ANN to estimate the gas volume
ratio percentage.
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100 -

*  Output
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Figure 11. (a) Fitting, (b) regression, and (c) error histogram diagram for validation of the ANN to estimate the gas volume

ratio percentage.
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100 MAPE%=1.101 4 5 RMSE= 0.51805, MAE=0.40078
% Output
80t Target 15¢
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40+ 0.5
20 : : . 0
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Figure 12. (a) Fitting, (b) regression, and (c) error histogram schematic for testing the ANN to
estimate the gas volume ratio percentage.



Mathematics 2021, 9, 1227 12 of 15

Train Data Validation Data

8 [ 0 100% 5 0 0 100%
Annular 205% 0.0% 0.0% 0.0% Annular 55.6% 0.0% 0.0% 0.0%
3 @»n
2 g
= <
O O
. B - Stratified 0 1 0 100%
E_ Stratified o0 P o o E‘_ 0.0% 11.1% 00% 0.0%
g
=
S S
oo 0 0 3 100%
Homogenous oo oo s s Homogenous 00% 00% 333% 0.0%
Annular Stratified Homogenous  All Classes Annular Stratified Homogenous  All Classes
Target Classes Target Classes
(a) (b)
Test Data
Annular 6 0 0 00
66.7% 0.0% 0.0% 0.0%
2
&
U " 100
g Stratfied 0o% 1% 0% 00%
=3
]
=]
Homogenous o 0 2 100
0.0% 0.0% 22.2% 0.0%
All Classes 100 100¢ 100¢ 100%
0.0¢ 0.0% 0.0% 0.0%
Annular Stratified Homogenous All Classes
Target Classes
(©
Figure 13. Precision of the flow regime classifier network: (a) train data, (b) validation data, (c) test data.
Table 3. Computed errors for training, validation, and testing dataset of the estimation network.
Dataset MAPE MAE RMSE
Training dataset 1.16 0.34 0.38
Validation dataset 0.99 0.21 0.26
Testing dataset 1.1 0.4 0.51
Table 4. The results of the relevant investigations and the presented two-phase flow meter in this study.
Refs Radiation Number of Detectors/Type Number of Considered Volume Fraction Prediction Volume Fraction Prediction
Source of Detector Flow Regimes Accuracy (RMSE) Accuracy (MAPE)
[4] Cs-137 1/Nal 3 1.11 5.32
[36] Cs-137 2/Nal 3 1.29 1.48
[37] Cs-137 1/Nal 2 6.12 1.17
[38] Cs-137 2/Nal 3 212 1.32
[39] Cs-137 1/Nal 1 3.57 -
[40] Am-241 2/Nal 2 3.1 -
[13] X-Ray Tube 1/Nal 2 5.54 4.49
[8] X-Ray Tube 2/Nal 3 5.39 -
[Our study] X-Ray Tube 1/Nal 3 0.51 1.16
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4. Conclusions

The thirst of oil and gas companies for more and efficient access to fossil fuels has led
the industry to find new development approaches for new production techniques. In this
work, a system has been presented for accurate measurement of the volumetric percentages
in two-phase flows independent of the flow pattern, in which an X-ray tube, a Pyrex-glass,
and a sodium iodide detector, have been used. The different volume percentages of the
three flow regimes have been simulated and the data obtained from each of them have been
recorded. Five characteristics in the time-domain were acquired and deemed as the inputs
of the multilayer perceptron. The capability for the proposed networks to classify the flow
patterns with 100% accuracy and acquire the void percentages precisely with respect to
the recorded values of 0.51 for RMSE and 1.16 for MAPE, represents the success of the
approach presented in this work. The precision of the proposed X-ray-based system in this
paper is significantly higher than all of the previous meters in this category. In addition,
this meter has a safer and easier mechanism than other, radiation-based meters. The usage
of appropriate soft computing methods and the suitable radiation source were the reason
of this achievement.

Although the obtained results in this study are promising, the proposed methodology
has been investigated for two-phase flow in static conditions. For future studies, it is
planned to implement the proposed methodology for dynamic two-phase flows.
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