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Abstract: This work is divided into two parts. In the first one, the combinatorics of a new class of
randomly generated objects, exhibiting the same properties as the distribution of prime numbers, is
solved and the probability distribution of the combinatorial counterpart of the n-th prime number is
derived together with an estimate of the prime-counting function π(x). A proposition equivalent to
the Prime Number Theorem (PNT) is proved to hold, while the equivalent of the Riemann Hypothesis
(RH) is proved to be false with probability 1 (w.p. 1) for this model. Many identities involving Stirling
numbers of the second kind and harmonic numbers are found, some of which appear to be new. The
second part is dedicated to generalizing the model to investigate the conditions enabling both PNT
and RH. A model representing a general class of random integer sequences is found, for which RH
holds w.p. 1. The prediction of the number of consecutive prime pairs as a function of the gap d, is
derived from this class of models and the results are in agreement with empirical data for large gaps.
A heuristic version of the model, directly related to the sequence of primes, is discussed, and new
integral lower and upper bounds of π(x) are found.

Keywords: set partitions; stirling numbers of the second kind; harmonic numbers; prime number
distribution; Riemann Hypothesis; Gumbel distribution

1. Introduction: The Bingo Bag of Primes

This work aims to investigate two main objectives: what random means in the case of
the distribution of prime numbers and the general conditions ensuring that what we know
as Prime Number Theorem and Riemann Hypothesis also hold in the case of a generic random
sequence of natural numbers. To achieve these goals, we will make use of models based on
combinatorics and probability theory. Of course, this is not the first time that models are
used to derive new conjectures and theorems about the prime sequence. In the mid-1930s,
Cramér [1,2] proposed the first stochastic model of the sequence of primes as a way to
formulate conjectures about their distribution. This model can be briefly summarized
as follows.

Denote by {Xn, n = 1, 2, 3 . . . } a sequence of independent random variables Xn, taking
values 0 and 1 according to

Prob{Xn = 1} = 1
ln(n)

, n > 2

(the probability may be arbitrarily chosen for n = 1, 2). Then, the random sequence of
natural numbers

S = {n : Xn = 1, n > 1}

is a stochastic model of the sequence of primes. This means that if Ω = {ω} is the set of all
possible sequences ω realizations of S, then the prime sequence, say ωP, is obviously an
element of Ω. We can therefore study the properties of the particular sequence ωP, through
the methods of probability theory applied to the sample space Ω, and conjecture with
Cramér that if a certain property holds in Ω with probability 1 (w.p. 1 in that follows), that is
for almost all the sequences, the same property holds for the prime sequence ωP. Obviously,
the results of these conjectures lay heavily on the assumption about the probability of the
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event {Xn = 1}, which connects the model with the distribution of prime numbers as
stated by the Prime Number Theorem (PNT)

π(x) ∼ x
ln(x)

∼ Li(x) =
∫ x

2

dx
ln(x)

(1)

with π(x) being the prime-counting function. We see from (1) that 1
ln(n) can be interpreted

as the expected density of primes around n, or the probability that a given integer n should
be a prime.

As reported by Granville [3] in his review article dedicated to the work of Cramér in
this area, he imagined building the set of random sequences S through a game of chance
consisting of a series of repeated draws (independent trials) from an ordered sequence
of urns (U1, U2, U3, . . . ) such that the n-th urn contains ln(n) black balls and 1 white ball,
starting from n = 3 forward. In this game, the event {Xn = 1} is then realized by drawing
the white ball from the urn number n.

The heuristic method based on Cramér’s model has been playing an essential role
since the mid-1930s to the present day when formulating conjectures concerning primes.
The first serious difference between the prediction of the model and the actual behavior of
the distribution of primes, was found in 1985 [4]. As pointed out in [3], this difference arises
because of the assumptions made by heuristic procedures based on the probabilistic model:
the hypothesis, when applying the ’Sieve of Eratosthenes’, that sieving by the different
primes ≤

√
n are independent events and Gauss’s conjecture about the density of primes

around n.
The problem was known well before Cramér’s work. In their 1923 paper [5], Hardy

and Littlewood, while discussing some asymptotic formulas of Sylvester and Brun contain-
ing erroneous constant factors and functions of the number e−γ (γ is the Euler–Mascheroni
constant), observe that “any formula in the theory of primes, deduced from considerations of
probability, is likely to be erroneous just in this way”. They explain this error arises because
of the different answers to the question about the chance that a large number n should
be prime. Following PNT and Gauss’s conjecture, this chance is approximately 1/ ln(n),
while if we consider the chance n should not be divisible by any prime ≤

√
n, assuming

independent events for any prime (Hardy and Littlewood do not mention this condition,
but it is implicit), this chance is asymptotically equivalent to

∏
p≤
√

a

(1− 1
p
) ∼ 2e−γ 1

ln(n)
, p prime.

Hence, they conclude that any inference based on the previous formula is “incorrect
to the extent of a factor 2e−γ = 1.123 . . . ”. More recently, new contradictions have been
found, between the predictions of the model and the actual distribution of primes, that
no Cramér-type model, assuming the hypothesis of independent random variables, can
overcome [6].

Cramer’s model founds its connection with the distribution of prime numbers on
Gauss’s conjecture; hence, it assumes the Prime Number Theorem as a priori hypothesis.
In this work, a new model is proposed based on a class of combinatorial objects I call First
Occurrence Sequences (FOS), reproducing the stochastic structure of the prime sequence
as a result of the straightforward random structure of the model, based on a sequence of
independent equally probable trials. The Prime Number Theorem emerges, though with-
out any a priori ad hoc assumption about the probability of events. Perhaps the best way
to summarize the aim of this work is that it tries to answer the question Granville cites
at the beginning of his paper [3]: “It is evident that the primes are randomly distributed but,
unfortunately, we do not know what ‘random’ means” (the quote is of Prof. R. C. Vaughan).

Following Cramér’s method, we can describe the pinpoints of our model as a game
of chance. Suppose we have an urn with n = 2 balls of different colors, say black (B), and
white (W), and let us consider the following sampling with replacement game: choose a
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ball, say B and replace it; repeat drawing until the white ball W occurs for the first time.
In general, the game ends when you draw the ball with a color other than the first ball
drawn. The sequences of B and W balls we get from this game are FOS of different lengths
k. Some examples:

BBW, k = 3;
BW, k = 2;
WWWB, k = 4;
WB, k = 2.
Assuming each ball has the same probability of being drawn, it is easy to see the

average numbers of steps we need to get both colors for the first time, or the average length
of FOS, when n = 2, is equal to 3. If we repeat this simple game with different values of n
(number of colors) and the rule that the game ends when all colors appear in the sequence
for the first time and compare the average length of FOS of order n (say L

′
n/n) with the

prime number pn of the same order, we would find the results reported in Table 1 for
n = 2, 3, 4, 5, and 6.

Table 1. FOS average length and primes pn.

n L
′

n/n pn

2 3 3

3 5.5 5

4 8.333 7

5 11.416 11

6 14.7 13

The correlation between FOS average lengths and the sequence of primes is a general
property of the model. Indeed, assuming each colored ball has the same probability of
being drawn, and every sampling step with replacement is independent of each other, we
can easily find

L
′
n/n = n

n

∑
k=1

1
k
∼ n ln n. (2)

The above equation shows the close connection existing between the combinatorial
objects I have called FOS and the primes. In particular, the average length of the n order
FOS, obtained through the sampling with replacement game from an urn with n colored
balls, is asymptotic to the expression of the n-th prime obtained as a consequence of PNT.
In this sense, the n-th order FOS can be defined as the combinatorial counterpart of the n-th
prime number.

The following sections are devoted to developing the theory of FOS and their analogies
with the distribution of primes. Despite their simplicity, FOS may serve as a general model
of random integer sequences which can be applied in different contexts, from combinatorics
to physical models (I give a brief hint about this in the last section), showing the common
features to all these fields, such as what is known as PNT. The method I followed in this
work is to give a complete account of these combinatorial objects independently from the
definition of other similar objects, starting from proper probability spaces and the general
(recursive) probability relations, then to develop the full theory with particular attention to
showing the connections with other research fields. A generalization is proposed in the
last part of the work, starting from a continuous version of the original model.

In Section 2, a formal definition of this kind of objects is given together with the
probability spaces we need to define probability relations and probability recursive for-
mulas. In Section 3, the combinatorics of FOS is completely solved, demonstrating its
close connections with set partitions and Stirling numbers of the second kind. In Section 4,
the probability equations derived from the combinatorial analysis lead to new identities
for Stirling numbers of the second kind and for harmonic numbers. The combinatorial
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model of primes based on FOS is defined together with a discrete estimate π̂(x) of the
prime-counting function π(x), which is studied and numerically tested. We prove PNT
holds for this model while the Riemann Hypothesis does not. In Section 5, the model is
generalized to investigate the conditions enabling both PNT and the Riemann Hypothesis.
We find a general model of random sequences for which the Riemann Hypothesis holds w.p.
1 and apply this model to the problem of counting consecutive prime pairs as a function of
the gap between successive primes. The theoretical results obtained from the model agree
with the empirical data for large gaps and show the importance of the correlation between
primes in the case of small gaps. Finally, this model is directly related to the sequence of
primes, leading to new integral lower and upper bounds of the prime-counting function
π(x). At last, Section 6 summarizes this work’s general significance and hints at its links
with other research areas, particularly with research on physical models.

2. First Occurrence Sequences: A New Class of Combinatorial Objects

In this section, we will be concerned about defining probability spaces and First Occur-
ring Sequences as events and deriving some fundamental relations among the probability of
certain events, while the evaluation of these probabilities will be treated in Section 3.

2.1. Definitions and Probability Spaces

Each FOS can be seen as a particular result of a sampling with replacement random
experiment, consisting of a repeated sequence of independent trials with more than one
outcome. The proper probability space for such an experiment can be defined as follows
(see (Lect. 1, 2, [7]) and (Chap. 10, 13, [8])). Let An be a collection of n distinct symbols

An = {a1, a2, . . . , an}, n ≥ 2

and suppose our experiment of random draws from An is repeated k times. Then, an
outcome of the compound experiment is a k-length sequence of elements of An

ωn(k) = {(x1, x2, . . . , xk) : xj ∈ An, j = 1, 2, . . . , k}, k ≥ 1.

The probability space of the experiment is the triplet (Ωk
n,F k

n , Pk
n), where

Ωk
n = {ωn(k)}

is the sample space of all possible nk outcome sequences given by the k-fold Cartesian
product of An with itself

Ωk
n = An ×An × · · · × An, k times;

F k
n is the σ-algebra of subsets of Ωk

n generated by finite-dimensional cylinder sets Cn of the
form

Cn(B1, B2, . . . , Bk) = {ωn(k) : x1 ∈ B1, x2 ∈ B2, . . . , xk ∈ Bk} (3)

with Bi ∈ Bi = 1, 2, . . . , k, B a σ-algebra on An of subsets of An.
To define the probability measure Pk

n : F k
n → [0, 1], let us consider a collection of

numbers {pi, i = 1, 2, . . . , n} such that

pi ≥ 0, i = 1, 2, . . . , n

and
n

∑
i=1

pi = 1.
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The collection of numbers pi defines the probability P of any outcome ai of the single
trial experiment and of any subset B ∈ B through the equations

P[ai] = pi (4)

P[B] = ∑
ai∈B

pi. (5)

Assuming each trial is independent, the probability of an outcome ωn(k) of the
compound experiment is given by

P[ωn(k)] =
k

∏
i=1

P[xi]. (6)

The above equation defines a probability distribution on the sample space Ωk
n, since it

is (par. 2.3, [7])
P[Ωk

n] = ∑
ωn(k)

P[ωn(k)] = 1

and the probability measure Pk
n on the σ-algebra F k

n can be generated by P through the for-
mula

Pk
n [E] = ∑

ωn(k)∈E
P[ωn(k)], for every event E ∈ F k

n . (7)

I recall here two properties of Pk
n , which will be used throughout this paper.

Remark 1. [σ-additivity] Given Ci ∈ F k
n , i = 1, 2, . . . , and Ci ∩ Cj = ∅ for i 6= j, then

Pk
n

( ∞⋃
i=1

Ci

)
=

∞

∑
i=1

Pk
n(Ci).

Remark 2. Given any finite-dimensional cylinder set (3) the probability measure Pk
n has the

property (Corollary 2.1, [7])

Pk
n [Cn(B1, B2, . . . , Bk)] =

k

∏
i=1

P[Bi]. (8)

where P is the probability distribution defined by (4)–(6) (obviously An ∈ B anf if Bi = An for
some i, it is P[An] = 1).

Definition 1. A collection Oi = {aj1 , aj2 , . . . , aji} ⊂ An is an ordered choice of i distinct symbols
from An, (1 ≤ i ≤ n), if ajl 6= ajm for l 6= m, l = 1, 2, . . . , i, m = 1, 2, . . . , i.

Among the events of the σ-algebra F k
n we are interested in the following ones.

Definition 2. We denote with Si/n(k), k-length sequences with i/n distinct symbols (1 ≤ i ≤ n,
k ≥ i), the following events

Si/n(k) = {ωn(k) = (x1, x2, . . . , xk) : ωn(k) ⊂ Oi and Oi ⊂ ωn(k)}

for some i-distinct ordered choice Oi.

Definition 3. We denote with S ′i/n(k), k-length First Occurrence Sequences (FOS) with i/n
distinct symbols (1 ≤ i ≤ n, k ≥ i), the events Si/n(k) such that xj 6= xk, j = 1, 2, . . . , (k− 1).

Hence if we choose among the elementary outcomes in Ωk
n, those with only i distinct

symbols and denote them with ωi/n(k), the event Si/n(k) is the subset Si/n(k) = {ωi/n(k)}.
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If we denote further with ω
′
i/n(k) those outcomes in the above subset, where the i-th distinct

symbol is unique (occurs once only) and occupies the last k-th position in the sequence, then
the event FOS is the subset S ′i/n(k) = {ω

′
i/n(k)}. The following remarks follow obviously

from the above definitions.

Remark 3. For every elementary event ωi/n(k) and ω
′
i/n(k), there is one and only one ordered

choice Oi replicating the order of the first occurrence of the i distinct symbols in the elementary
sequence.

Remark 4. In general it is S ′i/n(k) ⊂ Si/n(k), the two events coincide when i = k = 1 and
i = k = n. In these cases:

S ′1/n(1) = S1/n(1) = {ai, i = 1, 2, . . . , n}

S ′n/n(n) = Sn/n(n) = {ωn/n(n)}

where {ωn/n(n)} is the group of permutations of the set An.

Remark 5.
S ′1/n(k) = ∅, if k ≥ 2.

Let us now derive the general probability relation between events S ′i/n(k), Si/n(k)
and elementary outcome sequences.

Definition 4. Given a single k-length outcome with i/n distinct symbols ωi/n(k) (1 ≤ i ≤ n,
k ≥ i), let us denote with Y(ωi/n(k)) the subset of i symbols occurring in ωi/n(k)

Y(ωi/n(k)) = {aj ∈ An : aj ∈ ωi/n(k)}

and with Yc(ωi/n(k)) the complementary set of the remaining (n− i) symbols

Yc(ωi/n(k)) = An −Y(ωi/n(k)).

An analogous definition applies to the symbol set Y(ω
′
i/n(k)) and the complementary symbol

set Yc(ω
′
i/n(k)) of an elementary outcome ω

′
i/n(k). Obviously both Y and Yc are subsets of a

σ-algebra B on An of subsets of An.

Theorem 1. The probability of the events S ′i/n(k) and Si/n(k) as a function of elementary outcomes
of the compound experiment and their symbol sets and complementary symbol sets, are given by

Pk
n [S

′
i/n(k)] = ∑

ωi−1/n(k−1)
P[ωi−1/n(k− 1)]P[Yc(ωi−1/n(k− 1))] (9)

Pk
n [Si/n(k)] =

k

∑
j=i

∑
ω
′
i/n(j)

P[ω
′
i/n(j)]

(
P[Y(ω

′
i/n(j))]

)k−j. (10)

Proof. For every sequence ωi−1/n(k− 1), the cylinder set

Cn[ωi−1/n(k− 1), Yc(ωi−1/n)] ⊂ S
′
i/n(k)

contains (n− i + 1) FOS ω
′
i/n(k) ∈ S

′
i/n(k), and we get the whole event as the union of the

disjoint cylinder sets

S ′i/n(k) =
⋃

ωi−1/n(k−1)

Cn[ωi−1/n(k− 1), Yc(ωi−1/n)].
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From Equation (8), the probability of the cylinder set is given by

Pk−1
n [Cn(ωi−1/n(k− 1), Yc(ωi−1/n))] = P[ωi−1/n(k− 1)]P[Yc(ωi−1/n)]

and, hence, Equation (9) follows from the σ-additivity property of the probability measure.
For every sequence ω

′
i/n(j) (i ≤ j ≤ k), the cylinder set

Cn[ω
′
i/n(j), Y(ω

′
i/n(j)), Y(ω

′
i/n(j)), . . . , Y(ω

′
i/n(j))︸ ︷︷ ︸

(k− j) times

] ⊂ Si/n(k)

(when j = k the cylinder coincides with ω
′
i/n(k)), contains ik−j sequences ωi/n(k) ∈ Si/n(k)

and the whole event is the union of the disjoint cylinder sets

Si/n(k) =
k⋃

j=i

⋃
ω
′
i/n(j)

Cn[ω
′
i/n(j), Y(ω

′
i/n(j)), Y(ω

′
i/n(j)), . . . , Y(ω

′
i/n(j))︸ ︷︷ ︸

(k− j) times

].

From Equation (8) the probability of the cylinder set is

Pk
n
[
Cn[ω

′
i/n(j), Y(ω

′
i/n(j)), Y(ω

′
i/n(j)), . . . , Y(ω

′
i/n(j))︸ ︷︷ ︸

(k− j) times

]
]
= P[ω

′
i/n(j)]

(
P[Y(ω

′
i/n(j))]

)k−j.

Equation (10) follows from the σ-additivity of the probability measure Pk
n .

Corollary 1. Given i = n (the number of distinct symbols is equal to the total number of symbols
in An) and k ≥ n then

Pk
n [Sn/n(k)] =

k

∑
j=n

Pj
n
[
S ′n/n(j)

]
.

Proof. When i = n the symbol set of FOS ω
′
n/n(j), j ≥ i, becomes

Y(ω
′
n/n(j)) = An

and remembering P[An] = 1, the thesis follows immediately through simple manipulations
of (10), after noting that the measure Pk

n of cylinder sets

Cn[S
′
n/n(j),An,An, . . . ,An︸ ︷︷ ︸

(k− j) times

]

is equal to Pj
n measure of S ′n/n(j).

Dealing with FOS in general and problems such as the average length of sequences
will require considering an infinite number of independent trials or repetitions of the
random sampling with replacement experiment. The probability space (Ωk

n,F k
n , Pk

n) we
have defined above for finite values of k, can be generalized to consider sampling sequences
of infinite length from the setAn, so that the set of all possible outcomes is Ω∞

n , the Cartesian
product of countable many copies of An. The product measure (Theorem 6.3, p. 141, [8])
allows us to define an extended probability space (Ω∞

n ,F∞
n , P∞

n ) where sequences Si/n(k),
for a fixed k, are subsets of Ω∞

n defined as

Si/n(k)×An ×An × · · · ∈ F∞
n
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and the probability measure and its properties remain unchanged (Par. 13.1, [8])

P∞
n
[
Si/n(k)×An ×An × . . .

]
= Pk

n
[
Si/n(k)

]
= ∑

ωi/n(k)
P[ωi/n(k)]

where P[ωi/n(k)] is defined in (6). The same obviously applies to S
′
i/n(k) events.

If we consider only i/n FOS as outcomes of our experiment, We may define an even
more straightforward probability space (Example 2, p. 270, [8]), say (Ω

′
i/n,F ′i/n, P

′
i/n),

where the sample space is the countable set

Ω
′
i/n = {ω′i/n(k), k = i, i + 1, i + 2, . . . }

and the probability of each elementary sample ω
′
i/n(k) is defined as in (6), while for every

event E ∈ F ′i/n it is

P
′
i/n[E] = ∑

ω
′
i/n(k≥i)∈E

P[ω
′
i/n(k)] =

∞

∑
k=i

∑
ω
′
i/n(k)∈E

P[ω
′
i/n(k)].

Hence, the probability of the event S ′i/n(k) is still given by P
′
i/n[S

′
i/n(k)] = Pk

n [S
′
i/n(k)].

Remembering the definition of partition of a sample space (p. 4, [7]), the following
remarks follow immediately from the definitions above.

Remark 6. Given k ≥ n, the collection of events {Si/n(k) i = 1, 2, . . . , n} is a partition of
Ωk

n. Hence
Si/n(k) ∩ Sj/n(k) = ∅ f ori 6= j, k ≥ n

Ωk
n =

n⋃
i=1

Si/n(k).

Remark 7. The collection of events {S ′i/n(k) k = i, i + 1, i + 2, . . . } is a partition of Ω
′
i/n. Hence

S ′i/n(k) ∩ S
′
i/n(m) = ∅ for k 6= m, k ≥ i, m ≥ i

Ω
′
i/n =

∞⋃
k=i

S ′i/n(k).

2.2. Probability Relations

In order to simplify our expressions, let us adopt the following symbols for the
probability of events Si/n(k) and S ′i/n(k), 1 ≤ i ≤ n, k ≥ i

Notation.
Pk

n [Si/n(k)] = φi/n(k)

Pk
n [S

′
i/n(k)] = φ

′
i/n(k).

This notation will be used throughout the paper.
In the following we will derive some relations which are valid under the assumption

of the general probability distribution (4)–(6).
Note that from Remarks 4 and 5 it follows

φ1/n(1) = φ
′
1/n(1) = 1 (11)

φn/n(n) = φ
′
n/n(n) (12)
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φ
′
1/n(k) = 0, k ≥ 2, (13)

while from Remarks 6 and 7
n

∑
i=1

φi/n(k) = 1, k ≥ n (14)

∞

∑
k=i

φ
′
i/n(k) = 1. (15)

Assuming k ≥ n, from (14) and Corollary 1, which can be written using the new
notation

φn/n(k) =
k

∑
j=n

φ
′
n/n(j), (16)

it follows
n−1

∑
i=1

φi/n(k) +
k

∑
j=n

φ
′
n/n(j) = 1. (17)

Since of course ∑n−1
i=1 φi/n(k) → 0 as k → ∞, it is interesting to note that the above

equation is a heuristic proof of ∑∞
k=n φ

′
n/n(k) = 1.

From (14) with k = n, (12) and (15) with i = n, we can write the following equality

n−1

∑
i=1

φi/n(n) =
∞

∑
k=n+1

φ
′
n/n(k). (18)

From here on throughout this paper, we will assume that the the symbols in the set
An are equally probable; that is, with reference to the probability distribution (4)–(6), we
will make the following assumption.

Assumption 1. (Equally probable symbols)

P[ai] =
1
n

, i = 1, 2, . . . , n

Under the above assumption, the probability (6) of any sequence ωn(k) ∈ Ωk
n is

given by

P[ωn(k)] =
1
nk

while for the probability of FOS and related events it holds

φi/n(k) =
#Si/n(k)

nk (19)

φ
′
i/n(k) =

#S ′i/n(k)

nk , (20)

where the symbol “#S” denotes the cardinality of the set S . Hence Equation (12) can be
completed in this case as

φn/n(n) = φ
′
n/n(n) =

n!
nn . (21)

while, since #S1/n(k) = n, when k ≥ 1, it is

φ1/n(k) =
1

nk−1 . (22)

The trivial case i = 1 is completely solved by Equations (11), (13) and (22), so in the
following we shall assume i ≥ 2.

The following lemma follows directly from the definitions.
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Lemma 1. Under Assumption 1, the probability of the symbol set and its complementary (see
Definition 4) of any outcome sequence ωn(k) is independent of the sequence and is given by

P[Y(ωi/n(k))] =
i
n

P[Yc(ωi/n(k))] =
n− i

n

Corollary 2. Under Assumption 1, from Theorem 1 it follows (2 ≤ i ≤ n, k ≥ i)

φ
′
i/n(k) = φi−1/n(k− 1)

(
n− i + 1

n

)
(23)

φi/n(k) =
k

∑
j=i

φ
′
i/n(j)

(
i
n

)k−j

(24)

φ
′
i/n(k) =

k−1

∑
j=i−1

φ
′
i−1/n(j)

(
i− 1

n

)k−j−1(n− i + 1
n

)
(25)

Proof. From Lemma 1, we get

P[Yc(ωi−1/n(k− 1))] =
n− i + 1

n

P[Y(ω
′
i/n(j))] =

i
n

.

By substituting these in (9) and (10) respectively, and remembering the definition (7)
of the probability measure, Equations (23) and (24) follow.

Equation (25) is obtained simply by putting together the previous results.

Note that the last Equation (25) provides us with a method to calculate the sequence
(φ
′
i/n(k), i = 2, 3, . . . , n), starting from (11) and (13), recursively. In particular, for i = 2

we get

φ
′
2/n(k) =

n− 1
nk−1 , k ≥ 2. (26)

3. Combinatorics of FOS

In the previous section, we have obtained the probability of FOS through the general
recursive Formula (25) and through closed-form solutions only in a few special cases.
The aim of this section is the development of a combinatorial theory of FOS in order to
investigate their connections with other topics of combinatorics, such as set partitions and
Stirling numbers of the second kind (Ch. 9, [9]), then to derive the closed-form probability
functions in the next section.

The following simple equation relates the cardinality of the sets Si/n(k) and S ′i/n(k)
defined in Definition 2 and 3

#S ′i+1/n(k + 1) = #Si/n(k)(n− i). (27)

The combinatorics of objects such as sequences ωi/n(k) ∈ Si/n(k) is well known and
treated within the more general problem of counting functions between two finite sets
in enumerative combinatorics (1.9 p. 71, [10]), with applications to set partitions, words,
and random allocation (II.3 p. 106, [11]). The problem of finding #Si/n(k) is the same as
finding the number of words (or sequences) of length k, over an alphabet of cardinality n,
containing i letters (or symbols). As reported in (Equation (5), [12]), the total number nk

of possible sequences can be obtained through the following sum, involving the Stirling
numbers of the second kind S(k, i) (see equation (1.96) p. 75 for details, [10]). (I keep here
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the same symbol with two different spellings, S and S, both to denote the set of events
(sequences) and the Stirling numbers of the second kind. The meaning is always clear
from the context, in any case when S denotes a set, it is always followed by a subscript.
The adoption of the same symbol is justified by the close connection existing between the
cardinality of the set of sequences and the Stirling numbers of the second kind.)

nk =
k

∑
i=1

(
n
i

)
i!S(k, i). (28)

The above equation decomposes the total number of sequences as the sum over i of
the number of such sequences that contain exactly i distinct symbols. The same identity,
obtained through classical algebraic methods, is reported in (Equation (29), [13])). On the
other hand, remembering Remark 6, we can also write

nk =
n

∑
i=1

#Si/n(k), (29)

hence, by comparing (28) and (29), it follows

#Si/n(k) =
(

n
i

)
i!S(k, i). (30)

The same solution is found in II.6 p. 113 [11] under the hypothesis of random allocation
of symbols, which is the same as Assumption 1. From (30) and (27), we can finally also
derive an explicit expression for the cardinality of FOS.

In the rest of this section, we prefer to present an alternative procedure that allows us to
derive the number of FOS sequences directly in order both to find new identities involving
the Stirling numbers of the second kind and to show a new combinatorial meaning of these
numbers, strictly related to the sequence of primes, which is the main focus of this paper.

3.1. Ordered FOS

Remembering Definition 1 and Remark 3, let us introduce a new kind of combinatorial
object.

Definition 5. Let Oi be an ordered subset of i distinct elements from An, we denote with
S ′i/n(k/Oi), k-length ordered First Occurrence Sequences (oFOS) with i/n distinct symbols
on the ordered choice Oi, (1 ≤ i ≤ n, k ≥ i), the events

S ′i/n(k/Oi) = {ω
′
i/n(k/Oi)}

where ω
′
i/n(k/Oi) is an elementary FOS outcome having Oi as i-distinct ordered choice, replicating

the order of the first occurrence of its distinct i symbols.

The following example can help to clarify the above definition.

Example 1. Suppose n = 4, i = 3 and k = 4, with A4 = {1, 2, 3, 4}, O3 = {3, 1, 4}; then the
event S ′3/4(4/O3) is made up of the following elementary outcomes:

S ′3/4(4/O3) = {ω
′
3/4(4/O3)} = {(3, 3, 1, 4), (3, 1, 3, 4), (3, 1, 1, 4)}.

Remark 8. The cardinality of oFOS events depends on parameters i and k only, not on the
particular choice of symbols in the ordered set Oi.

The following theorem establishes the relation between FOS and oFOS.
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Theorem 2. The cardinality of the set of FOS S ′i/n(k) is given by (1 ≤ i ≤ n, k ≥ i):

#S ′i/n(k) =
n!

(n− i)!
g(k, i) (31)

where g(k, i) is the number of k-length oFOS on an ordered subset of i symbols Oi

#S ′i/n(k/Oi) = g(k, i). (32)

Proof. Given the ordered choice of symbols Oi = {aj1 , aj2 , . . . , aji}, any finite subset of
i indices

Mi = {m1, m2, . . . , mi} ⊂ Ik = {1, 2, . . . , k}

subject to the constraints

1 = m1 < m2 < m3 < · · · < mi = k,

defines a finite-dimensional cylinder set on Oi

CMi (B1, B2, . . . , Bk/Oi) = {ωn(k) = (x1, x2, . . . , xk) : xm ∈ Bm, , m = 1, 2, . . . , k}

through the following assignments:

Bm = {aj1} for 1 = m1 ≤ m < m2

Bm = {aj2} for m = m2

Bm = {aj1 , aj2} for m2 < m < m3

Bm = {aj3} for m = m3

Bm = {aj1 , aj2 , aj3} for m3 < m < m4

. . . . . . . . .

Bm = {aji−1} for m = mi−1

Bm = {aj1 , aj2 , . . . , aji−1} for mi−1 < m < mi

Bm = {aji} for m = mi = k.

Therefore, the oFOS event is equal to

S ′i/n(k/Oi) =
⋃
Mi

CMi (B1, B2, . . . , Bk/Oi)

and the FOS event

S ′i/n(k) =
⋃
Oi

S
′
i/n(k/Oi) =

⋃
Oi

⋃
Mi

CMi (B1, B2, . . . , Bk/Oi).

As far as the cardinality of the sets from the above equation we get

#S ′i/n(k) = #{Oi}g(k, i).

Since

#{Oi} = C(n, i)P(i) =
(

n
i

)
i!

with C(n, i) i-combinations of n elements, and P(i) number of permutations of i elements,
Equation (31) follows.
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3.2. Counting Ordered FOS

The problem of finding the number of FOS is thus reduced to that of finding the
numbers g(k, i). When i = 1, k ≥ i we immediately get

g(1, 1) = 1, g(k, 1) = 0, k > 1; (33)

when i = 2, it is
g(k, 2) = 1, k ≥ 2. (34)

Indeed, for i = 2, there is only one oFOS, whatever the value of k ≥ 2. Note that (33)
is a particular case of the general property

g(i, i) = 1, i ≥ 1. (35)

Example 2. i = 2, O2 = {1, 2}

g(2, 2) = 1, the only oFOS is (1, 2)

g(3, 2) = 1, the only oFOS is (1, 1, 2)

. . . . . . . . .

The calculations are more complex when i ≥ 3.

Example 3. i = 3, O3 = {1, 2, 3}, through elementary enumerative combinatorics we find

g(3, 3) = 1, the only oFOS is

(1, 2, 3)

g(4, 3) = 3, the oFOS are

(1, 1, 2, 3), (1, 2, 1, 3), (1, 2, 2, 3).

g(5, 3) = 7, the oFOS are

(1, 1, 1, 2, 3), (1, 1, 2, 1, 3), (1, 1, 2, 2, 3), (1, 2, 1, 1, 3),

(1, 2, 1, 2, 3), (1, 2, 2, 1, 3), (1, 2, 2, 2, 3).

. . .

Example 4. i = 4, O4 = {1, 2, 3, 4}, through elementary enumerative combinatorics we find

g(4, 4) = 1, the only oFOS is

(1, 2, 3, 4)

g(5, 4) = 6, the oFOS are

(1, 1, 2, 3, 4), (1, 2, 1, 3, 4), (1, 2, 3, 1, 4),

(1, 2, 2, 3, 4), (1, 2, 3, 2, 4), (1, 2, 3, 3, 4).

g(6, 4) = 25, the oFOS are

(1, 1, 1, 2, 3, 4), (1, 1, 2, 1, 3, 4), (1, 1, 2, 2, 3, 4), (1, 1, 2, 3, 1, 4), (1, 1, 2, 3, 2, 4),

(1, 1, 2, 3, 3, 4), (1, 2, 1, 1, 3, 4), (1, 2, 1, 2, 3, 4), (1, 2, 2, 1, 3, 4), (1, 2, 2, 2, 3, 4),

(1, 2, 1, 3, 1, 4), (1, 2, 1, 3, 2, 4), (1, 2, 2, 3, 1, 4), (1, 2, 2, 3, 2, 4), (1, 2, 1, 3, 3, 4),

(1, 2, 2, 3, 3, 4), (1, 2, 3, 1, 1, 4), (1, 2, 3, 1, 2, 4), (1, 2, 3, 2, 1, 4), (1, 2, 3, 2, 2, 4),
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(1, 2, 3, 1, 3, 4), (1, 2, 3, 3, 1, 4), (1, 2, 3, 3, 3, 4), (1, 2, 3, 2, 3, 4), (1, 2, 3, 3, 2, 4).

. . .

I will give, in the following, some results about the calculations of g(k, i) numbers,
starting with the next lemma that states a recursive formula.

Lemma 2. The number of k-length oFOS on an ordered subset Oi, as function of the cardinality
on an ordered subset Oi−1, is

g(k, i) =
k−1

∑
j=i−1

g(j, i− 1)(i− 1)k−j−1 , for 2 ≤ i ≤ k, (36)

starting with g(k, 1), k ≥ 1, given by (33).

Proof. Equation (36) follows directly from Definition 5 and Remark 8, considering that
from any j-length oFOS on an ordered set Oi−1 (i − 1 ≤ j ≤ k − 1), one can obtain
(i− 1)k−j−1 k-length oFOS on an ordered set Oi having the i-th symbol in the last position
k of the sequence.

Note that this lemma holds independently from Assumption 1 of equally probable
symbols.

The result reported below is simply the sum of the first k terms of a geometric series
and will be referred to by the next theorem.

Lemma 3. Given q real, |q| < 1, then

k

∑
j=0

qj =
1− qk+1

1− q
, k ≥ 0 integer.

Theorem 3. Let g(k, i) be the number of k-length oFOS on an ordered set of i distinct elements.
Then the following statements hold:

g(k, i) =
i−2

∑
j=1

ai,j
[
(i− 1)k−i+1 − jk−i+1] , i ≥ 3, k ≥ i (37)

with coefficients ai,j defined recursively as

ai+1,j = −
(

j
i− j

)
ai,j , i ≥ 3, j = 1, 2, . . . , (i− 2) (38)

ai+1,i−1 = (i− 1)
i−2

∑
j=1

ai,j (39)

starting with

a3,1 = 1 .

Proof. Let us proceed by induction. Equation (37) holds for i = 3, indeed from Lemma 2
remembering (34) we get

g(k, 3) =
k−1

∑
j=2

2k−j−1 = 2k−3
k−3

∑
j=0

1
2j , k ≥ 3,

and, hence, from Lemma 3
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g(k, 3) = 2k−2 − 1.

Let us now prove that if (37) is true for i, i ≥ 3, then it is true for (i + 1). Substitut-
ing (37) in (36) for g(k, i + 1) we get

g(k, i + 1) =
k−1

∑
s=i

i−2

∑
j=1

ai,j
[
(i− 1)s−i+1 − js−i+1]ik−s−1

from which, after some manipulations, one gets

g(k, i + 1) = ik
i−2

∑
j=1

k−1

∑
s=i

[ ai,j

(i− 1)i

(
i− 1

i

)s+1

−
ai,j

ji

(
j
i

)s+1]
.

The single sum

ik
k−1

∑
s=i

[ ai,j

(i− 1)i

(
i− 1

i

)s+1

−
ai,j

ji

(
j
i

)s+1]
=

= ik
[ ai,j

(i− 1)i

(
i− 1

i

)i+1 k−i−1

∑
s=0

(
i− 1

i

)s

−
ai,j

ji

(
j
i

)i+1 k−i−1

∑
s=0

(
j
i

)s]
after the application of Lemma 3

k−i−1

∑
s=0

(
i− 1

i

)s

=

1−
(

i−1
i

)k−i

1−
(

i−1
i

)

k−i−1

∑
s=0

(
j
i

)s

=

1−
(

j
i

)k−i

1−
(

j
i

)
and some manipulations, can be written as

ik
k−1

∑
s=i

[ ai,j

(i− 1)i

(
i− 1

i

)s+1

−
ai,j

ji

(
j
i

)s+1]
=

= ai,j(i− 1)(ik−i − (i− 1)k−i)− ai,j
( j

i− j
)
(ik−i − jk−i) .

Finally we can write

g(k, i + 1) =
i−2

∑
j=1

[
ai,j(i− 1)(ik−i − (i− 1)k−i)− ai,j

( j
i− j

)
(ik−i − jk−i)

]
g(k, i + 1) = (i− 1)

(
ik−i − (i− 1)k−i) i−2

∑
j=1

ai,j −
i−2

∑
j=1

ai,j
( j

i− j
)
(ik−i − jk−i)

hence

g(k, i + 1) =
i−1

∑
j=1

ai+1,j
(
ik−i − jk−i)

with ai+1,j given by (38), j = 1, 2, . . . , i− 2, ai+1,i−1 given by (39).
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The last theorem gives us a method to calculate each coefficient of the row i + 1 from
the coefficients of the previous row i. The following corollary state an alternative way to
calculate the last term of each row, as function of the other coefficients of the same row.

Corollary 3. It is

ai+1,i−1 = 1−
i−2

∑
j=1

(i− j)ai+1,j , i ≥ 3 . (40)

Proof. The result follows directly from (35) and (37):

i−2

∑
j=1

ai,j(i− j− 1) = 1 , i ≥ 3,

(i− 1)
i−2

∑
j=1

ai,j = 1 +
i−2

∑
j=1

jai,j .

Hence, remembering (38) and (39), after some manipulations, one gets (40).

The first rows of coefficients ai,j are reported in Table 2.

Table 2. Coefficients ai,j, 3 ≤ i ≤ 8.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 3 1

i = 4 − 1
2 2

i = 5 1
6 −2 9

2

i = 6 − 1
24

4
3 − 27

4
32
3

i = 7 1
120 − 2

3
27
4 − 64

3
625
24

i = 8 − 1
720

4
15 − 81

16
256

9 − 3125
48

324
5

Theorem 3 and the subsequent corollary state a method of calculating coefficients
ai,j by rows. The next proposition establishes another way to find them, proceeding
by columns.

Corollary 4. Given the coefficient aj+2,j, head of column j, the successive coefficients in the same
column can be calculated as

ai,j =
(−j)i−j−2

(i− j− 1)!
aj+2,j, j ≥ 1, i ≥ j + 3. (41)

The column head coefficients can be calculated as a function of the previous ones only, through
the following formula

aj+2,j = j
j−1

∑
l=1

(−l)j−l−1

(j− l)!
al+2,l , j ≥ 2, (42)

starting with

a3,1 = 1.

Proof. Equation (41) is derived simply through a recursive application of Equation (38),
from the row index j + 3 to the required row index i.

By substituting (41) into (39), we obtain the second Equation (42).
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The next theorem states a general non-recursive formula to get the coefficients ai,j
directly as a function of the indices i, j.

Theorem 4. The following equation holds for each coefficient ai,j

ai,j = (−1)i−j−2 ji−3

(i− j− 1)!(j− 1)!
, i ≥ 3, j = 1, 2, . . . , (i− 2). (43)

Proof. First of all, let us prove by induction, the formula holds in the case of column head
coefficients. In this case, using the notation of Corollary 4, Equation (43) becomes

al+2,l =
ll−1

(l − 1)!
, l ≥ 1. (44)

The above equation is true for l = 1, since we know it is a3,1 = 1. Assuming it is true
for l = 1, 2, . . . , j, from (42) we get the identity

j
j−1

∑
l=1

(−1)j−l−1l j−2

(j− l)!(l − 1)!
=

jj−1

(j− 1)!
, (45)

where the term on the left-hand side of the equation is the value of aj+2,j calculated
through (42), the one on the right-hand side is the value of the same coefficient given
by (44). Then, the same identity holds for the next head of column coefficient aj+3,j+1;
indeed Equation (42) leads to the result

aj+3,j+1 = (j + 1)
j

∑
l=1

(−1)j−l l j−1

(j− l + 1)!(l − 1)!
=

(j + 1)j

j!
.

The proof of (43) in the case of non-head of column coefficients follows simply
from (41) after assuming (44).

The identity (45) deserves some more attention: it expresses the normalization prop-
erty of the FOS probabilities ∑∞

j=n φ
′
n/n(j) = 1 (see forward Equation (76) and Remark 10).

After some simple manipulations, it can be written as

j

∑
l=0

(−1)l
(

j + 1
l

)
l j = (−1)j(j + 1)j, (46)

that appears to be “complementary” of the well-known identity (see Equation (1.13), [14])

j

∑
l=0

(−1)l
(

j
l

)
l j = (−1)j j!. (47)

3.3. Ordered FOS and Stirling Numbers of the Second Kind

The solution we have found about the number of elementary sequences of the event
S ′i/n(k/Oi), presented in Definition 5 as oFOS of length k with i distinct symbols on the
ordered choice Oi, allows us to show the equivalence of g(k, i) numbers and Stirling
numbers of the second kind. Indeed, from Equation (37) of Theorem 3, it follows

g(k, i) = (i− 1)k−i+1
i−2

∑
j=1

ai,j −
i−2

∑
j=1

ai,j jk−i+1, i ≥ 3, k ≥ i
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and remembering (39) of the same theorem

g(k, i) = ai+1,i−1(i− 1)k−i −
i−2

∑
j=1

ai,j jk−i+1. (48)

Substituting in the above equation ai,j and ai+1,i−1 as given by (43) and (44) of
Theorem 4, we get

g(k, i) =
i−1

∑
j=1

(−1)i−j−1 jk−2

(i− j− 1)!(j− 1)!
.

Since
1

(i− j− 1)!(j− 1)!
=

(
i− 1

j

)
j

(i− 1)!

we finally arrive at

g(k, i) =
(−1)i−1

(i− 1)!

i−1

∑
j=0

(−1)j
(

i− 1
j

)
jk−1, i ≥ 3, k ≥ i. (49)

The right-hand side of the previous equation is the explicit formula for the Stirling
number of the second kind S(k− 1, i− 1) (see Equation (9.21), [9]). The equivalence can be
extended to values i = 1 and i = 2, since from Equation (34) for i = 2 it follows

S(k− 1, 1) = 1, k ≥ 2

and for i = 1 from (33)
S(k− 1, 0) = 0, k > 1,

S(0, 0) = 1.

Note that the last equation solves the “bit tricky” case of the Stirling number S(0, 0)
(p. 258, [15]), by calculating it instead of assuming it “by convention” (this assumption
is common to all the treatments of the subject, see for example (p. 73, [10])). We have
thus proved

Theorem 5. Given g(k, i), the cardinality of the oFOS set S ′i/n(k/Oi) defined in Definition 5,
and the Stirling number of the second kind S(k− 1, i− 1), the following equation holds true:

g(k, i) = S(k− 1, i− 1), i ≥ 1 ,k ≥ i. (50)

Remark 9. Due to the equivalence established by the previous theorem, Equation (36) of Lemma 2
can be rewritten as

S(k, i) =
k

∑
j=i

S(j− 1, i− 1)ik−j,

that can be obtained through the repeated application of the recursive equation of the Stirling
numbers of the second kind (see Equation (9.1), [9])

S(k + 1, n) = nS(k, n) + S(k, n− 1). (51)

When k = i we know it is (see Equation (35)) g(i, i) = 1 and, hence, from the general
Formula (49) we get

g(i, i) =
(−1)i−1

(i− 1)!

i−1

∑
j=0

(−1)j ≤
(

i− 1
j

)
ji−1 = 1

or
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i−1

∑
j=0

(−1)j
(

i− 1
j

)
ji−1 = (−1)i−1(i− 1)!

which is the identity (47) mentioned above. This identity is thus closely related to the
Stirling numbers and to the general property g(i, i) = S(i − 1, i − 1) = 1, i ≥ 1 (see
Equation (4) and [13] and references therein). Note that by substituting (31) with g(k +
1, i + 1) given by (50), into Equation (27) we obtain for #Si/n(k) the same Equation (30).

We know Stirling numbers of the second kind have a combinatorial meaning directly
related to the problem of partitioning a set into a fixed number of subsets, S(n, m), counting
the number of ways a set of n elements can be partitioned into m nonempty disjoint subsets
(Ch. 9, p. 113, [9], Ch. 1.9, p. 73, [10], and see also [15] for a complete combinatorial
treatment of the Stirling numbers). The analysis performed in this section highlights
an alternative combinatorial interpretation of these numbers, together with the close
connection of oFOS with set partitions, that will be shown to be strictly related to the
sequence of primes in the next section.

4. First Occurrence Sequences, Set Partitions, and the Sequence of Primes

In this section, we will delve into FOS sequences as a model of the distribution of
prime numbers. The simple oFOS sequences can already act as a first-level model of the
prime number distribution, as we will see in the next subsection, while the complete model
based on FOS will be developed at the end of this section. In order to develop the tools to
build this model, we continue in the following to deepen the combinatorial implications of
Theorem 5, exploring some interesting identities involving Stirling numbers of the second
kind and harmonic numbers, derived through the probabilities of FOS.

4.1. Ordered FOS and the Prime Number Theorem

The equivalence (50) stated by Theorem 5 and the combinatorial meaning associated
with S and g numbers suggest the following analogy with the distribution of primes. Given
any integer set of the type

Ik+1 = {1, 2, 3, 4, . . . , k, k + 1}, k ≥ 2, (k + 1) prime,

there exists a sequence of (n + 1) successive primes

On+1 = {p1 = 2, p2 = 3, . . . , pn, pn+1 = k + 1} ⊂ Ik+1

such that the prime-counting function π(k) = n. The set On+1 can be viewed as an ordered
choice of n + 1 integers and the set Ik+1 as an oFOS over On+1 (remember Definition 5).
Note that the integers i between two consecutive primes, pj < i < pj+1, are multiples of
the primes from p1 to pj, hence they can be considered as repetitions of these symbols,
thus confirming the oFOS schema. In the light of this analogy, some classical results of the
theory of random partitions of finite sets can be reinterpreted as a general form of the Prime
Number Theorem, which holds for all oFOS-like sequences.

The oFOS model of the distribution of prime numbers can be defined as follows. Let us
consider the number of primes less than or equal to k, represented by the prime-counting
function π(k), as a random variable πo(k) with probability mass function defined by

Pk[πo(k) = n] =
g(k + 1, n + 1)

∑k
j=0 g(k + 1, j + 1)

, n = 1, 2, . . . , k, (52)

and, hence, from Theorem 5

Pk[πo(k) = n] =
S(k, n)

∑k
j=0 S(k, j)

, n = 1, 2, . . . , k. (53)
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Equation (53) defines a uniform probability distribution on the class Πk of partitions
of a set of k elements, obtained by assigning the same probability B−1

k to each partition
σ ∈ Πk,

Pk(σ) =
1
Bk

,

where the total number of partitions Bk is equal to the k-th Bell number defined as (9.4,
p. 133, [9])

Bk =
k

∑
j=1

S(k, j). (54)

The combinatorics of Πk is studied in [16,17] (see also Ch. IX, p. 692 [11], for a brief
summary of these results) in connection with the asymptotic (k→ ∞) distribution of the
probability measure Pk (Harper points out the methods used are based on the combinatorial
implications of probability theory and ascribed to W. Feller (see Ch. X, p. 256 [18]), and V.
Goncharov (see [16] and references therein), the first applications in this field). From this
approach, it follows that the random variable πo(k) with uniform probability (53), defined
as a model of π(k), has mathematical expectation and variance asymptotically equal to
(see Ch. 4, pp. 114–115 [19])

E[πo(k)] =
k
r
(1 + o(1))

Var[πo(k)] =
k
r2 (1 + o(1)),

where r = W(k), the unique positive solution of rer = k, W(x) being the Lambert func-
tion [20] defined in the domain x ≥ −1/e. Since for the function W(k), we know it is
r ∼ ln k as k→ ∞, the above equations say the average and variance of the random variable
πo(k) are asymptotic to

E[πo(k)] ∼
k

ln k
(55)

Var[πo(k)] ∼
k

ln2 k
. (56)

Equation (55), and the related variance (56), represents the form assumed by PNT
when considering oFOS-like sequences with uniform probability distribution of set par-
titions. This is not the only admissible distribution. About this problem and the general
conditions in order that a uniform distribution is obtained, through random allocation
algorithms (or random urn models), see [21] and the references therein. The following
result (see Theorem 1.1, p. 115, [19]) completes the application of the methods derived
from the theory of random partitions of sets, to the oFOS model of the prime number
distribution. The probability distribution of the normalized random variable

ηk =
πo(k)− E[πo(k)]
(Var[πo(k)])1/2

converges to that of the standard normal distribution as k→ ∞, that is:

lim
k→∞

P{ηk < x} = 1√
2π

∫ x

−∞
e−u2/2du.
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4.2. FOS Probabilities and Some Combinatorial Identities Involving Stirling Numbers

Let us collect, in this subsection, some formulas about the probability function φ
′
i/n(k),

which will be referred to in the rest of this paper. Under Assumption 1, from Equation (31)
of Theorem 2 the probability of FOS is given by

φ
′
i/n(k) =

n!
(n− i)!nk g(k, i), 1 ≤ i ≤ n, k ≥ i. (57)

By substituting g(k, i) with Equations (37) and (39) of Theorem 3, we get the following
expressions for 3 ≤ i ≤ n, k ≥ i

φ
′
i/n(k) =

n!
(n− i)!nk

i−2

∑
j=1

ai,j
[
(i− 1)k−i+1 − jk−i+1] (58)

φ
′
i/n(k) =

n!
(n− i)!nk

[
(i− 1)k−iai+1,i−1 −

i−2

∑
j=1

ai,j jk−i+1]. (59)

Finally, from (43) of Theorem 4 the explicit expression for φ
′
i/n(k) follows

φ
′
i/n(k) =

n!
(n− i)!nk

i−1

∑
j=1

(−1)i−j−1 jk−2

(i− j− 1)!(j− 1)!
. (60)

If we set l = i− j− 1, the above equation can be written

φ
′
i/n(k) =

n!
(n− i)!nk

i−2

∑
l=0

(−1)l (i− l − 1)k−2

(i− l − 2)!l!
. (61)

When i = n (n ≥ 2, k ≥ n), Equation (60) becomes (it is easy to check this equation,
and (64) below, which also applies to the case n = 2)

φ
′
n/n(k) =

n!
nk

n−1

∑
j=1

(−1)n−j−1 jk−2

(n− j− 1)!(n− 1)!
, (62)

which, observing that

n!
nk

jk−2

(n− j− 1)!(n− 1)!
=

(
n− 1

j

)(
j
n

)k−1

,

can be written as

φ
′
n/n(k) =

n−1

∑
j=1

(−1)n−j−1
(

n− 1
j

)(
j
n

)k−1

. (63)

Equation (61) when i = n (n ≥ 2, k ≥ n), becomes

φ
′
n/n(k) =

n!
nk

n−2

∑
l=0

(−1)l (n− l − 1)k−2

(n− l − 2)!l!
, (64)

which, observing that

n!
nk

(n− l − 1)k−2

(n− l − 2)!l!
=

(
n− 1

l

)(
1− l + 1

n

)k−1
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can be written as

φ
′
n/n(k) =

n−2

∑
l=0

(−1)l
(

n− 1
l

)(
1− l + 1

n

)k−1

. (65)

Let us now derive the sequence probabilities expressed through the Stirling numbers
of the second kind. Remembering the equivalence (50), Equation (57) can be written as

φ
′
i/n(k) =

n!
(n− i)!nk S(k− 1, i− 1), 1 ≤ i ≤ n, k ≥ i. (66)

From this equation and (27), always under the hypothesis of equally probable symbols,
hence (19), (20), it is easy to get

φi/n(k) =
n!

(n− i)!nk S(k, i), 1 ≤ i ≤ n, k ≥ i. (67)

The above equations, combined with the general properties of the probability func-
tions (11)–(18), give rise to a series of combinatorial identities involving the Stirling num-
bers of the second kind. The following corollary reports the less trivial ones.

Corollary 5. The following identities hold true.
From (14) it follows

n

∑
i=1

S(k, i)
(n− i)!

=
nk

n!
, k ≥ n. (68)

From (15) it follows

∞

∑
k=i

S(k− 1, i− 1)
nk =

(n− i)!
n!

, 1 ≤ i ≤ n. (69)

From (16) it follows
S(k, n)

nk =
k

∑
j=n

S(j− 1, n− 1)
nj . (70)

From (17) it follows

n−1

∑
i=1

S(k, i)
(n− i)!

+ nk
k

∑
j=n

S(j− 1, n− 1)
nj =

nk

n!
. (71)

From (18) it follows

∞

∑
k=n+1

S(k− 1, i− 1)
nk =

1
nn

n−1

∑
i=1

S(n, i)
(n− i)!

. (72)

Note that identity (68) is the same as (28) and identities (68), (71) imply (70).
I report in the following two more results about the sum of probabilities φ

′
n/n(k), that

clarify the probabilistic meaning of identity (46) and the close connection between these
probabilities and the Stirling numbers of the second kind.

Corollary 6. The following equations hold true

k

∑
s=n

φ
′
n/n(s) = 1−

n−2

∑
j=0

(−1)j
(

n
j + 1

)(
1− j + 1

n

)k

, (73)
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k

∑
s=n

φ
′
n/n(s) =

n!
nk S(k, n). (74)

Proof of Equation (73). From (65)

k

∑
s=n

φ
′
n/n(s) =

n−2

∑
j=0

(−1)j ≤
(

n− 1
n− j− 1

)(
n

n− j− 1

) k

∑
s=n

(
n− j− 1

n

)s

.

By applying Lemma 3

(
n

n− j− 1

) k

∑
s=n

(
n− j− 1

n

)s

=

(
1− j+1

n

)n−1

−
(

1− j+1
n

)k

(
j+1

n

)
hence

k

∑
s=n

φ
′
n/n(s) =

n−2

∑
j=0

(−1)j
(

n
j + 1

)[(
1− j + 1

n

)n−1

−
(

1− j + 1
n

)k
]

. (75)

Since we know that ∑∞
s=n φ

′
n/n(s) = 1 and(
1− j + 1

n

)k

→ 0 as k→ ∞

it is
n−2

∑
j=0

(−1)j
(

n
j + 1

)(
1− j + 1

n

)n−1

= 1. (76)

Finally from (75) and (76), Equation (73) follows.

Proof of Equation (74). Remembering (66) we can write

k

∑
j=n

φ
′
n/n(j) = n!

k

∑
j=n

S(j− 1, n− 1)
nj

and, hence, through identity (70), we simply get (74).

Remark 10. Note that Equation (76) above is the same as (45), (46). Indeed, after some manipula-
tions, it can be written as

(−1)n−1

nn−1

n−1

∑
j=0

(−1)j
(

n
j

)
jn−1 = 1.

This identity thus has a probabilistic meaning connected with the normalization property of
FOS probabilities.

Remark 11. We know (Equation (26.8.42), [22]) the Stirling number of the second kind, for fixed
value of n, as k→ ∞ is asymptotic to

S(k, n) ∼ nk

n!
.

This asymptotic behavior follows very simply from Equation (74) due to the connection
established between FOS probabilities and S(k, n).
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4.3. Bounds of g(k, i) Numbers and Stirling Numbers of the Second Kind

We speak of g(k, i) numbers since the results are directly related to their formulation
through the coefficients ai,j, as stated by Theorem 3. The results are obviously applicable to
the Stirling numbers of the second kind.

Definition 6. Let us define for i ≥ 3, 1 ≤ j ≤ (i− 2)

σi,j =
j

∑
s=1

(−1)j−s|ai,s| = |ai,j| − |ai,j−1|+ · · · ± |ai,1|

and

τi,j(k) =
j

∑
s=1

(−1)j−s|ai,s|sk−i+1 = |ai,j|jk−i+1 − |ai,j−1|(j− 1)k−i+1 + · · · ± |ai,1|,

where the sign of |ai,1| is negative if j is an even number, positive if it is an odd number.

Lemma 4. The following statements hold true:

lim
i→∞

ai+1,i−1

ai,i−2
= e ; (77)

lim
i→∞

σi,i−3

ai,i−2
= 1 ; (78)

ai,i−2 > σi,i−3, i ≥ 5 ; (79)

σi,i−3 > 0, i ≥ 5 ; (80)

σi,i−2 > ai,i−2 ; (81)

|ai,i−3| > σi,i−4, i ≥ 5 . (82)

Proof. Equation (77) follows simply from the values of the coefficients given by (44).
Equation (39) of Theorem 3 gives

ai+1,i−1

(i− 1)ai,i−2
= 1− σi,i−3

ai,i−2

from that and (77), Equation (78) follows.
Considering Definition 6, from (39) we can write

ai,i−2 − σi,i−3 =
ai+1,i−1

(i− 1)

with ai+1,i−1 > 0, hence (79).
From Equation (44) it is easy to prove that

0 <
ai+1,i−1

(i− 1)
< ai,i−2 for i ≥ 4

hence the previous equation also implies (80).
Since

σi,i−2 = ai,i−2 − σi,i−3 and

σi,i−3 = |ai,i−3| − σi,i−4

(80) implies both (81) and (82).
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Lemma 5. Given σi,j and τi,j(k) of Definition 6, it is

τi,j(k) > σi,j.

Proof. Suppose j even, then we can write

|ai,s|sk−i+1 − |ai,s−1|(s− 1)k−i+1 > |ai,s| − |ai,s−1|, s=2,4,. . . ,j.

By adding the pairs of the previous inequality, we obtain the thesis.
In the case when j is odd, we can repeat the above procedure considering the pairs for
s = 3, 5, 7, . . . , j, then adding up these pairs and the last term |ai,1| taken with a positive
sign.

Theorem 6. Given the numbers g(k, i), i ≥ 3, k ≥ i, the following bounds hold

ai+1,i−1(i− 1)k−i − ai,i−2(i− 2)k−i+1 < g(k, i) < ai+1,i−1(i− 1)k−i (83)

and, for i fixed

lim
k→∞

g(k, i)
ai+1,i−1(i− 1)k−i = 1 (84)

Proof. From the Definition 6 we can write in general

σi,j = |ai,j| − σi,j−1

τi,j(k) = |ai,j|jk−i+1 − τi,j−1(k),

and, remembering (48),

g(k, i) = ai+1,i−1(i− 1)k−i − τi,i−2(k)

g(k, i) = ai+1,i−1(i− 1)k−i − ai,i−2(i− 2)k−i+1 + τi,i−3(k).

The thesis (83) follows from Lemma 5 and (80), (81) of Lemma 4.
The inequalities (83) can be rewritten as

1− (i− 2)
ai,i−2

ai+1,i−1

(i− 1)i

(i− 2)i
(i− 2)k

(i− 1)k <
g(k, i)

ai+1,i−1(i− 1)k−i < 1,

from which Equation (84) follows.

Remark 12. The closed-form (44) of coefficients allows us to rewrite (83) and (84) as

(i− 1)k−1

(i− 1)!
− (i− 2)k−1

(i− 2)!
< g(k, i) <

(i− 1)k−1

(i− 1)!
, (85)

g(k, i) ∼ (i− 1)k−1

(i− 1)!
. (86)

When speaking of Stirling numbers of the second kind, the previous bounds become

ik

i!
− (i− 1)k

(i− 1)!
< S(k, i) <

ik

i!
. (87)

Note that (87) gives an alternative proof of the asymptotic behavior of S(k, i) for fixed i (see
Remark 11).
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Remark 13. Assuming the left-hand side of the above inequality is positive both for S(k, i) and
S(k− 1, i− 1), that is

a− ln (i− a)
ln
(
1− 1

i−a
) < k, a = 1, 2

we get the bounds of the ratio

(i− 1)k−1

ik−1 − (i− 1)
(i− 2)k−1

ik−1 <
S(k− 1, i− 1)

S(k, i)
<

(i− 1)k−1

ik−1 − (i− 1)k ,

that for i� 1 becomes

e−
k
i
(
1− ie−

k
i
)
<

S(k− 1, i− 1)
S(k, i)

< e−
k
i

1(
1− ie−

k
i
) , (88)

under condition

i ln i < k.

4.4. FOS Average Length and Harmonic Numbers

As anticipated in the Introduction, calculating the average length of FOS sequences,
that is, of elementary events ω

′
i/n(k), k ≥ i of the countable space Ω

′
i/n, is a simple task

leading to the result (2) in the case i = n. This calculation is based on the following
well-known results, in particular on Lemma 7, expressing the average number of trials one
has to wait before obtaining the first success in a sequence of independent Bernoulli trials
with p probability of success.

Lemma 6. Given q real, |q| < 1, then

∞

∑
k=1

kqk =
q

(1− q)2 .

Lemma 7. Given p real, 0 < p ≤ 1, then

∞

∑
k=1

kp(1− p)k−1 =
1
p

.

Therefore, if we denote, in general, the quantity we are looking for with L
′
i/n, we can

establish the following recursive relation

L
′
i/n = L

′
i−1/n +

n
n− i + 1

, i = 1, 2, . . . , n (89)

starting with

L
′
0/n = 0.

It is easy to see the above equation leads to

L
′
i/n = n(Hn − Hn−i), i = 1, 2, . . . , n, (90)

where Hn is the n-th harmonic number

Hn = 1 +
1
2
+

1
3
+ · · ·+ 1

n
and
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H0 = 0.

If we consider the set of discrete random variables qi/n with probability mass function

φ
′
i/n(k) = Prob{qi/n = k}, 1 ≤ i ≤ n, k ≥ i,

then the quantity L
′
i/n can be also obtained as the mathematical expectation of the

corresponding random variable qi/n, hence through

L
′
i/n = E[qi/n] =

∞

∑
k=i

kφ
′
i/n(k). (91)

From (91) and (90), remembering (66), we get the following relation between harmonic
numbers and Stirling numbers of the second kind.

Corollary 7.

Hn − Hn−i =
(n− 1)!
(n− i)!

∞

∑
k=i

k
nk S(k− 1, i− 1), 1 ≤ i ≤ n. (92)

Other combinatorial identities involving harmonic numbers and finite term series can
be derived from the direct calculation of (91) as established by the following proposition.
(These identities appear to be new, such as the method of deriving them. Of course, it is
not simple to establish the novelty of an identity involving harmonic numbers because of
the historical interest of this subject and the great development of theory and applications.
For an extensive collection of these identities, see [23–25] and the references therein.)

Theorem 7. Assuming n and i positive integers, n ≥ 3 and 3 ≤ i ≤ n, the following identity
holds true

Hn − Hn−i =

=
n!

(n− i)!ni

[
ai+1,i−1

(n− i + 1)2

[
ni− (i− 1)2]− i−2

∑
j=1

ai,j

(
j

n− j

)(
ni + j− ij

n− j

)]
(93)

where ai,j are the coefficients defined by Theorem 3.

Proof. By substituting in (91) the term φ
′
i/n(k) as given by (58), we get

L
′
i/n =

∞

∑
k=i

n!
(n− i)!nk k

i−2

∑
j=1

ai,j
[
(i− 1)k−i+1 − jk−i+1]

from which it follows

L
′
i/n =

n!
(n− i)!ni−1

i−2

∑
j=1

ai,j

[
∞

∑
k=i

k
(

i− 1
n

)k−i+1

−
∞

∑
k=i

k
(

j
n

)k−i+1
]

. (94)

We can write

∞

∑
k=i

k
(

i− 1
n

)k−i+1

=
∞

∑
k=1

k
(

i− 1
n

)k

+
(i− 1)2

n

∞

∑
k=0

(
i− 1

n

)k

and remembering Lemma 6 and the sum of geometric series

∞

∑
k=i

k
(

i− 1
n

)k−i+1

=
(i− 1)

(n− i + 1)2 [ni− (i− 1)2].
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In a similar way, the second term becomes

∞

∑
k=i

k
(

j
n

)k−i+1

=

(
j

n− j

)(
j + ni− ij

n− j

)
.

Inserting the previous formulas into (94), we get

L
′
i/n =

n!
(n− i)!ni−1

i−2

∑
j=1

ai,j

[
(i− 1)

(n− i + 1)2 [ni− (i− 1)2]−
(

j
n− j

)(
j + ni− ij

n− j

)]

from which and Equations (39), (90), and (93) follow.

The following corollary is a simple application of the formulas of Theorem 4 to that of
the previous theorem.

Corollary 8. For n and i positive integers, n ≥ 3 and 3 ≤ i ≤ n, the following identity holds true

Hn − Hn−i =

=
n!

(n− i)!ni

[
(i− 1)i−2

(i− 2)!

[
ni− (i− 1)2]
(n− i + 1)2 −

i−2

∑
j=1

(−1)i−j−2 ji−2

(i− j− 1)!(j− 1)!
(ni + j− ij)
(n− j)2

]
.

When i = n we get for the n-th harmonic number

Hn =
n!
nn

[
(n− 1)n−2

(n− 2)!
(2n− 1)−

n−2

∑
j=1

(−1)n−j−2 jn−2

(n− j− 1)!(j− 1)!
(n2 + j− nj)

(n− j)2

]
.

4.5. FOS as a Model of the Distribution of Primes

This subsection aims to analyze analogies and limits of FOS with respect to the true
sequence of prime numbers. There is a correspondence between prime numbers and FOS
as stated by the following remark.

Remark 14. Given any prime pn, n ≥ 2, there exists an event FOS

S ′n/n(pn) ∈ Ω
′
n/n =

∞⋃
k=n

S ′n/n(k)

(see Remark 7), and the whole sequence of prime numbers corresponds to the element

(S ′n/n(pn), n = 2, 3, . . . ) ∈ U

of the product set

U =
∞

∏
n=2

Ω
′
n/n,

we can define as FOS universe.

The model based on FOS takes then into consideration the set Ω
′
n/n as the combinato-

rial counterpart of the n-th prime pn, considered as a discrete random variable assuming
integer values between n and ∞. The statistics of this random variable are then used to
define a “counting variable”, which is the FOS model equivalent of the prime-counting
function. In order to avoid any confusion when dealing with our model, we keep the
symbol pn to denote the “true” value of the n-th prime, and adopt the symbol qn for the
random variable modeling it. The basic assumption of the model is the following.
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Definition 7. The discrete random variable qn has probability mass function

φ
′
n/n(k) = Prob{qn = k}, k = n, n + 1, n + 2, . . . ,

with φ
′
n/n(k), defined in Equation (20).

The results of the model are referred to the sequence of random variables {qn} and
confronted with the analytical or numerical results we know about the true prime sequence
{pn}. These results, some of which are reported in two sample tables, justify a posteriori the
model’s adoption and the not completely rigorous approach we follow in deriving it.

From (66) and (90) respectively we get the probability

φ
′
n/n(k) =

n!
nk S(k− 1, n− 1), k ≥ n

and the mean value of qn

E[qn] = L
′
n/n = nHn ∼ n ln n. (95)

Hence, given k ≥ n, k integer, the probability distribution function of qn

Prob{qn ≤ k} = Φn(k) (96)

with

Φn(k) =
k

∑
j=n

φ
′
n/n(j) = n!

k

∑
j=n

S(j− 1, n− 1)
nj , (97)

is simply expressed through the number of ways a set of k elements can be partitioned into
n disjoint nonempty subsets

Φn(k) =
(n− 1)!

nk−1 S(k, n), (98)

where the last equation follows from (74).
Let us define the discrete random variable ξk whose probability distribution is induced

by qn through the following

Definition 8.
Prob{ξk ≥ n} = Prob{qn ≤ k} = Φn(k) (99)

and obviously
Prob{ξk < n} = 1−Φn(k). (100)

In our combinatorial model, ξk is associated with the value π(k) of the prime-counting
function, considered as a random variable assuming integer values between 1 and k.

Theorem 8. The discrete random variable ξk with probability distribution (99) assumes values
between 1 and k, has probability mass function

Prob{ξk = n} = Φn(k)−Φn+1(k), n = 1, 2, . . . , k, (101)

and mathematical expectation

E[ξk] =
k

∑
n=1

Φn(k). (102)

Proof. From (98), due to the properties of S(k, n) numbers, we get for n = 1

Prob{ξk ≥ 1} = Φ1(k) = 1
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Prob{ξk < 1} = 1−Φ1(k) = 0;

for n = k

Prob{ξk ≥ k} = Φk(k) =
(k− 1)!

kk−1

Prob{ξk < 1} = 1−Φk(k) = 1− (k− 1)!
kk−1 ;

for n > k

Prob{ξk ≥ n} = Φn(k) = 0

Prob{ξk < n} = 1−Φn(k) = 1.

This proves the first statement.
Given n and m positive integers with n < m, from (100) we get

Prob{n ≤ ξk < m} = Φn(k)−Φm(k). (103)

From this relation, assuming m = n + 1 the probability mass function (101) follows.
The mathematical expectation of ξk is given by

E[ξk] =
k

∑
n=1

n(Φn(k)−Φn+1(k)) =
k

∑
n=1

Φn(k)− kΦk+1(k),

that is the same as Equation (102) since Φk+1(k) = 0.

Remark 15. The mean value of the discrete random variable ξk is equal to

E[ξk] =
k

∑
n=1

Prob{qn ≤ k} =
k

∑
n=1

k

∑
j=n

φ
′
n/n(j).

The previous theorem suggests to assume E[ξk] as an estimate π̂(k) derived from
the combinatorial model of the prime-counting function π(k), that is, remembering the
equality (98)

π̂(k) = E[ξk] =
k

∑
n=1

(n− 1)!
nk−1 S(k, n). (104)

An alternative expression for π̂(k) can be derived from Remark 15 and Equation (73)

π̂(k) = k−
k−2

∑
j=0

(−1)j
k

∑
n=j+2

(
n

j + 1

)(
1− j + 1

n

)k

.

To check the quality of the function π̂(k) as a numerical estimate of π(k), Equation (104)
looks more suitable since it can be written in a recursive form. Indeed, if we put

π̂(k) =
k

∑
n=1

w(k, n)

with

w(k, n) =
(n− 1)!

nk−1 S(k, n),

from the recursive equation of the Stirling numbers of the second kind (51), we get the
following recurrence for the terms w(k, n)
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w(k + 1, n) = w(k, n) +
(

n− 1
n

)k

w(k, n− 1),k ≥ 1, 1 ≤ n ≤ (k + 1)

initialized as

w(k, 1) = 1, k ≥ 1

w(1, n) = 0, n > 1.

Table 3 reports a series of values of the recursive estimate π̂(k), compared with the
prime-counting function π(k) and the logarithmic integral function li(k). The last column
of the table reports the values obtained through continuous approximation formulas I will
expose hereafter.

Table 3. π̂(k) estimate through recursive and continuous formulas.

k π(k) li(k) π̂(k) = ∑k
n=1 w(k, n) π̂(k) =

∫ k
1 e−ane−

k
n dn

100 25 30.1261 26.9462 23.1623
200 46 50.1921 47.0309 41.3716
300 62 68.3336 65.50659 58.2265
400 78 85.4178 83.06021 74.2987
500 95 101.7939 99.98131 89.8312
600 109 117.6465 116.4275 104.9572
700 125 133.0889 132.4971 119.7596
800 139 148.1967 148.2565 134.2952
900 154 163.0236 163.7537 148.6046
1000 168 177.6097 179.0246 162.7185
2000 303 314.8092 323.4725 296.6907
3000 430 442.7592 458.9438 422.8337
4000 550 565.3645 589.1406 544.3509
5000 669 684.2808 715.6488 662.6328
6000 783 800.4141 778.4514
7000 900 914.3308 892.2944
8000 1007 1026.416 1004.4960
9000 1117 1136.949 1115.2989

10,000 1229 1246.137 1224.8866

In order to analyze the asymptotic behavior of π̂(k), we look for a continuous ap-
proximation of the probability function Φn(k). After promoting k and n to be continuous
variables, which is a justifiable assumption for k � 1 and considering the relation (98)
between Φ and S, Equation (97) is written as

Φn(k) =
∫ k

n

(n− 1
n
)u−1Φn−1(u− 1)du.

Taking the derivative of the above equation, we get the differential equation for Φ

∂Φn(k)
∂k

=
(n− 1

n
)k−1Φn−1(k− 1) (105)

that can be written as

1
Φn(k)

∂Φn(k)
∂k

=
S(k− 1, n− 1)

S(k, n)
.
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We set
S(k− 1, n− 1)

S(k, n)
=

λn(k)
n

e−
k
n (106)

where λn(k) is a parameter function depending on n and k. Then the general solution of
the differential equation is

Φn(k) = Ce
1
n
∫

λn(k)e−
k
n dk (107)

and the value of the constant is C is determined by the asymptotic condition Φn(k→ ∞) = 1.

Remark 16. It is interesting to note the method, based on probabilistic arguments, that led to
Equation (107), provides an alternative approach to the problem of exploring the asymptotics
(k→ ∞) of Stirling numbers of the second kind. Since this topic is outside the scope of this work, I
cite only the following example. If we choose

λn(k) = (n + 1− k
n
)

then it is

Φn(k) = e(
k
n−n)e−

k
n

and from (98), we get the well known asymptotic approximation of S(k, n) (see [26] and references
therein)

S(k, n) ≈ nk

n!
e(

k
n−n)e−

k
n ,

which is valid in the region n < k
ln k , coinciding asymptotically with the region of validity of (88),

n ln n < k.

As a continuous approximation of the probability function Φn(k) we are looking for,
let us choose a parameter function depending on n only through the following simple
relation

λn(k) = λn = an, a > 0 constant ,

where the constant a varies between 1 and e as suggested by the boundary conditions of
the Stirling number ratio. Indeed for n = k the ratio (106) is

S(k− 1, k− 1)
S(k, k)

= 1,

that implies λn = en, while for k� n, we know it is

S(k− 1, n− 1)
S(k, n)

∼ e−
k
n ,

hence λn = n.
Therefore (107) becomes

Φn(k) = e−ane−
k
n (108)

and from (102) and (104), we get the continuous approximation of π̂(k)

π̂(k) =
∫ k

1
Φn(k)dn =

∫ k

1
e−ane−

k
n dn. (109)
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The last column of Table 3 reports some examples from this approximation formula
with a = (1+ e)/2. Table 4 reports the values calculated through (109) with a = e compared
with the values of π(k) up to k = 1027 (data with π(k) values are taken from N. J. A. Sloane,
‘The On-Line Encyclopedia of Integer Sequences. Sequence A006880’, http://oeis.org
(accessed on 31 March 2021); Wikipedia contributors, ‘Prime-counting function’, Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/w/index.php?title=Prime-counting_
function&oldid=987382574 (accessed on 31 March 2021)).

Table 4. π̂(k) estimate through continuous approximation.

k π(k) π̂(k) =
∫ k

1 e−ane−
k
n dn π̂(k)/π(k)

105 9592 9428.02 0.98291
106 78,498 78,480.93 0.99978
107 664,579 671,099.45 1.00981
108 5,761,455 5,855,689.76 1.01636
109 50,847,534 51,900,660.41 1.02071
1010 455,052,511 465,792,892.49 1.02360
1011 4,118,054,813 4,223,145,802.17 1.02552
1012 37,607,912,018 38,614,679,105.06 1.02677
1013 346,065,536,839 355,603,668,431.86 1.02756
1014 3,204,941,750,802 3,294,779,143,238.6 1.02803
1015 29,844,570,422,669 30,688,289,307,555 1.02827
1016 279,238,341,033,925 287,153,196,808,146 1.02834
1017 2,623,557,157,654,233 2.69779945552531× 1015 1.02830
1018 24,739,954,287,740,860 2.54367476772712× 1016 1.02816
1019 234,057,667,276,344,607 2.40603623244741× 1017 1.02797
1020 2,220,819,602,560,918,840 2.28238863108907× 1018 1.02772
1021 21,127,269,486,018,731,928 2.17071405049150× 1019 1.02745
1022 201,467,286,689,315,906,290 2.06936330707283× 1020 1.02715
1023 1,925,320,391,606,803,968,923 1.97697565027884× 1021 1.02683
1024 18,435,599,767,349,200,867,866 1.89241852576407× 1022 1.02650
1025 176,846,309,399,143,769,411,680 1.81474179606716× 1023 1.02617
1026 1,699,246,750,872,437,141,327,603 1.74314253336239× 1024 1.02583
1027 16,352,460,426,841,680,446,427,399 1.676937646378480× 1025 1.02550

The following proposition, which is the FOS equivalent of the Prime Number Theorem,
can be stated for the function π̂(k) defined by (109).

Theorem 9. Given ε > 0, however small, it holds

1− ε <
π̂(k)

k
ln k

< 1 + ε,

definitively for k > k0.

Proof. Φn(k), n > 0, k > 0, is a decreasing function with n. Indeed,

∂Φn(k)
∂n

= −aΦn(k)e−
k
n
(
1 +

k
n
)
< 0.

Given n0 and n1 such that 1 < n0 < n1 < k, we can write

π̂(k) =
∫ n0

1
Φn(k)dn +

∫ n1

n0

Φn(k)dn +
∫ k

n1

Φn(k)dn

and, due to the decreasing of Φn(k) with n,

Φn0(k)(n0 − 1) + Φn1(k)(n1 − n0) + Φk(k)(k− n1) ≤

http://oeis.org
https://en.wikipedia.org/w/index.php?title=Prime-counting_function&oldid=987382574
https://en.wikipedia.org/w/index.php?title=Prime-counting_function&oldid=987382574
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≤ π̂(k) ≤

Φ1(k)(n0 − 1) + Φn0(k)(n1 − n0) + Φn1(k)(k− n1).

Given ε, 0 < ε < 1, let 1
γ = 1 + ε

2 , hence 2
3 < γ < 1, and

n0 = n0(k) =
k

ln k

n1 = n1(k) =
k

γ ln k

then the previous inequalities become (note that n1(k) < k for 1
γ < ln k)

(
1− ln k

k
)
e−

a
ln k +

( 1
γ
− 1
)
e−a( k1−γ

γ ln k ) +
(

ln k− 1
γ

)
e−

a
e k ≤

≤ π̂(k)
k

ln k

≤

≤
(
1 +

ln k
k
)
e−ae−k

+
( 1

γ
− 1
)
e−

a
ln k +

(
ln k− 1

γ

)
e−a( k1−γ

γ ln k ).

The limit for k→ ∞ of the left-hand and the right-hand side of the previous inequality,
say L(k) and R(k) respectively, gives

lim
k→∞

L(k) = 1,

that is

1− ε < L(k) < 1 + ε, for k > kL,

and

lim
k→∞

R(k) =
1
γ

,

that is

1
γ
− ε

2
< R(k) <

1
γ
+

ε

2
, for k > kR.

Let k0 = Max{kL, kR}, then for k > k0 we get the thesis.

What does the model say about the Riemann Hypothesis [27]? We know the most
famous millennium problem (E. Bombieri, “Problems of the Millennium: The Riemann
Hypothesis”, Clay Math. Institute. (2000) online at http://www.claymath.org/sites/
default/files/official_problem_description.pdf accessed on 31 March 2021) is equivalent to
establish the bound of the prime-counting function π(x) [28]

|π(x)− li(x)| < M
√

x ln x

with M > 0 constant, definitively for x sufficiently large (li(x) is the logarithmic integral
function defined for x > 1 as li(x) =

∫ x
0

dt
ln t , where the integral is to be intended as

Cauchy principal value). We can prove that this bound, which I will refer to as the RH rule
throughout this work, occurs w.p. 0, or better, that the RH rule does not hold w.p. 1 for the
random variable ξk, defined above as the stochastic counterpart of π(k) in our model.

Theorem 10. Let ξk then random variable with probability distribution (99), then it is

Prob{|ξ(k)− li(k)| < M
√

k ln k} → 0 as k→ ∞.

http://www.claymath.org/sites/default/files/official_problem_description.pdf
http://www.claymath.org/sites/default/files/official_problem_description.pdf


Mathematics 2021, 9, 1224 35 of 50

Proof. Let

n(k) = li(k)−M
√

k ln k

and

m(k) = li(k) + M
√

k ln k.

Since

li(k) =
k

ln k
+O

( k
ln2 k

)
it is easy to see that both Φn(k)(k) and Φm(k)(k)

Φn(k)(k) ∼ Φm(k)(k) ∼ e−e 1
ln k → 1 as k→ ∞.

From (103) then it follows

lim
k→∞

Prob{n(k) ≤ ξk < m(k)} = lim
k→∞

(
Φn(k)(k)−Φm(k)(k)

)
= 0.

Theorems 9 and 10 say what we know as PNT when dealing with primes holds for the
counting variable ξk associated with the set of sequences generated through the random
sampling with replacement game I proposed in the Introduction, while the Riemann
Hypothesis requires compliance with much stricter requirements such that it has zero
probability to occur for the same counting variable.

5. Model Generalization and the Connection with the Riemann Hypothesis

This section deals with the generalization of the FOS model so that we can discriminate
between two classes of models, compliant and not compliant with the RH rule. This allows
us to use the different stochastic properties, depending on different models, of the random
variables qn and ξk to deduce some properties of the whole sequence of primes. In particular,
we apply the model to infer the counting of successive prime pairs and then compare the
result with actual sequences of prime pairs.

5.1. Model Generalization

In this section, we will consider the random variables qn of Definition 7 as a contin-
uous random variable, assuming values in [n, ∞) according to the following probability
distribution function

Prob{qn ≤ x} =
{

0 , x < n
Φn(x) , x ≥ n

(110)

with Φn(x) given by the solution of the differential equation

1
Φn(x)

∂Φn(x)
∂x

=
λn

f (n)
e−

x
f (n)

obtained by considering a more general expression for the ratio (106), where n is substituted
by f (n), a positive function of n.

Notation. The probability density function of qn, that is the function φ
′
n/n(x) of the FOS model,

will be denoted as follows:

φn(x) = φ
′
n/n(x), x ≥ n.

Therefore, the probability functions of qn become
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Φn(x) = Ce−λne
− x

f (n)
+ const.

φn(x) =
∂Φn(x)

∂x
= C

λn

f (n)
e−

x
f (n) e−λne

− x
f (n)

.

The constant C is determined by the normalization condition∫ ∞

n
φn(x)dx = C

[
Φn(x)

]∞
n = 1

hence

C =
1

(1− e−λne−n/ f (n)
)

.

The complete expressions of the probability density and distribution function are

φn(x) =
1

(1− e−λne−n/ f (n)
)

λn

f (n)
e−

x
f (n) e−λne

− x
f (n)

(111)

Φn(x) =
e−λne

− x
f (n) − e−λne−n/ f (n)

1− e−λne−n/ f (n) . (112)

Note that φn(x) has a single maximum point at

x = xM = f (n) ln (λn). (113)

The mathematical expectation of qn (this calculation is reported in [29] for the case
f (n) = n) is

E
[
qn
]
=
∫ ∞

n
xφn(x)dx = n +

f (n)

1− e−λne−n/ f (n)

[
ln (λn) + E1(λne−

n
f (n) ) + γ− n

f (n)
]

(114)

where γ = 0.57721 . . . is the Euler–Mascheroni constant and E1(x) is the exponential
integral function with positive real argument x > 0, sometimes referred to as upper
(or complementary) incomplete gamma function Γ(0, x), defined by (see functions 5.1.1,
6.5.3, [30])

E1(x) = Γ(0, x) =
∫ ∞

x

e−t

t
dt.

We require the mathematical model to satisfy a similar condition to (95) about the
mean of qn, that leads to the following formula

E
[
qn
]
= f (n)

[
ln (λn) + γ

]
∼ n ln n (115)

obtained from (114), assuming n � 1 sufficiently large, so we can neglect the terms

e−λne−n/ f (n)
and E1(λne−

n
f (n) ). Note that the function E1(x) decreases rapidly as x → ∞,

in particular [31], (1.4)

e−x

2
ln
(
1 +

2
x
)
≤ E1(x) ≤ e−x ln

(
1 +

1
x
)
.

Remark 17. The FOS combinatorial model studied in Section 4.5 corresponds to the function
f (n) = n. In this case (115) is satisfied for

λn = an, a > 0, constant
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(in particular when a = e−γ it is E[qn] = n ln n).
We know from Theorem 10 that the RH rule does not hold w.p. 1 for this class of models, which

I will refer to as n-Model.

Another class of models of particular interest to our study, as we will see in the
following, is the one determined by the choice f (n) = ln n. In this case, condition (115) can
be satisfied using different functions having opposing implications as far as the compliance
of the model with the RH rule. We focus, in particular, on a solution ensuring the RH rule
holds w.p. 1.

Remark 18. The model with f (n) = ln n will be referred to as log(n)-Model.

The simplest log(n)-Model is the one defined by the choice

E[qn] = n ln n (116)

hence by the parameter value
λn = aen, a = e−γ. (117)

Through the methods of the previous section, it is possible to prove the same state-
ments as Theorems 9 and 10, that is, this log(n)-Model is compliant with PNT and not with
the RH rule.

Let us consider instead the log(n)-Model defined by the assumption

E[qn] = ali(n) (118)

where ali : R→ (1,+∞) is the inverse function of the logarithmic integral function li(x) (I
use for this function the same notation as in [32]). In this case, we get

λn = ae
ali(n)
ln n , a = e−γ, (119)

and condition (115) is satisfied since we know it is (Theorem 3.3, [32])

ali(n)
n ln n

= 1 + O
( ln ln n

ln n
)
. (120)

Equations (111) and (112), under the approximation for n� 1, become

φn(x) =
a

ln n
e
−x+rn

ln n e−ae
−x+rn

ln n (121)

Φn(x) = e−ae
−x+rn

ln n , (122)

with rn = ali(n).
The double exponential distribution function (122) is often called Gumbel distribu-

tion [33,34].

Remark 19. In the case of the model with f (n) = ln n, the ratio (106) is equal to

a
ln n

e
−k+rn

ln n ;

it is o(e−
k
n ) as k→ ∞ and deviates asymptotically from the Stirling number ratio which is ∼ e−

k
n .

Briefly speaking, the log(n)-Model defined above corresponds to a subset of the FOS
universe U which is different from the one of the n-Model, containing sequences conforming
to both PNT and the RH rule, as stated by the following theorems.
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The continuous approximation function π̂(k) becomes

π̂(k) =
∫ k

1
Φn(k)dn =

∫ k

1
e−ae

−k+rn
ln n dn. (123)

In addition, for this function we can enunciate a proposition, which is the equivalent
of the Prime Number Theorem.

Theorem 11. Given ε > 0 however small, there exists k0 such that for k > k0 it holds

1− ε <
π̂(k)

k
ln k

< 1 + ε,

where the function π̂(k) is defined by (123).

The proof is completely analogous to that of Theorem 9.

Remark 20. Associated with the log(n)-Model we can define the counting random variable ξk as
in Definition 8, after assuming the probability distribution (110). It is easy to prove the analog of
Theorem 8 for this variable, in particular Equations (101) and (103). We can therefore apply the
probability method developed for the n-Model also in the case of the log(n)-Model.

The RH rule holds w.p. 1 for the log(n)-Model with E[qn] defined by (118).

Lemma 8. Let f (x) = ali(x) : R→ (1,+∞) be the inverse function of the logarithmic integral
function li(x) and

f (n)(x) =
dn f (x)

dxn

its n-th derivative. Then we have

f (1)(x) = ln (ali(x))

and for n ≥ 2

f (n)(x) =
1

f n−1(x)

n−1

∑
k=1

ak,n
(

f (1)(x)
)k

with

a1,n = 1

ak,n = kak,n−1 − (n− 2)ak−1,n−1, k = 2, 3, . . . , n− 2

an−1,n = −(n− 2)an−2,n−1.

Proof. Note that the function f (x) = ali(x) is real analytic. The first derivative follows
directly from the definition, since li(ali(x)) = x. We proceed by induction. The thesis is
true for n = 2, indeed

f (2)(x) =
1

f (x)
a1,2 f (1)(x) =

f (1)(x)
f (x)

.

Let us assume it is true for (n− 1)

f (n−1)(x) =
1

f n−2(x)

n−2

∑
k=1

ak,n−1
(

f (1)(x)
)k

then we have for the n-th derivative



Mathematics 2021, 9, 1224 39 of 50

f (n)(x) =
1

f n−1(x)

n−2

∑
k=1

ak,n−1k
(

f (1)(x)
)k − (n− 2)

f n−1(x)

n−2

∑
k=1

ak,n−1
(

f (1)(x)
)k+1text,

from which, grouping the terms by powers of f (1)(x), the thesis follows.

Theorem 12. Let ξk be the random counting variable of Definition 8 with probability distribu-
tion (110) associated with the log(n)-Model (118), then it is

Prob{|ξ(k)− li(k)| < M
√

k ln k} → 1 as k→ ∞, M > 0, constant.

Proof. Let

n(k) = li(k)−M
√

k ln k

and

m(k) = li(k) + M
√

k ln k,

then from (103) we know it is

Prob{n(k) ≤ ξk < m(k)} =
(
Φn(k)(k)−Φm(k)(k)

)
with probability distribution functions given by (122),

Φn(k)(k) = e−ae
−k+ali(n(k))

ln n(k)
,

Φm(k)(k) = e−ae
−k+ali(m(k))

ln m(k)
.

Since we know ali(x) is real analytic, consider its Taylor series ali(x0 + h) at

x0 = li(k)

h = −M
√

k ln k,

from Lemma 8

ali(n(k)) = k−M
√

k ln2 k +
1
2

M2 ln3 k− 1
6
(1− ln k)√

k
M3 ln4 k + . . . ,

which can be written
ali(n(k)) = k−M

√
k ln2 k + O(ln3k). (124)

From the asymptotic expansion of li(x) we get

li(x) =
k

ln k

(
1 + O

( 1
ln k

))
which leads to the following expression for ln n(k)

ln n(k) = ln
[
li(k)−M

√
k ln k

]
= ln k− ln ln k + O

( 1
ln k

)
. (125)

From (124) and (125) we finally get

−k + ali(n(k))
ln n(k)

=
−M
√

k ln k + O(ln2k)
1− ln ln k

ln k + O
( 1

ln2 k

)
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Φn(k)(k) ∼ e−ae−M
√

k ln k

and the limits for k→ ∞

lim
k→∞

−k + ali(n(k))
ln n(k)

= −∞

lim
k→∞

Φn(k)(k) = 1.

Through analogous calculations for m(k) we find

−k + ali(m(k))
ln m(k)

=
M
√

k ln k + O(ln2k)
1− ln ln k

ln k + O
( 1

ln2 k

)
Φm(k)(k) ∼ e−aeM

√
k ln k

and the limits for k→ ∞

lim
k→∞

−k + ali(m(k))
ln m(k)

= ∞

lim
k→∞

Φm(k)(k) = 0.

From (103) then it follows

lim
k→∞

Prob{n(k) ≤ ξk < m(k)} = lim
k→∞

(
Φn(k)(k)−Φm(k)(k)

)
= 1.

We can get an estimate of the speed of convergence to 1 of the probability of the RH
rule as follows. If we denote with U ′ ⊂ U the subset of random sequences of positive
integers distributed according to the log(n)-Model with mean ali(n), under the assumption
that the sequence of prime numbers {pn, n = 1, 2, 3, . . . } belongs to the set U ′ , we can use
the properties of the Gumbel distribution and Chebyshev’s inequality to get the probability
of the RH rule, more generally the probability of any difference |pn − ali(n)|, as a function
of n. In other words, we can consider U ′ as a stochastic process {qn, n = 1, 2, 3, . . . } of
random variables differently distributed and the sequence of primes as particular realization
of the process.

Different bounds of the difference

|pn − ali(n)| ≤ δn

have been established for the sequence of prime numbers, depending on the conditions
assumed. From ((1.3), [35]) we know that it holds unconditionally for

δn = O(ne−c
√

ln n), c > 0,

while under the Riemann Hypothesis, we get (Theorem 6.2, [32])

δn =
1
π

√
n(ln n)5/2, n ≥ 11.

From the properties of the Gumbel distribution we know the variance of qn is (note
that the probability distribution (112) is not exactly a Gumbel distribution because of the
cut at x = n of definition (110). Assuming n sufficiently large, so that (121) and (122) hold,
we can consider the probability distribution of the model as a Gumbel distribution).
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E
[
(qn − ali(n))2] = π2

6
(ln n)2

hence, from Chebyshev’s inequality (see Chapter IX, p. 233, [18]), it follows that the
probability of the unconditioned bound converges to 1 with a quadratic law

Prob{|pn − ali(n)| ≤ Cne−c
√

ln n} ≥ 1− π2

6
(ln n)2e2c

√
ln n

C2n2 , C, c > 0 const.,

while in the case the Riemann Hypothesis holds

Prob{|pn − ali(n)| ≤ 1
π

√
n(ln n)5/2} ≥ 1− π4

6
1

n(ln n)3 .

5.2. Counting Successive Prime Pairs through the log(n)-Model

The general problem of prime pairs can be stated as follows: given d and N positive
integers, d even, what is the number HN(d) of pairs of primes (not necessarily consecutive),
p, p

′ ≤ N such that p
′
= p + d? Connected with this there is the following one, we can call

as the problem of counting successive prime pairs: given d and N positive integers, d even,
what’s the number hN(d) of pairs of primes pi, pi+1 ≤ N, separated by the gap d, that is such that
pi+1 = pi + d?

Mathematics has no certain results about these two problems which are different
from the so called “bounded gaps problem”, recently solved by mathematician Yitang
Zhang [36], who proved that as i→ ∞ there are infinitely many prime pairs pi+1 − pi = d,
with d < 7.0× 107. Successively, this bound has been lowered to 246 through the extension
of the method of Zhang and other contributors. Nevertheless, the twin primes conjecture
which requires the bound to be reduced to d = 2, remains unproven. Important results
towards this goal can be found in [37,38], showing in particular that lim infi→∞

d
ln pi

= 0,
that is there always be pairs of primes pi+1 = pi + d with d less than any fraction of ln pi,
the average spacing between successive primes.

In 1923, Hardy and Littlewood proposed the following formula as a solution of the
general problem, stressing that it was impossible for them “to offer anything approaching
a rigorous proof” (see Conjecture B, [5]):

HN(d) ∼ 2c2 J(d)
N

ln2 N
(126)

where
c2 = ∏

p>2

(
1− 1

(p− 1)2

)
(127)

J(d) = ∏
p/d

p− 1
p− 2

. (128)

The product is over all odd primes in (127), over odd primes dividing d in (128).
The constant C2 = 2c2 = 1.32032363 . . . is called the twin prime constant, while the
term J(d) is responsible for the irregularities and the oscillating pattern of the counting
functions. A formula similar to (126) for the counting of successive prime pairs separated
by a gap d, was suggested by Wolf ([39], and the references therein) after enumerating,
by means of a computer program, all gaps between consecutive primes up to N = 244 ≈
1.76 × 1013. Starting from the observed pattern, which showed an exponential decay
of the number of pairs depending on d, at the end of a heuristic procedure including
approximations due to PNT, he deduced the complete formula (the procedure is reported
in M. Wolf (2018), Some Heuristics on the Gaps between Consecutive Primes, available at
https://arxiv.org/abs/1102.0481 accessed on 31 March 2021).

https://arxiv.org/abs/1102.0481
https://arxiv.org/abs/1102.0481
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hN(d) ∼ 2c2 J(d)
π2(N)

N
e−dπ(N)/N . (129)

The functional dependence on N of the formula above can be transformed into a
dependence on the sequence number n of the greatest prime pn interested in the count.
Indeed, we can set N = pn ∼ n ln n and π(N) = n and, hence, it is easy to get

π2(N)

N
e−dπ(N)/N ∼ Fn(d) =

n
ln n

e−
d

ln n (130)

and the counting formula becomes

hn(d) ∼ 2c2 J(d)
n

ln n
e−

d
ln n (131)

where I changed the capital letter N to lower case n so as to remember the different meaning
of the functional dependence.

The original Hardy and Littlewood conjecture was empirically tested by several
authors and used to calculate the number of pairs hN(d) in the case of small gaps d between
successive primes [40]. I show in the following that the conjecture of Wolf, which is based
on a large amount of empirical data, can be derived from the combinatorial model we
defined as log(n)-Model in Remark 19.

Remark 21. Note that the conjecture (131) can be written as

hn(d) ∝
∫ n

1

∂Ft(d)
∂t

dt

where Fn(d) is the function defined in (130) and

∂Fn(d)
∂n

=
1

ln n
e−

d
ln n
(
1 + o(1)

)
. (132)

Definition 9. Given the sequence of primes {pn, n = 1, 2, 3, . . . }, let us define the gap gn between
successive primes and the number of successive prime pairs hn(d) separated by a gap d depending
on the sequence number n as

gn = pn+1 − pn

hn(d)#{pi : gi = d, i ≤ n}.

The gap gn can be modeled as the difference between the random variables

gn = qn+1 − qn

with probability mass function

σn(d) =
∫ ∞

n
φn,n+1(x, x + d)dx (133)

where φn,n+1(x, y) is the joint probability density function of the couple (qn, qn+1). We
can obtain the estimate of the function hn(d), as resulting from the combinatorial model
adopted, through the equation

hn(d) =
n

∑
i=1

σi(d) ≈
∫ n

1
σt(d)dt. (134)

We do the following assumption.
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Assumption 2. (Large gaps independence law) For d � 2 sufficiently large, the two events
qn = x and qn+1 = x + d are independent.

Under the previous assumption, the joint probability φn,n+1(x, x + d) can be written
as the product of the two probability density functions

φn,n+1(x, x + d) = φn(x)φn+1(x + d), d� 1 (135)

and its value depends on the type of model we choose.
Let us calculate the joint probability (135) for the log(n)-Model defined in Remark 18.

We adopt the following approximations

ln (n + 1) ≈ ln n

and

rn+1 ≈ rn + ln n, n > 1,

valid for both (this means the results we are going to obtain depend on PNT only, not on
the Riemann Hypothesis).

rn = n ln n

and

rn = ali(n).

Then (135) becomes

φn(x)φn+1(x + d) =
ea2

ln2 n
e−

d
ln n e−2( x−rn

ln n )e−ae−(
x−rn
ln n )

(1+e1− d
ln n ),

and (133), after the variable change

x− rn

ln n
= t,

is written

σn(d) =
ea2

ln n
e−

d
ln n

∫ ∞

n−rn
ln n

e−2te−ae−t(1+e1− d
ln n )dt.

Let α be

α = a(1 + e1− d
ln n ),

then the integral

∫ ∞

n−rn
ln n

e−2te−e−tαdt =
1
α2

(
1− e−αe−

n
ln n +n

− αe−
n

ln n +ne−αe−
n

ln n +n
)
≈ 1

α2 , for n� 1.

Finally, the probability mass function (133) resulting from the log(n)-Model under
Assumption 2 and n� 1 is (note it is independent of parameter a)

σn(d) ≈
e

(1 + e1− d
ln n )2

e−
d

ln n

ln n
. (136)

Comparing the previous equation with (132), we see the log(n)-Model confirms Wolf’s
conjecture, in particular the exponential decay of the pair number depending on d, at least
for large values of the gap d, when Assumption 2 can be considered valid. Note that in the
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case of the n-Model, we would get the same expression as in (136), but with the function n
in place of ln n. The fact that only the RH rule compliant model agrees with the counting
function of consecutive prime pairs, derived from empirical data, is a notable achievement
of the theory, since it is a strong indication that the counting problem is deeply connected
with the Riemann Hypothesis.

Figures 1 and 2 show the results obtained from the log(n)-Model with respect to the
actual numbers of pairs in two cases: 49× 106 < n ≤ 50× 106 and 247 ≤ pn ≤ 248.

Figure 1. Numbers of successive prime pairs as function of the gap d = pn+1 − pn in 49,000,000
≤ n ≤ 50,000,000 (logarithmic scale).

Figure 2. Numbers of successive prime pairs as function of the gap d = pn+1 − pn in 4,461,632,979,716 ≤ n ≤
8,731,188,863,469 (logarithmic scale).
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5.3. A Heuristic Model of the Distribution of Prime Numbers

The generalized model we presented in Section 5.1 can be directly related to the
sequence of primes by changing condition (115) into the following

E
[
qn
]
= f (n)

[
ln (λn) + γ

]
= pn (137)

which leads to the value

λn = ae
pn

f (n) , with a = e−γ

while the point of maximum of the probability density function (113) becomes

xM = pn − γ f (n).

It is interesting to note we would obtain the same expressions, with a = 1, if we
substitute the condition (137) with the following one, on the point of maximum of the
function φn(x)

xM = f (n) ln (λn) = pn. (138)

In this case, the mean value of qn changes to

E
[
qn
]
= pn + γ f (n).

This model has the property to express the prime counting function π(k) through the
values of the sequence of primes pn from n = 1 to n = k. Let consider indeed the case when
f (n) = σ is constant. In this case, the average of the random counting variable (102) is

E
[
ξk
]
= π̂(k, σ) =

k

∑
n=1

e−ae
−k+pn

σ (139)

and it approximates the value of π(k) with any precision depending on σ.

Remark 22. It holds

π(k)

∑
n=1

e−ae
−k+pn

σ ≤ π̂(k, σ) ≤
π(k)

∑
n=1

e−ae
−k+pn

σ + 1 (140)

for

σ <
2

ln ln (k− π(k)) + γ

and

lim
σ→0+

π̂(k, σ) = lim
σ→0+

π(k)

∑
n=1

e−ae
−k+pn

σ = π(k). (141)

Indeed

π̂(k, σ) =
l

∑
n=1

e−ae
−k+pn

σ +
k

∑
n=l+1

e−ae
−k+pn

σ

since

e−ae
−k+pl+1

σ > e−ae
−k+pn

σ , n = l + 2, . . . , k

we can write
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l

∑
n=1

e−ae
−k+pn

σ ≤ π̂(k, σ) ≤
l

∑
n=1

e−ae
−k+pn

σ + e−ae
−k+pl+1

σ (k− l).

Assuming l = π(k) and e−ae
−k+pl+1

σ (k− l) ≤ 1, (140) easily follows.
Note that for each term of the sum (139) it is

lim
σ→0+

e−ae
−k+pn

σ =

{
1 , pn < k
0 , pn > k

hence (141).
From Equation (137) we get in the case of the log(n)-Model, f (n) = ln n:

φn(x) =
a

ln n
e−

x−pn
ln n e−ae−

x−pn
ln n , (142)

Φn(x) = e−ae−
x−pn
ln n ; (143)

in the case of the n-Model, f (n) = n:

φn(x) =
a
n

e−
x−pn

n e−ae−
x−pn

n , (144)

Φn(x) = e−ae−
x−pn

n . (145)

The probability functions above are valid for x ≥ n (remember (110)), n > 1 suffi-
ciently large, and a = e−γ.

Definition 10. Equations (142)–(145) define the heuristic log(n)-Model and the heuristic n-Model
respectively.

Examples of different probability distribution functions φn(x) resulting for these
heuristic models are given in Figure 3, for n = 20, 30, 40.

Figure 3. Heuristic model probability distribution functions φn(x) for n = 20, 30, 40.
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From Figure 3, we see the dispersion of the random variable qn around its mean value
pn is very small in the case of the heuristic log(n)-Model, so that we can assume the estimate
π̂(k) is very close to the prime-counting function itself π(k) for this model as stated by
Remark 22 in the particular case f (n) = constant.

Table 5 shows some examples of estimate of π(k), calculated through the heuristic
log(n)-Model with a = e−γ, for different orders of magnitude.

Table 5. π(k) estimate through heuristic log(n)-Model.

k π(k) π̂(k)

10 4 4.33
100 25 25.50

1000 168 167.65
10,000 1229 1229.34

100,000 9592 9592.09
1,000,000 78,498 78,498.23

The following considerations we propose in the case of the heuristic log(n)-Model,
because of its relevance, are obviously valid in the case f (n) = σ, constant.

The following theorem gives a quantitative evaluation of the probability of error we
do, when considering the random variable ξk (in practice its mean value for small variances)
as an estimate of π(k).

Theorem 13. Given the random variable ξk of Definition 8, ε > 0, let

ξpn−dεe ≥ n = π(pn)

be the first kind error,

ξpn+dεe < n = π(pn)

the second kind error of ξk at k = pn and

Wξ(n, ε) = Prob{ξpn−dεe ≥ n}+ Prob{ξpn+dεe < n}

the sum of the two error probabilities. Then for the heuristic log(n)-Model defined by Equations (142)
and (143) with a = e−γ it is

Wξ(n, ε) ≤ π2

6
ln2 n

ε2 . (146)

Proof. From the theory of Gumbel distribution we know the variance of qn is

E
[
(qn − pn)

2] = π2

6
ln2 n

hence from Chebyshev’s inequality

Prob{|qn − pn| ≥ ε} ≤ π2

6
ln2 n

ε2 .

It is

Prob{|qn − pn| ≥ ε} = Φn(pn − ε) +
(
1−Φn(pn + ε)

)
and

Φn(pn − dεe) +
(
1−Φn(pn + dεe)

)
< Φn(pn − ε) +

(
1−Φn(pn + ε)

)
,

and, therefore, we can also write



Mathematics 2021, 9, 1224 48 of 50

Φn(pn − dεe) +
(
1−Φn(pn + dεe)

)
≤ π2

6
ln2 n

ε2 .

From (99), (100) it follows

Φn(pn − dεe) = Prob{ξpn−dεe ≥ n}

(
1−Φn(pn + dεe)

)
= 1− Prob{ξpn+dεe ≥ n} = Prob{ξpn+dεe < n}

Prob{ξpn−dεe ≥ n}+ Prob{ξpn+dεe < n} ≤ π2

6
ln2 n

ε2 .

Remark 23. Through the heuristic model we can derive new lower and upper bounds of the
prime-counting function π(k):

∫ k

1
e−ae

−k+β(n)
ln n dn ≤ π(k) ≤

∫ k

1
e−ae

−k+α(n)
ln n dn, (147)

where
α(n) = n

(
ln n + ln ln n− 1

)
, (148)

β(n) = n
(

ln n + ln ln n
)
. (149)

We know ([41,42]) the following lower and upper bounds of the n-th prime pn hold

α(n) < pn < β(n)

for n ≥ 2 the left-hand side and n ≥ 6 the right-hand side, hence for Φn(k) given by (143)
it follows

e−ae
−k+β(n)

ln n ≤ Φn(k) ≤ e−ae
−k+α(n)

ln n , n ≥ 6, (150)

and assuming k � 6 sufficiently large so that the condition n ≥ 6 may be neglected, we
can write (147) for π̂(k) given by

π̂(k) =
k

∑
n=1

Φn(k).

From Remark 22 and Theorem 13, we know we can consider the approximation
π̂(k) ≈ π(k) as valid for the heuristic model, from which we get (147).

6. Concluding Remarks

The first aim of this work was to deepen the problem of randomness in the distribution
of prime numbers through such simple combinatorial objects as First Occurrence Sequences,
showing new analogies between the classical set partition problem and the distribution of
primes themselves. First Occurrence Sequences define a general class of objects for which
the Prime Number Theorem holds, such as for the prime sequence, but they fail to represent
more stringent constraints, required by the Riemann Hypothesis, such as the equivalent
condition established by Helge von Koch I called RH rule. In order to investigate this
second step, the simple model must be generalized (or the class of combinatorial objects
must be restricted) to discriminate between RH rule compliant and noncompliant models.
The analysis based on probability methods shows the Riemann Hypothesis holds w.p. 1
(together with the Prime Number Theorem, of course) for the class of random sequences
represented by the log(n)-Model with mean equal to ali(n), the inverse function of the
logarithmic integral function. Therefore, we can conclude that the property represented
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by the Riemann Hypothesis through the RH rule is largely independent of the primes and
belongs to a large class of random sequences. Whether this class also contains the sequence
of prime numbers cannot be decided by the model except statistically. Something similar
happens within the context of analytical theory when speaking of zeta function ζ(s),
Dirichlet L-functions L(s, χ) (Chap. 12, [43]) (s is the complex variable s = σ + it), and
the Generalized Riemann Hypothesis “that is the hypothesis that not only ζ(s) but all the
functions L(s, χ) have their zeros in the critical strip on the line σ = 1

2 ” (p. 124, [44]).
Attempts to prove the Riemann hypothesis through the methods of physics go back

as far as the so-called Hilbert–Polya conjecture, which associates the imaginary part of
non-trivial zeros of ζ(s) to the eigenvalues of some self-adjoint (Hermitian) operator that
might be considered like the Hamiltonian of a physical system (the story of Hilbert–Polya
conjecture is documented on Odlyzko’s personal website; see http://www.dtc.umn.edu/
~odlyzko/ accessed on 31 March 2021). Each type of combinatorial model we presented in
the previous sections, based on probability equations such as (111) and more generally (25),
can be transformed into a single particle Hamiltonian of an equivalent quantum system
that emerges as a solution to an underlying combinatorial problem. This topic is outside
the scope of this work and will not be treated here; I just want to mention that the analogy
with the physical problem allows us to overcome some critical points of the combinatorial
model and eliminate any arbitrariness in the choice of the mean of the random variable
qn (the combinatorial counterpart of the n-th prime). The solution ali(n) emerges as a
general asymptotic solution for such models due to concepts such as interaction potential
and energy levels, that play an important role also in describing integer sequences such as
Fibonacci numbers and prime numbers, and the application of the Hellmann–Feynman
theorem to the whole system (see [45] for a mathematical foundation of the theorem).
These methods result in computational benefits improving the estimates obtained from the
combinatorial model and may suggest new conjectures about the distribution of primes.
In [29], the quantum model derived from what we have called n-Model is developed and
applied to explore the region beyond the Skewes number in connection with the numerical
results known in the literature derived through analytical methods.

These two topics (the parallelism between the treatment from the point of view of
random sequences and of Riemann zeta and Dirichlet L-functions; the transposition of
the problem into a quantum physics framework), seem worthy of being addressed in
future work.
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