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Abstract: The success of launching new products is the main challenge of companies since it is
one of the key factors of competition. Thus, success in today’s high rival markets depends on the
presentation of new products with new options, which must be compatible with customers’ desires.
This research aims to analyze the psychological effect of the noise of a new product on the total profit
of the chain and the optimal pricing and marketing decisions of the chain’s members. Additionally,
a cooperative (co-op) advertising strategy as a coordination mechanism is considered among the
partners such that it helps them to obtain their target markets. Commonly, under co-op advertising,
the manufacturer pays a percentage of the retailer’s advertising costs. In this chain, the manufacturer
and the retailer agree to share the retailer’s advertising costs. Afterwards, four different relations
between the manufacturer and retailer are studied and analyzed including three non-cooperative
games with symmetrical distribution of market power and one asymmetrical distribution of it. So,
four game models and their closed-form solutions are illustrated with a numerical example. It was
found that the noise effect affects the total profit of the manufacturer and the retailer, as well as the
supply chain by influencing the partners’ advertising policies. In other word, increasing the noise
effect of the product indicates to the manufacturer and the retailer to globally and locally advertise
more, respectively. In turn, their profits increase, although also increasing the advertising costs.
Finally, a complete sensitivity analysis is conducted and reported.

Keywords: vertical cooperative advertising; pricing; noise effect; game theory; supply chain
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1. Introduction and Literature Review

Nowadays, firms motivate customers’ demand by launching new products consid-
ering the interests of customers. However, the success of presenting new products is a
challenge that companies face. So, they commonly apply marketing tools such as optimal
pricing and advertising strategies as the most efficient marketing policies to attract the mar-
ket demand for the new products. These strategies are employed to model several supply
chain settings in which there exists a considerable amount of research where the pricing
and advertising decisions are jointly considered. To name a few works, Bergen and John [1],
Kim and Staelin [2], Swami and Khainar [3], Karray and Zaccour [4], Yenipazarli [5], and
He et al. [6].

In the literature, there exist several papers that have dealt with how the co-op ad-
vertising strategy affects the optimal decisions of supply chains’ partners. As mentioned
earlier, under the co-op advertising strategy, the manufacturer pays either a portion or
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all of retailer’s advertising costs, where the retailer is responsible for the preparation and
organization of the local advertising following some basic guidelines established by the
manufacturer. It is well-known that the first mathematical model of co-op advertising
was proposed by Berger [7]. He considers a situation in which the manufacturer gives an
advertising payment to its retailer.

Jørgensen and Zaccour [8] considered a differential game model for a two-level supply
chain with cooperation and non-cooperation settings where demand function is influenced
by the retail price and advertising goodwill. Later, Jørgensen et al. [9] also used a demand
function that is affected by the retail price and advertising goodwill to study the leading
role in a supply chain where each member of the chain controls its advertising and margins.
Generally speaking, there exist two types of advertising (i.e., global and local advertising
strategies) in the manufacturer–retailer relationship to stimulate the consumer demand.

One of the most efficient marketing policies applied by the firms is called vertical
cooperative advertising, also known as co-op advertising. Under this strategy, the retailers’
advertising costs are shared with the companies. Indeed, the manufacturer can cooperate
with the local retailers to pay a portion of its retailers’ advertising costs in order to decrease
the retailer’s costs and subsequently increase the market share. An online advertising
cooperative is one of this kind of strategy in which the companies gain a full-page ad-
vertisement while these are responsible for half the price. For instance, advertisement of
Zomato (www.zomato.com) on a Facebook page is an application for searching restaurants
on cell phones which is accessible by clicking on a Facebook link and redirecting to Zomato.
Thereupon, with financial support, the retailer could increase its advertising and conse-
quently raise its sales. For the sake of simplicity, in this paper, the term co-op advertising is
used. Some researchers have employed co-op advertising strategy in their research, such
as Yue et al. [10] and Szmerekovsky and Zhang [11] extended the work of Huang et al. [12].

Afterwards, Xie and Neyret [13] and Xie and Wei [14] derived optimal pricing and
co-op advertising strategies for different relations between a manufacturer and a retailer.
Wang et al. [15] and SeyedEsfahani et al. [16] studied co-op advertising for a supply chain
under four decision models to obtain the optimal co-op advertising policies.

Later, Aust and Buscher [17] utilized SeyedEsfahani et al. [16]’s price-sensitive de-
mand function and incorporated pricing policies and co-op advertising in a two-echelon
supply chain. In addition, they studied four strategies using game theory and compared
cooperation and non-cooperation policies. Other recent interesting researches that consid-
ered the co-op advertising strategy are Ahmadi-Javid and Hoseinpour [18], Yang et al. [19],
Yue et al. [20]. Aust and Busher [21,22] and Jørgensen and Zaccour [23] provided a com-
plete and comprehensive review on co-op advertising.

Game theory is a useful tool that allows us to model and analyze the interactions
between the members of a supply chain [24–31]. In other word, game theory is an appro-
priate approach to study the behaviors of supply chains’ members against each other’s
reactions. It is evident that all the partners intend to achieve their own desired goals, which
can be vindicated by applying the coordination mechanisms, of which co-op advertising
strategy is one. Indeed, these mechanisms are employed to coordinate the supply chains’
decisions and close them to the optimal ones. As a result, a win–win relationship nearly is
established among the members of the chains.

In this direction, Huang and Li [32] applied game theory to study co-op advertising
policy in a two-echelon supply chain comprised of one manufacturer and one retailer. Their
study concluded that the manufacturer always prefers the Stackelberg game compared
with other games, simultaneously. Later, Xie and Ai [33] extended the models of Huang
and Li [32] and Li et al. [34] to the situation when the manufacturer’s marginal profit is
not large enough. Equivalent approaches with a little change in the demand functions are
presented in the research works of Li et al. [34], Huang et al. [12], Huang and Li [35] and
He et al. [36].

The existing literature shows that the pricing and advertising policies are employed
to coordinate the decisions of the chain’s members in several investigations. However, an
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interesting and also sensible issue, which is not considered by them, is the effect of noise. It
is known that the noise effect is considered for new products, which are launched to the
competitive markets, to analyze the psychological effect of the customers’ satisfaction or
dissatisfaction on the sales. So, this issue is an important factor that influences the sales.
Recently, the noise effect was modeled as a random component in an additive way for
a supply chain to study pricing and inventory decisions under demand uncertainty by
Chen et al. [37]. Additionally, some related research can be found in works [38–47].

In this research, in addition to co-op advertising and price policies, the noise effect
as a psychological impact of the product is considered in the customers’ demand func-
tion. Indeed, the noise effect of a product, which shows the end-users’ satisfaction or
dissatisfaction measure, is primarily a random element representing the effect of the word
of mouth on the sale of the product. The principal aim of this research is to study the
optimal pricing and advertising decisions of a one-manufacturer–one-retailer supply chain
under different game-theoretic approaches. Here, two different models in terms of de-
mand functions are considered, which are randomly dependent on the noise effect and
also dependent on the price and advertising in the product’s market acceptance. Using
cooperative and non-cooperative game theory, the following four classical scenarios are
considered: (1) Nash game, (2) Manufacturer-Stackelberg game, (3) Retailer-Stackelberg
game, and (4) cooperative game. In both models, the demand is a function of the retailer’s
local advertising, the manufacturer’s national advertising, the price, and the noise effect.

Mainly, the contribution of this paper is threefold. The first one is to introduce two
uncertain pricing and advertising models in order to study the optimal decisions of the
supply chain’s members in the presence of the noise effect in order to maximize the total
profit of the chain. The second one is to study four game-theoretic approaches among the
partners to analyze their behaviors under different market powers and choose the best one.
The third one is to derive the closed-form solutions of the decision variables where the
concavity of the objective functions for both models under different scenarios is evidenced.

The rest of the paper is organized as follows. Section 2 defines the on-hand problem
and notation used. Section 3 develops the optimal policies for four game models consid-
ering two types of demand functions. Section 4 shows the applicability of the proposed
models with a numerical example. Section 5 provides a complete sensitivity analysis.
Finally, Section 6 gives some conclusions and future research directions.

2. Problem Definition

This paper considers a supply chain comprised of one manufacturer and one retailer.
The manufacturer sells his/her new product to the retailer; the retailer vends only the prod-
uct to his/her own customers. In this supply chain, the manufacturer globally advertises
to introduce the new product under its brand name and the retailer locally advertises to
inform and also attract the customers. Here, a co-op advertising strategy as a coordinating
mechanism is established between the manufacturer and the retailer to share the retailer‘s
advertising costs. In other words, a portion of the retailer’s advertising cost is supported
by the manufacturer.

It is assumed that the good news from customers, who have bought and used the new
product for the first time, encourages new customers to purchase the product, which is
titled the noise effect. The noise effect represents the psychological effect of the word of
mouth among the customers which results from the measures of the customers’ satisfac-
tion/dissatisfaction. So, the effect of noise is an important and drastic factor in the market
because it makes an uncertainty in demand of each new product in presence of other prod-
ucts. Moreover, four game-theoretic approaches such as Nash, Manufacturer-Stackelberg,
Retailer-Stackelberg, and cooperative games are considered to analyze the optimal pricing
and marketing decisions under different market powers.

The manufacturer decides on the wholesale price, w, the cost of global advertising,
A, and the participation rate, t, in local advertising a; the retailer decides on retail price, p,
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and the cost of the local advertising a. Therefore, the customers’ demand with the price,
advertising, and the noise effect considerations in the market is given as follows:

D(p, a, A) = D0. n(x) . g(p) . h(a, A) (1)

where g(p) is the effect of retail price on demand, h(a, A) shows the advertising effect on
demand, and n(x) is the noise impact of the market acceptance. In order to model the
problem, the following parameters and variables are defined. Notice that some symbols
are the same as they were used previously in other research works.

The principal objective of this research is to optimize the total profit of the supply
chain under both models with respect to the decision variables. It is important to mention
that Szmerekovsky and Zhang [11] used the following functions g1(p) = p−e ; e > 1
and h1(a, A) = α2 − β2a−γ Aδ; where α2, β2, γ, δ > 0. On the other hand, Xie and Wei [14]
considered g2(p) = α1 − β1 p ; α1, β1 > 0 and h2(a, A) = k1

√
a + k2

√
A ; k1, k2 > 0. This

research incorporates the noise effect of a new product into the above-mentioned functions,
which is described as follows:

n(x) = ex
1 ; x > 0 (2)

3. Modeling

This section develops two models for a two-echelon supply chain where the noise
effect of the product is considered. According to the assumptions, demand is uncertain due
to the essence of the noise effect. Using the expressions of g1, h1, g2, h2 and Equation (2),
the demand functions for the first and the second models are given by Equations (3) and
(4), respectively.

D1(p, a, A) = D0 ex
1(p−e)(α2 − β2a−γ Aδ) (3)

D2(p, a, A) = D0 ex
1 (α1 − β1 p)(k1

√
a + k2

√
A) (4)

Since x is a random variable, the expected profit functions for the manufacturer, the
retailer, and the whole supply chain are as follows:

Model 1:

E[Π1
m(w, A, t)] =

∫ +∞

−∞

[
D0 ex

1(w− c)(p−e)(α2 − β2a−γ A−δ)− A− ta
]

f (x)dx (5)

E[Π1
r (p, a)] =

∫ +∞

−∞

[
D0 ex

1(p− w− d)(p−e)(α2 − β2a−γ A−δ)− (1− t)a
]

f (x)dx (6)

E[Π1
sc(p, a, A)] =

∫ +∞

−∞

[
D0 ex

1(p− c− d)(p−e)(α2 − β2a−γ A−δ)− A− a
]

f (x)dx (7)

Model 2:

E[Π2
m(w, A, t)] =

∫ +∞

−∞

[
D0 ex

1 (w− c)(α1 − β1 p)(k1
√

a + k2
√

A)− A− ta
]

f (x)dx (8)

E[Π2
r (p, a)] =

∫ +∞

−∞

[
D0 ex

1(p− w− d)(α1 − β1 p)(k1
√

a + k2
√

A)− (1− t)a
]

f (x)dx (9)

E[Π2
sc(p, a, A)] =

∫ +∞

−∞

[
D0 ex

1(p− c− d)(α1 − β1 p)(k1
√

a + k2
√

A)− A− a
]

f (x)dx (10)

where Model 1 is based on the function of Szmerekovsky and Zhang [11] and Model 2 is
based on the function of Xie and Wei [14]. The subscripts m, r, and SC represent the manu-
facturer, retailer and whole supply chain system, respectively. The demand function must
be positive; hence, the condition p < α1

β1
must be established and satisfied. To avoid neg-

ative profit functions, the following conditions Πm > 0⇒ w > c , Πr > 0⇒ p > w + d ,
Πsc > 0⇒ p > c + d , and α1 − β1(c + d) > 0 are stated. In order to simplify the calcula-
tions, we apply an appropriate change in the variables as follows: α1

′ = α1 − β1(c + d),
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p′ = β1
α1
′ (p− (c + d)), w′ = β1

α1
′ (w− c), k1

′ = D0
α1
′2

β1
k1, and k2

′ = D0
α1
′2

β1
k2. Furthermore,

for the sake of simplicity, the superscript (′) is removed and the new profit functions for
the second model are stated as below (See [14])

Model 2:

E[Π2
m(w, A, t)] =

∫ +∞

−∞

[
ex

1w(1− p)(k1
√

a + k2
√

A)− A− ta
]

f (x)dx (11)

E[Π2
r (p, a)] =

∫ +∞

−∞

[
ex

1(p− w)(1− p)(k1
√

a + k2
√

A)− (1− t)a
]

f (x)dx (12)

E[Π2
sc(p, a, A)] =

∫ +∞

−∞

[
ex

1 p(1− p)(k1
√

a + k2
√

A)− a− A
]

f (x)dx (13)

In the next section, for both models, the optimal values of decision variables under the
well-known Nash, Manufacturer-Stackelberg, Retailer-Stackelberg and cooperative games
are determined.

3.1. Nash Game (NG)

In a Nash equilibrium game, the players with equal market power act independently
and simultaneously. So, here, there is no cooperation and the manufacturer and the retailer
make decisions individually about their own decision variables. Thus, in both models, the
following optimization problems for the manufacturer are solved:

Model 1:

Max
w,A,t

E[Π1
m(w, A, t)] = D0E[ex

1 ](w− c)(p−e)(α2 − β2a−γ A−δ)− A− ta

s.t. 0 ≤ A, c ≤ w ≤ 1, and 0 ≤ t ≤ 1
(14)

Model 2:

Max
w,A,t

E[Π2
m(w, A, t)] = E[ex

1 ]w (1− p)(k1
√

a + k2
√

A)− A− ta

s.t. 0 ≤ w ≤ 1, 0 ≤ A and 0 ≤ t ≤ 1
(15)

Under this game, whereas the partners of the chain play independently, it is obvious
that the manufacturer is not interested in participating in local advertising strategy because
it results in increasing its profit. Consequently, the optimum value of t will be zero because
it has a negative coefficient on the manufacturer’s objective function.

According to Jørgensen and Zaccour [8], Xie and Neyret [13] and SeyedEsfahani
et al. [16], the retailer sells the product if they get at least a minimum unit margin. Hence,
to solve the problem, the manufacturer’s profit margin is considered as a minimum level.
In turn, it is known that p− w ≥ w⇒ w ≤ p

2 . Thus, the optimum value for w is p
2 . In this

case, the objective functions of the retailer in both models are given by:
Model 1:

Max
p,a

E[Π1
r (p, a)] = D0E[ex

1 ](p− w− d)(p−e)(α2 − β2a−γ A−δ)− (1− t)a

s.t. w + d ≤ p and 0 ≤ a
(16)

Model 2:

MaxE[Π2
r (p, a)] = E[ex

1 ](p− w)(1− p)(k1
√

a + k2
√

A)− (1− t)a
s.t. w ≤ p ≤ 1 and 0 ≤ a

(17)

Theorem 1. The optimal values of the decision variables in the first model under a Nash game are
given in the second column of Table 1.
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Table 1. Optimal values for the decision variables under the four strategies for the first model.

CG SG-RL SG-ML NG Decision
Variable

e(c+d)
(e−1)

c+d
e−1 + c + d e(w+d)

e−1
2ed
e−2 p

- 1
2 (

c+d
e−1 ) +

c+d
2

Use Equation (A21) from
Appendix C

ed
e−2 w

δ
γ aco

(
D0E[ex

1 ]δβ2
e−e

2

×( c+d
e−1 )

1−e
a−γ

) 1
δ+1

δ
1+γ

1+γ+δ D
1

1+γ+δ

0 E[ex
1 ]

1
1+γ+δ (e− 1)

e−1
1+γ+δ

×e
−e

1+γ+δ (1− t)
−1

1+γ+δ (w + d)
−γ−e

1+γ+δ

×β2
1

1+γ+δ γ
−γ

1+γ+δ (γ + 1)
−(1+γ)
1+γ+δ

×
(

γ(w + d)t
+(w− c)(1− t)(e− 1)

) 1+γ
1+γ+δ

( δ
γ )

e(d−c)+2c
(2d) aN A

( γ
δ

) δ
δ+γ+1

×
(

D0E[ex
1 ]β2e−e

×( c+d
e−1 )

1−e

) 1
δ+γ+1

(
γ

β2
1

δ+1 δ
−δ

δ+1

δ+1

) δ+1
δ+γ+1

×
(

D0E[ex
1 ]

e−e

2

×( c+d
e−1 )

1−e

) 1
δ+γ+1

(
γD0 β2 A−δe−e( w+d

e−1 )
1−e

1−t

) 1
γ+1

(
γD0E[ex

1 ]β2e−e( 2d
e−2 )

1−e)
×
(
( δ

γ )
e(d−c)+2c

(2d)

)−δ
a

- 0 0 0 t

Proof. See Appendix A.

Theorem 2. The optimal values of the decision variables in the second model under a Nash game
are given in the second column of Table 2.

Table 2. Optimal values for the decision variables under the four strategies for the second model.

CG SG-RL SG-ML NG Decision Variable

1
2

1
2

(
√

16k2+16k+9−4k)+1
2(
√

16k2+16k+9−4k)
2
3 p

- 1
4

1√
16k2+16k+9−4k

1
3 w(

1
8 E[ex

1 ]k2

)2
E[ex

1 ]
2 k2

2

162

(
E[ex

1 ]k2
4

)2
(

(
√

16k2+16k+9−4k)−1

(
√

16k2+16k+9−4k)
2

)2 1
324 E[ex

1 ]
2k2

2 A

(
1
8 E[ex

1 ]k1

)2
E[ex

1 ]
2 k1

2

82

(
E[ex

1 ]k1
16

)2
(

(
√

16k2+16k+9−4k)−1√
16k2+16k+9−4k

)2

×
(

3+(
√

16k2+16k+9−4k)√
16k2+16k+9−4k

)2

1
324 E[ex

1 ]
2k2

1 a

- 0 5+4k−
√

16k2+16k+9
3−4k+

√
16k2+16k+9

0 t

Proof. See Appendix B.

3.2. Stackelberg Game—The Manufacturer Is a Leader (SG-ML)

Under this non-cooperative game, the manufacturer as a powerful member of the
chain, in terms of its reputation and popularity, is considered as a leader of the market
while the retailer plays a follower role. In this game, the best answers of the retailer, as a
follower, should be determined first; the leader’s decision problem is solved based on the
follower’s responses. Hence, the retailer’s best responses are as follows:

Model 1:

pSM∗
1 =

e(w + d)
e− 1

(18)
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aSM∗
1 =

γD0E[ex
1 ]β2 A−δe−e(w+d

e−1 )
1−e

1− t

 1
γ+1

(19)

Model 2:
pSM∗

2 =
1 + w

2
(20)

aSM∗
2 =

(
E[ex

1 ]k1

2(1− t)
(

1− w
2

)
2
)2

(21)

To solve the manufacturer’s decision problem, the optimal values of pSM∗ and aSM∗

are substituted in the manufacturer’s profit function. Then, the partial derivatives of the
manufacturer’s profit function regarding ASM and tSM are taken. The value of t will be
equal to t = 1+ (w+d)

γ(w+d)−(e−1)(w−c) ; the same as when there is no noise effect. Szmerekovsky

and Zhang [11] have also shown that the optimal value of t = 1 + (w+d)
γ(w+d)−(e−1)(w−c) is

always equal to zero, and in this case (with noise effect), using the same manner, it can be
shown that the optimal value of t∗ is zero, too (see Szmerekovsky and Zhang [11]).

Theorem 3. The optimal values of the decision variables in the first model under a Stackelberg
game when the manufacturer is the leader are shown in the third column of Table 1.

Proof. See Appendix C.

Theorem 4. The optimal values of the decision variables in the second model under a Stackelberg
game when the manufacturer is the leader are shown in the third column of Table 2.

Proof. See Appendix D.

3.3. Stackelberg Game—The Retailer Is a Leader (SG-RL)

As in the previous section, here, we model the relation between the manufacturer and
the retailer as a consecutive non-cooperative Stackelberg game. Now, it is important to
remark that the retailer is a powerful member. In other words, the retailer is a leader and
the manufacturer is a follower. Obviously, the first step is to find the manufacturer’s best
responses as a follower.

The manufacturer’s profit must always be positive (i.e., Πm > 0). Hence,
w > c ⇒ w− c > 0 should be satisfied. On the other hand, in the whole chain, p −
(c + d) > 0 should be established. Now, we define w′ = w− c and p′ = p− (c + d). So,
the retailer’s profit function in Equation (16) is rewritten as follows.

Max
p,a

E[Π1
r (p, a)] = D0E[ex

1 ](p′ − w′)(p′ + (c + d))−e × (α2 − β2a−γ A−δ)− (1− t)a

s.t. w′ ≤ p′ and 0 ≤ a
(22)

According to Jørgensen and Zaccour [8], Xie and Neyret [13] and SeyedEsfahani et al. [16],
the wholesale price of the first model can be written as p′ − w′ ≥ w′ ⇒ w′ ≤ p′

2 . Thus, the op-

timal value of w′ is p′
2 and the optimal value of A is equal to

(
δD0E[ex

1 ]β2(w− c)(p′)−ea−γ
) 1

δ+1 .
This is the result of the manufacturer’s problem under a Nash game. Moreover, from the
manufacturer’s point of view, the optimal value of the participation rate t is zero. Hence, in
this game, the optimal decision variables of the retailer in the first model are calculated by
substituting the optimal values of t, w′, and A into Equation (22). Similarly for the second

model, we have tSR∗ = 0, wSR∗ = p
2 , and ASR∗ =

(
1
2 E[ex

1 ]k2w(1− p)
)2

. Then by replacing
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tSR∗, wSR∗, and ASR∗ into Equation (17), the optimal decisions of the retailer can be easily
obtained.

Theorem 5. The optimal values of the decision variables for the first model under a Stackelberg
game when the retailer is the leader are given in the fourth column of Table 1.

Proof. See Appendix E.

Theorem 6. The optimal values of the decision variables for the second model under a Stackelberg
game when the retailer is the leader are given in the fourth column of Table 2.

Proof. See Appendix F.

3.4. Cooperative Game (CG)

In a cooperative game, the manufacturer and the retailer cooperate, and they are
willing to increase the whole system’s profit to promote their profits more than non-
cooperative games. Therefore, the total profit function of the chain for both models is
optimized in order to obtain the optimal values of the decision variables.

Model 1:

Max
p,a,A

E[∏1
sc(p, a, A)] = D0E[ex

1 ](p− c− d)(p−e)(α2 − β2a−γ A−δ) − a− A

s.t. c + d ≤ p and 0 ≤ a, A
(23)

Model 2:

Max
p,a,A

E[∏2
sc(p, a, A)] = E[ex

1 ]p(1− p)(k1
√

a + k2
√

A)− a− A

s.t. 0 ≤ p ≤ 1 and 0 ≤ a, A
(24)

Under this approach, the partners of the chain only make a decision on pCO, ACO, and
aCO as the decision variables. Conversely, the variables w and t do not affect the total profit
since these are inner variables of the supply chain.

Theorem 7. The optimal values of the decision variables for the first model under a cooperative
game are shown in the last column of Table 1.

Proof. See Appendix G.

Theorem 8. The optimal values of the decision variables for the second model under a cooperative
game are shown in the last column of Table 2.

Proof. See Appendix H.

To measure the efficiency of a supply chain, the most important criterion is the total
profit of the whole chain. According to Xie and Neyret [13], SeyedEsfahani et al. [16], and
Aust and Buscher [17], the members of the chain agree to cooperate only when their profit
is higher than those under the non-cooperative games. This means that:

∆Πm = Πc
m −Πmax

m ≥ 0 (25)

∆Πr = Πc
r −Πmax

r ≥ 0 (26)

where Πc
m and Πc

r are the profit of the manufacturer and the retailer in the cooperative game,
respectively. Πmax

m and Πmax
r are the largest profit of the manufacturer and the retailer in

every non-cooperative game, respectively. In turn, if inequalities (25) and (26) are satisfied,
the cooperation is possible. In other words, the manufacturer and the retailer agree to
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cooperate with each other when they gain higher profit than with other non-cooperative
attitudes. Thus, the following inequality for the whole supply chain is proposed:

∆Πm+r = ∆Πm + ∆Πr = Πc
m+r −Πmax

m −Πmax
r ≥ 0 (27)

Note that to find Πmax
m and Πmax

r , it is necessary to compare the results of the games
given in Sections 3.1–3.3.

4. Numerical Example

In this section, two numerical examples are presented to clarify the validation of the
proposed models.

Example 1. The following parameter values are considered: D0 = 5, c = 1, d = 1, α2 = 1000,
β2 = 500, δ = 1, γ = 1, e1 = 3, k1 = 2, and k2 = 3. It is assumed that the random element
to model noise effect (x) has a normal distribution with parameters (µ = 0, σ = 1) then

E[ex
1 ] = eµ+ σ

2
1 =

√
e1 = 1.6487. The optimal values of the decision variables in both models

under the four different strategies are summarized in Tables 3 and 4, respectively.

Table 3. The results for the numerical example 1 in the first model.

CG SG-RL SG-ML NG Decision
Variable

3 2.3333 4.4669 6 p1

- 1.1667 1.9780 3 w1

5.3445 5.3445 1.9510 38.1644 A1

5.3445 2.6722 5.9408 38.1644 a1

- 0 0 0 t1

- 99.0453 84.6017 38.1382 E[Π1
m]

- 101.6550 125.8264 38.1382 E[Π1
r ]

289.2814 200.7004 210.4282 76.2764 E[Π1
sc]

Table 4. The results for the numerical example 1 in the second model.

CG SG-RL SG-ML NG Decision
Variable

0.5000 0.5000 0.7168 0.6667 p2

- 0.2500 0.4335 0.3333 w2

0.3822 0.0956 0.0922 0.0755 A2

0.1699 0.1699 0.0042 0.0336 a2

- 0 0.5075 0 t2

- 0.2655 0.1163 0.1424 E[Π2
m]

- 0.1913 0.1356 0.1847 E[Π2
r ]

0.5521 0.4568 0.2519 0.3271 E[Π2
sc]

As it was mentioned in the previous section, both players agree to cooperate only
when their profits are higher than under non-cooperative games. So, according to the
assumptions, both players have the minimum benefits Πm = 99.0453 and Πr = 125.8264
in the first model and Πm = 0.2655 and Πr = 0.1913 in the second model. The minimum
benefits that both sides claim together are:
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Model 1:

ΠSR
m + ΠSR

r = 99.0453 + 125.8264 = 224.8717 < Πc
m+r = 289.2814 (28)

Model 2:

ΠSR
m + ΠSR

r = 0.2655 + 0.1913 = 0.4568 < Πc
m+r = 0.5521 (29)

Obviously, the minimum benefits that both sides claim is lower than that of in the
cooperative game. Therefore, there exists an incentive for cooperation between the manu-
facturer and the retailer. Notice that the non-cooperative settings are not beneficial to any
of the players because in the non-cooperative settings, both players have lower profits.

Example 2. Here, the parameters are as follows: D0 = 5, c = 1, d = 1, α2 = 1400, β2 = 700,
δ = 1.4, γ = 1, e1 = 3, k1 = 3, and k2 = 4. It is considered that the random element
to model noise effect (x) has a normal distribution with parameters (µ = 0, σ = 1) then

E[ex
1 ] = eµ+ σ

2
1 =

√
e1 = 1.6487. The optimal values for the decision variables in both models

under the different game-theoretic approaches are given in Tables 5 and 6, respectively.

Table 5. The results for the numerical example 2 in the first model.

CG SG-RL SG-ML NG Decision
Variables

3 2.3333 4.4682 6 p1

- 1.1667 1.9791 3 w1

5.5582 5.4994 2 45.0836 A1

5.0489 2.4477 5.3966 50.9113 a1

- 0 0 0 t1

- 113.3375 96.6574 41.3799 E[Π1
m]

- 116.3238 144.1467 40.6934 E[Π1
r ]

330.3593 229.6614 240.7929 76.9857 E[Π1
sc]

Table 6. The results for the numerical example 2 in the second model.

CG SG-RL SG-ML NG Decision
Variable

0.5000 0.5000 0.7170 0.6667 p2

- 0.2500 0.4334 0.3333 w2

0.5656 0.1414 0.1368 0.1117 A2

0.2514 0.2514 0.0067 0.0502 a2

- 0 0.4948 0 t2

- 0.3928 0.1738 0.2111 E[Π2
m]

- 0.2828 0.1997 0.2707 E[Π2
r ]

0.8171 0.6758 0.3735 0.4842 E[Π2
sc]

Similarly, it is found that the players prefer to collaborate with each other due to
higher profit.

5. Sensitivity Analysis

This section provides some sensitivity analyses for different values of parameters
to investigate their influence on the decision variables. Tables 7–14 show the sensitivity
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analyses for all four games in both models. Tables 7–10 present the results of the first model
and Tables 11–14 show the results of the second model.

In the Nash game, based on the results shown in Table 7, it is observed that:

• The pN
1 , wN

1 , AN
1 , aN

1 , and tN
1 are not sensitive regarding α2 changes while E[Π1

m],
E[Π1

r ], and E[Π1
sc] are highly sensitive such that increasing α2 causes increasing E[Π1

m],
E[Π1

r ], and E[Π1
sc], and vice versa.

• Additionally, pN
1 , wN

1 , and tN
1 are not sensitive regarding β2 and δ changes while AN

1 ,
aN

1 , E[Π1
m], E[Π1

r ], and E[Π1
sc] are sensitive as when β2 increases, aN

1 and AN
1 increase

and E[Π1
m], E[Π1

r ], and E[Π1
sc] decrease. Moreover, decreasing δ decrease aN

1 and AN
1

and E[Π1
m], E[Π1

r ], and E[Π1
sc] increase.

• Furthermore, pN
1 , wN

1 , aN
1 , and tN

1 are not sensitive regarding γ changes while E[Π1
r ] is

slightly sensitive and AN
1 , E[Π1

m], and E[Π1
sc] are sensitive so that when γ increases

AN
1 , E[Π1

r ] increase and E[Π1
m] and E[Π1

sc] decrease, and vice versa.
• Moreover, pN

1 , wN
1 , AN

1 , aN
1 , E[Π1

m], E[Π1
r ], and E[Π1

sc] are highly and tN
1 is not sensitive

regarding e1 changes. Nonetheless, when e1 increases all of them decrease and vice
versa.

• Likewise, pN
1 , wN

1 and tN
1 are not sensitive regarding E[ex

1 ] changes while AN
1 , aN

1 ,
E[Π1

m], E[Π1
r ], and E[Π1

sc] are sensitive in order that increasing E[ex
1 ], increases AN

1 , aN
1 ,

E[Π1
m], E[Π1

r ], and E[Π1
sc], and vice versa.

Table 7. The results of the sensitivity analysis in the Nash game for the first model.

E[Π1
sc] E[Π1

r ] E[Π1
m] tN

1 aN
1 AN

1 wN
1 pN

1 % Changes Parameters

80.1 80.1 80.1 0 0 0 0 0 +40

α2 = 1000
40.0 40.0 40.0 0 0 0 0 0 +20
−40.0 −40.0 −40.0 0 0 0 0 0 −20
−80.1 −80.1 −80.1 0 0 0 0 0 −40

−40.0 −40.0 −40.0 0 40.0 40.0 0 0 +40

β2 = 500−20.0 −20.0 −20.0 0 20.0 20.0 0 0 +20
20.0 20.0 20.0 0 −20.0 −20.0 0 0 −20
40.0 40.0 40.0 0 −40.0 −40.0 0 0 −40

−20.0 0.1 −40.0 0 0 40.0 0 0 +40

γ = 1−10.0 −0.04 −20 0 0 20.0 0 0 +20
9.9 −0.1 19.9 0 0 −20.0 0 0 −20

19.6 −0.4 39.6 0 0 −40.0 0 0 −40

−37.3 −60.2 −14.4 0 60.2 14.4 0 0 +40

δ = 1
−14.1 −24.4 −3.7 0 24.5 3.7 0 0 +20

5.8 16.3 4.7 0 −16.3 −4.6 0 0 −20
1.6 26.1 23.0 0 −26.4 −22.7 0 0 −40

−64.8 −64.8 −64.8 0 −64.7 −64.7 −36.4 −36.4 +40

e = 3
−40.0 −40.0 −40.0 0 −39.9 −39.9 −25.0 −25.0 +20
38.8 38.8 38.8 0 38.8 38.8 100.0 100.0 −20

Infeasible −40

40.0 40.0 40.0 0 40.0 40.0 0 0 +40

E[ex
1 ] = 1.648720.0 20.0 20.0 0 20.0 20.0 0 0 +20

−20.0 −20.0 −20.0 0 −20.0 −20.0 0 0 −20
−40.1 −40.1 −40.1 0 −40.0 −40.0 0 0 −40
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Table 8. The results of the sensitivity analysis in the SG-ML for the first model.

E[Π1
sc] E[Π1

r ] E[Π1
m] tSM

1 aSM
1 ASM

1 wSM
1 pSM

1 % Changes Parameters

43.0 43.2 42.8 0 −0.3 0.1 0.3 0.2 +40

α2 = 1000
21.5 21.6 21.4 0 −0.2 0.1 0.2 0.1 +20
−21.5 −21.6 −21.4 0 0.3 −0.1 −0.3 −0.2 −20
−43.0 −43.2 −42.8 0 0.7 −0.4 −0.8 −0.5 −40

−0.9 −0.9 −0.8 0 12.0 11.8 −0.1 −0.1 +40

β2 = 500−0.5 −0.5 −0.4 0 6.3 6.2 −0.1 −0.047 +20
0.5 0.6 0.5 0 −7.2 −7.1 0.1 0.1 −20
1.2 1.2 1.1 0 −15.8 −15.6 0.2 0.1 −40

1.7 1.3 2.1 0 9.02 −4.0 0 0 +40

γ = 10.9 0.7 1.1 0 5.7 −2.6 0 0 +20
−8.0 −0.6 −0.9 0 −7.9 4.6 0 0 −20
−1.8 −1.31 −2.4 0 −19.8 12.8 0 0 −40

1.2 1.6 0.75 0 −39.2 −3.2 0 0 +40

δ = 1
0.6 0.7 0.41 0 −20.5 −2.8 0 0 +20
−0.8 −1.01 −0.49 0 25.9 6.2 0 0 −20
−1.4 −1.9 −1.15 0 61.2 16.5 0 0 −40

−69.2 −69.3 −69.4 0 −35.6 −31.9 −4.3 −3.9 +40

e = 3
−45.7 −45.5 −45.8 0 −20.1 −20.2 −2.6 −2.5 +20
88.6 89.1 88.1 0 27.3 24.2 3.4 4 −20
293.8 290.9 296.4 0 67.4 62.3 8.9 8.8 −40

42.1 42.2 41.9 0 11.6 12.0 0.2 0.2 +40

E[ex
1 ] = 1.648721.0 21.1 20.9 0 6.1 6.3 0.1 0.1 +20

−21.0 −21.0 −20.9 0 −7.0 −7.2 −0.2 −0.1 −20
−41.8 −41.9 −41.7 0 −15.3 −15.8 −0.5 −0.3 −40

Table 9. The results of the sensitivity analysis in the SG-RL for the first model.

E[Π1
sc] E[Π1

r ] E[Π1
m] tSR

1 aSR
1 ASR

1 wSR
1 pSR

1 % Changes Parameters

43.1 42.5 43.7 0 0 0 0 0 +40

α2 = 1000
21.6 21.3 21.8 0 0 0 0 0 +20
−21.6 −21.3 −21.8 0 0 0 0 0 −20
−43.1 −42.5 −43.7 0 0 0 0 0 −40

−0.9 −0.7 −1.1 0 11.9 11.9 0 0 +40

β2 = 500−0.5 −0.4 −0.6 0 6.3 6.3 0 0 +20
0.6 0.5 0.7 0 −7.2 −7.2 0 0 −20
1.2 1.0 1.4 0 −15.7 −15.7 0 0 −40

1.4 1.2 1.6 0 8.6 −4.0 0 0 +40

γ = 10.8 0.6 0.9 0 5.4 −2.6 0 0 +20
−1.0 −0.7 −1.2 0 −8.5 4.6 0 0 −20
−2.0 −1.4 −2.7 0 −21.5 12.8 0 0 −40

1.1 1.5 0.7 0 −37.1 −3.2 0 0 +40

δ = 1
0.6 0.8 0.4 0 −21.2 −2.8 0 0 +20
−0.7 −0.9 −0.5 0 28.6 6.2 0 0 −20
−1.6 −2.0 −1.2 0 67.0 16.5 0 0 −40

−72.1 −71.6 −72.7 0 −33.6 −33.6 −4.1 −4.1 +40

e = 3
−47.5 −47.1 −47.9 0 −19.0 −19.0 −2.4 −2.4 +20
96.3 95.5 97.2 0 26.1 26.1 3.6 3.6 −20
309.5 306.4 312.7 0 65.1 65.1 9.5 9.5 −40

42.2 41.8 42.6 0 11.9 11.9 0 0 +40

E[ex
1 ] = 1.648721.1 20.9 21.3 0 6.3 6.3 0 0 +20

−21.0 −20.8 −21.2 0 −7.2 −7.2 0 0 −20
−41.9 −41.5 −42.2 0 −15.7 −15.9 0 0 −40
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Table 10. The results of the sensitivity analysis with a cooperative game for the first model.

E[Π1
sc] aco

1 Aco
1 pco

1 % Changes Parameters

42.2 0 0 0 +40

α2 = 1000
21.1 0 0 0 +20
−21.1 0 0 0 −20
−42.2 0 0 0 −40

−0.7 11.9 11.9 0 +40

β2 = 500−0.3 6.3 6.3 0 +20
0.4 −7.2 −7.2 0 −20
0.9 −15.7 −15.7 0 −40

1.0 −9.4 −35.3 0 +40

γ = 10.6 −4.7 −20.6 0 +20
−0.7 4.1 30.1 0 −20
−1.7 6.3 77.2 0 −40

1.1 −28.5 0.1 0 +40

δ = 1
0.6 −15.9 0.9 0 +20
−0.7 20.1 −3.9 0 −20
−1.5 45.6 −12.6 0 −40

−72.8 −33.6 −33.6 −12.5 +40

e = 3
−48.5 −19.0 −19.0 −7.7 +20
104.6 26.1 26.1 14.3 −20
366.1 65.1 65.1 50.0 −40

41.6 11.9 11.9 0 +40

E[ex
1 ] = 1.648720.8 6.3 6.3 0 +20

−20.7 −7.2 −7.2 0 −20
−20.8 −15.7 −15.7 0 −40

Table 11. The results of the sensitivity analysis with a Nash game for the second model.

E[Π2
sc] E[Π2

r ] E[Π2
m] tN

2 aN
2 AN

2 wN
2 pN

2 % Changes Parameters

29.6 17.4 45.4 0 95.8 0 0 0 +40

k1 = 2
13.5 8.0 20.9 0 43.8 0 0 0 +20
−11.1 −6.6 −16.9 0 −36.0 0 0 0 −20
−19.7 −11.7 −30.0 0 −64.0 0 0 0 −40

66.5 78.5 51.1 0 0 96.0 0 0 +40

k2 = 3
30.5 35.9 23.5 0 0 44.0 0 0 +20
−24.9 −29.5 −19.0 0 0 −36.0 0 0 −20
−44.3 −52.4 −33.8 0 0 −64.0 0 0 −40

96.1 95.9 96.3 0 95.8 96.0 0 0 +40

E[ex
1 ] = 1.648744.0 43.9 44.2 0 43.8 44.0 0 0 +20

−36.0 −36.1 −35.9 0 −36.0 −36.0 0 0 −20
−64.0 −64.0 −64.0 0 −64.0 −64.0 0 0 −40
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Table 12. The results of the sensitivity analysis with a SG-ML for the second model.

E[Π2
sc] E[Π2

r ] E[Π2
m] tSM

2 aSM
2 ASM

2 wSM
2 pSM

2 % Changes Parameters

19.6 17.6 22.0 −4.4 138.1 −1.7 −3.3 −1.0 +40

k1 = 2
9.0 8.2 10.0 −2.3 61.9 −0.9 −1.8 −0.5 +20
−7.1 −7.0 −7.3 2.7 −42.9 1.0 2.1 0.6 −20
−12.8 −13.1 −12.6 5.7 −71.4 1.8 4.5 1.4 −40

77.0 77.0 76.9 3.9 −14.3 98.6 3.1 0.9 +40

k2 = 3
35.2 35.5 34.8 2.2 −9.5 45.1 1.7 0.5 +20
−28.7 −29.4 −27.9 −2.9 14.3 −36.7 −2.2 −0.7 −20
−50.6 −52.3 −48.7 −6.7 35.7 −65.0 −5.1 −1.5 −40

96.1 96.0 96.1 0 97.6 96.0 0 0 +40

E[ex
1 ] = 1.648744.1 44.0 44.1 0 45.2 44.0 0 0 +20

−36.0 −36.0 −35.9 0 −35.7 −36.0 0 0 −20
−64.0 −64.0 −64.1 0 −64.3 −64.0 0 0 −40

Table 13. The results of the sensitivity analysis in the SG-RL for the second model.

E[Π2
sc] E[Π2

r ] E[Π2
m] tSR

2 aSR
2 ASR

2 wSR
2 pSR

2 % Changes Parameters

35.7 −0.1 61.4 0 96.0 0 0 0 +40

k1 = 2
16.4 −0.1 28.1 0 44.0 0 0 0 +20
−13.4 −0.1 −23.1 0 −36.0 0 0 0 −20
−23.8 −0.1 −41.0 0 −64.0 0 0 0 −40

60.2 95.8 34.5 0 0 95.9 0 0 +40

k2 = 3
27.6 43.9 15.8 0 0 43.9 0 0 +20
−22.6 −36.0 −13.0 0 0 −36.0 0 0 −20
−40.2 −64.0 −23.1 0 0 −64.0 0 0 −40

77.7 161.4 17.3 0 −51.0 96.0 0 0 +40

E[ex
1 ] = 1.648730.6 92.1 −13.8 0 −64.0 43.9 0 0 +20

−42.0 −14.6 −61.7 0 −84.0 −36.0 0 0 −20
−67.4 −52.0 −78.5 0 −91.0 −64.0 0 0 −40

Table 14. The results of the sensitivity analysis in the cooperative game for the second model.

E[Π2
sc] aco

2 Aco
2 pco

2 % Changes Parameters

29.5 96.0 0 0 +40

k1 = 2
13.5 44.0 0 0 +20
−11.1 −36.0 0 0 −20
−19.7 −64.0 0 0 −40

66.5 0 96.0 0 +40

k2 = 3
30.5 0 44.0 0 +20
−24.9 0 −36.0 0 −20
−44.3 0 −64.0 0 −40

96.0 96.0 96.0 0 +40

E[ex
1 ] = 1.648744.0 44.0 44.0 0 +20

−36.0 −36.0 −36.0 0 −20
−64.0 −64.0 −64.0 0 −40

Hence, under the first model where the Nash game is established between the man-
ufacturer and the retailer, it was found that all the decision variables are considerably
sensitive regarding the noise effect changes. It means that the noise effect changes of a new
product signals to the manufacturer and the retailer to change their advertising policies
so that increasing the noise effect motivates the manufacturer and the retailer to advertise
more, and although their costs increase, their profits are higher.
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In the Stackelberg game, when the manufacturer is the leader (See Table 8), it is
concluded that:

• The pSM
1 , wSM

1 , ASM
1 , aSM

1 are slightly sensitive concerning α2 changes while E[Π1
m],

E[Π1
r ], and E[Π1

sc] are sensitive. Conversely, when α2 increases, pSM
1 , wSM

1 , ASM
1 ,

E[Π1
m], E[Π1

r ], and E[Π1
sc] increase and aSM

1 decreases.
• According to Szmerekovsky and Zhang [11], tSM∗

1 is zero; thus, tSM
1 is not sensitive

regarding the parameter changes.
• Likewise, pSM

1 , wSM
1 , E[Π1

m], E[Π1
r ], and E[Π1

sc] are slightly sensitive regarding β2

changes while aSM
1 and ASM

1 are sensitive so that when β2 increases, aSM
1 and ASM

1
increase and pSM

1 , wSM
1 , E[Π1

m], E[Π1
r ], and E[Π1

sc] decrease, and vice versa.
• Similarly, pSM

1 , wSM
1 , ASM

1 , aSM
1 , E[Π1

m], E[Π1
r ], and E[Π1

sc] are sensitive regarding e1
changes. Nonetheless, when e1 increases all of them decrease and vice versa.

• Moreover, pSM
1 and wSM

1 are slightly sensitive regarding E[ex
1 ] changes while ASM

1 ,
aSM

1 , E[Π1
m], E[Π1

r ], and E[Π1
sc] are sensitive. When E[ex

1 ] increases all of them increase
and vice versa.

Therefore, under the Stackelberg manufacturer game, it was found that all the decision
variables are significantly sensitive regarding the noise effect changes. It is stated that the
noise effect is an important factor on the sales of a new product so that when the effect of
noise increases, the chain’s members are incentivized to advertise their product more than
earlier, leading to increased popularity of the product, promoting their market share, and
consequently enhancing the chain profit.

Table 9 shows the results of the Stackelberg game when the retailer is the leader. As it
is shown:

• The α2 and β2 changes the influence on E[Π1
m], E[Π1

r ], and E[Π1
sc]. When α2 increases

and β2 decreases, E[Π1
m], E[Π1

r ], and E[Π1
sc], increase and vice versa. Furthermore,

ASR
1 and aSR

1 are sensitive regarding β2 changes so that when β2 increases, ASR
1 and

aSR
1 increase.

• Equally, E[Π1
m], E[Π1

r ], and E[Π1
sc] are slightly sensitive regarding γ changes.

• Moreover, ASR
1 and aSR

1 are sensitive regarding γ and δ changes such that when γ

increases, aSR
1 , E[Π1

m], E[Π1
r ], and E[Π1

sc] increase and ASR
1 decreases and vice versa.

Furthermore, increasing δ increase, aSR
1 and ASR

1 increase and E[Π1
m], E[Π1

r ], and
E[Π1

sc], decrease and vice versa.
• Additionally, pSR

1 and wSR
1 are slightly sensitive regarding e1 changes while aSR

1 , ASR
1 ,

E[Π1
m], E[Π1

r ], and E[Π1
sc] are highly sensitive so that when e1 increases, pSR

1 , wSR
1 ,

ASR
1 , aSR

1 , E[Π1
m], E[Π1

r ], and E[Π1
sc] decrease, and vice versa.

• Additionally, ASR
1 , aSR

1 , E[Π1
m], E[Π1

r ], and E[Π1
sc] are sensitive regarding E[ex

1 ] changes.
When E[ex

1 ] increases, ASR
1 , aSR

1 , E[Π1
m], E[Π1

r ], and E[Π1
sc] increase, and vice versa.

Then, under the Stackelberg retailer game, it was found that the noise effect is an
efficient factor for a new product launched to the market due to the fact that all the decision
variables are significantly sensitive regarding its changes.

Table 10 presents the results under the cooperative game. From the results given in
Table 10, it is easy to see that:

• E[Π1
sc] is slightly sensitive regarding α2 and δ changes while Aco

1 , aco
1 and E[Π1

sc] are
sensitive concerning β2, γ and δ changes so that when γ increases, aco

1 and Aco
1 decrease

and E[Π1
sc] increases. However, when δ increases, Aco

1 and E[Π1
sc] increase and aco

1
decreases and vice versa.

• Furthermore, pco
1 , aco

1 and Aco
1 are sensitive regarding e1 changes while E[Π1

sc] is highly
sensitive. When e1 increases, pco

1 , aco
1 and Aco

1 , and E[Π1
sc] decrease, and vice versa.

Also, Aco
1 , aco

1 and E[Π1
sc] are sensitive regarding E[ex

1 ] changes.

Thus, under the cooperative game, similarly, the noise effect plays a remarkable role
in the chain profit changes so that increasing the effect of noise in the market, which is
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originated from satisfaction or dissatisfaction of customers, promotes the total profit of the
chain due to more advertising by the partners.

Under the second model, when the Nash game is established among the manufacturer
and the retailer (See Table 11), one can conclude that:

• Similar to the first model, k1 and k2 directly affect E[Π2
m], E[Π2

r ] and E[Π2
sc]. Also aN

2
and AN

2 are highly sensitive regarding k1 and k2 changes, respectively. Additionally,
AN

2 , aN
2 , E[Π2

m], E[Π2
r ], and E[Π2

sc] are highly sensitive regarding E[ex
1 ] changes so that

by increasing E[ex
1 ] then aN

2 , AN
2 , E[Π2

m], E[Π2
r ] and E[Π2

sc] increase and vice versa.

Under the Stackelberg game, when the manufacturer is the leader, from Table 12, it is
concluded that:

• As with the previous model, E[Π2
m], E[Π2

r ] and E[Π2
sc] are sensitive regarding the

changes of k1 and k2 while pSM
2 , wSM

2 , tSM
2 are slightly sensitive. Additionally aSM

2
and ASM

2 are highly sensitive regarding k1 and k2 changes, respectively. Furthermore,
ASM

2 , aSM
2 , E[Π2

m], E[Π2
r ], and E[Π2

sc] are highly sensitive regarding E[ex
1 ] changes so

that by increasing E[ex
1 ] then ASM

2 , aSM
2 , E[Π2

m], E[Π2
r ], and E[Π2

sc] increase, and vice
versa.

In the Stackelberg game, when the retailer is the leader, it is easy to observe (See
Table 13) that:

• Here, it is found that k1 and k2 highly influence E[Π2
m] and E[Π2

r ], respectively, and
subsequently affect E[Π2

sc]. Additionally, aSR
2 and ASR

2 are highly sensitive regarding
the changes of k1 and k2, respectively. Moreover, ASR

2 , aSR
2 , E[Π2

m], E[Π2
r ], and E[Π2

sc]
are highly sensitive regarding E[ex

1 ] changes so that by increasing E[ex
1 ] then aSR

2 , ASR
2 ,

E[Π2
m], E[Π2

r ] and E[Π2
sc] increase, and vice versa.

Finally, in the cooperative game, whose results are given in Table 14, it was found that:

• In this case, aco
2 is highly sensitive and E[Π2

sc] is sensitive regarding k1 changes. Con-
versely, Aco

2 and E[Π2
sc] are highly sensitive so that increasing k1 leads to an increase

Aco
2 and E[Π2

sc], and vice versa. Moreover, pco
2 is not sensitive concerning E[ex

1 ] changes
while Aco

2 , aco
2 , and E[Π2

sc] are highly sensitive.

Similar to the first model, it is concluded that the noise effect changes affect all the
decision variables more than other parameters. So, this issue is correctly considered in the
market demand of the new product and it has a considerable effect on the chain profit.

6. Conclusions

This research evaluates pricing and marketing decisions under a cooperative adver-
tising strategy in a two-echelon supply chain comprised of one manufacturer and one
retailer. Therefore, the pricing, advertising, and noise effect are proposed as the market-
ing policies into the market demand by considering two well-known different demand
functions under four game-theoretic attitudes consisting of three non-cooperative games
(i.e., Nash equilibrium, Stackelberg equilibrium when the manufacturer is the leader, and
Stackelberg equilibrium when the retailer is the leader) and one cooperative game. Using
a numerical example, it was found that under the non-cooperative approaches, the sum
of the minimum benefits that both sides gain is lower than that of under the cooperative
game.

In the first model, the price changes have a large impact on the demand. Under a non-
cooperative environment, the retailer tries to increase his/her profits through increasing
the local advertising because it causes an increase to their market share and consequently
enhances their profit. In the second model, it is observed that the effects of national
advertising on the manufacturer’s, retailer’s and whole supply chain’s profits are higher
than local advertising. Moreover, in both models, it was shown that both global and local
advertising are sensitive regarding the noise effect changes such that its changes signal
to the manufacturer and the retailer to advertise more due to increasing the new product
popularity. So, the total profits of the manufacturer, the retailer, as well as the whole supply
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chain are sensitive regarding the noise effect changes and increasing with increasing the
effect of noise of the new product.

Additionally, in the second model, it was indicated that the sensitivities of the ad-
vertising and profit function regarding the changes of the noise effect are higher than the
sensitivities of the advertising and profit function, in the first model. Furthermore, in the
second model, it was found that the most influential parameter on the profit function is the
noise effect parameter. Thus, it can be claimed that the noise effect in the market demand
of the new product is correctly considered and it has a considerable impact on the chain
profit. However, in the non-cooperative games, the manufacturer tries to globally advertise
less than the retailer. So, increasing the retailer’s profit will cause a bigger selling price,
and this makes higher profits for the retailer compared with the manufacturer’s profit.
Consequently, the manufacturer, in order to not be removed from the market, has to pay
the co-op advertising costs and they prefer to cooperate in advertising.

There are several research directions that can be carried out, which can be outlined as
follows:

• Consider other types of demand functions with even asymmetric or non-asymmetric
information.

• Allow that parameters and variables be time-dependent (dynamic).
• Consider a two-echelon supply chain comprised of two manufacturers and one retailer

where there exits competition between the manufacturers.
• Extend the present research work to a three-echelon supply chain consisting of a

supplier, a manufacturer, and a retailer.
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Abbreviations

Variables
p: Retail price
w: Wholesale price
A: Global advertising expenditures
a: Local advertising expenditures
t: Advertising participation rate
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Parameters
D0: Base demand rate
α1: Price demand potential
β1: Price sensitivity
α2: Market cap or sales saturate asymptote
β2: Impact of local advertisement on market demand
γ: Quasi-local advertising elasticity
δ: Quasi-global advertising elasticity
e: Price-elasticity index
k1: Effectiveness of local advertising
k2: Effectiveness of global advertising
c: Manufacturer’s unit production cost
d: Retailer’s unit handling cost
e1: Noise sensitivity index
x: Random element to model noise effect
Π: Expected profit

Appendix A. Proof of Theorem 1

For the first model, we can claim that the manufacturer’s profit function is a concave
function regarding A because the second derivative of the manufacturer’s profit function
regarding A is negative. Therefore, we have:

∂2E[Π1
m(w, A, t)]
∂A2 = −(δ + 1)δD0E[ex

1 ]β2(w− c)(p−e)a−γ A−(δ+2) < 0 (A1)

Consequently, the optimal value of A is now obtained by setting the first derivative
regarding to A equal to zero, which is given by

∂E[Π1
m(w, A, t)]
∂A

= δD0E[e1
x]β2(w− c)(p−e)a−γ A−(δ+1) − 1 = 0

So, we have:
t∗ = 0 (A2)

w∗ =
p
2

(A3)

A∗ =
(
δD0E[ex

1 ]β2(w− c)(p−e)a−γ
) 1

δ+1 (A4)

To solve the retailer’s problem, z is defined as z = (p − w − d)(p−e) ; w + d ≤ p.
Taking the partial derivative of z regarding p yields:

∂z
∂p

= (p−e)− ep−(e+1)(p− w− d) = 0 ⇒ (p−e−1)(p− e(p− w− d)) = 0 (A5)

From Equation (A5), it is easy to see that p−e−1 > 0. Thus, the value of p = p1

is equal to e(w+d)
e−1 . The range of z is determined so that p = w + d⇒ z = 0 , p = p1 ⇒

z = e−e(w+d
e−1 )

1−e
> 0 , and p→ ∞⇒ z = 0 . So, the maximum value of z is the yield when

p = p1 and its minimum value is zero. Hence, 0 ≤ z ≤ e−e(w+d
e−1 )

1−e
. As a result, the

retailer’s objective function shown in Equation (16) is rewritten as follows:

Max
p,a

E[Π1
r (p, a)] = D0E[ex

1 ]z(α2 − β2a−γ A−δ)− (1− t)a

s.t. 0 ≤ z ≤ e−e(w+d
e−1 )

1−e
, 0 ≤ a

(A6)

Of course, the expected profit E[Π1
r (p, a)] regarding z is an increasing function be-

cause its partial derivative regarding z is a positive value ( ∂E[Π1
r (p,a)]
∂z = D0E[ex

1 ](α2 −
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β2a−γ A−δ) > 0). Therefore, in this case, the optimal value of z is equal to e−e(w+d
e−1 )

1−e
.

Now, the second derivative of the retailer’s profit function regarding a is equal to ∂2E[Π1
r (p,a)]

∂a2

= −(γ + 1)γD0E[ex
1 ]zβ2a−(γ+2)A−δ < 0. Thus, the optimum value of a is now obtained

from the first derivative. As a result, the optimal solution of the retailer’s problem is as
follows:

p∗ =
e(w + d)

e− 1
(A7)

z∗ = e−e(
w + d
e− 1

)
1−e

(A8)

a∗ =

(
γD0E[ex

1 ]zβ2 A−δ

1− t

) 1
γ+1

(A9)

Using the obtained solutions, the following equilibrium points pN
1 = 2ed

e−2 , wN
1 = ed

e−2 ,

tN
1 = 0, AN

1 = ( δ
γ )

e(d−c)+2c
(2d) aN

1 and aN
1 =

(
γD0E[ex

1 ]β2e−e( 2d
e−2 )

1−e)(
( δ

γ )
e(d−c)+2c

(2d)

)−δ
are

derived. It is important to remark that we use superscript N to denote the Nash game.

Appendix B. Proof of Theorem 2

In the second model, we can claim that the manufacturer’s profit function is a concave

function regarding A because ∂2E[Π2
m(w,A,t)]
∂A2 = − 1

4 E[ex
1 ]k2w(1− p)A−

3
2 < 0. So, the optimal

value of A is obtained by using ∂E[Π2
m(w,A,t)]
∂A = 1

2 E[ex
1 ]k2w(1− p)A−

1
2 − 1 = 0 . Conse-

quently, the optimal solution of the manufacturer’s problem is given by t∗ = 0, w∗ = p
2 ,

and A∗ =
(

1
2 E[ex

1 ]k2w(1− p)
)2

. Now, z is defined as z = (p − w)(1− p); w ≤ p ≤ 1.

Then, taking the partial derivative of z regarding p leads to ∂z
∂p = (1− p)− (p− w) = 0.

So, the value for p = p1 is equal to e(w+d)
e−1 . Additionally, the range of z is obtained when

p = 1⇒ z = 0 , p = p1 ⇒ z = ( 1−w
2 )

2
> 0 , and p = w⇒ z = 0 . Therefore, we can write

the following optimization problem:

MaxE[Π2
r (p, a)] = E[ex

1 ]z(k1
√

a + k2
√

A)− (1− t)a
s.t. 0 ≤ z ≤ ( 1−w

2 )
2
, 0 ≤ a

(A10)

Following the same procedure as the first model, the optimal value of z is equal

to ( 1−w
2 )

2
. Since ∂2E[∏r ]

∂a2 = − 1
4 E[ex

1 ]zk1a−
3
2 < 0, a∗ is obtained using the first derivative

∂E[∏r ]
∂a = 1

2 E[ex
1 ]zk1a−

1
2 − (1− t) = 0. Thus, the optimal solutions of a∗, p*, and z* are

a∗ =
(

E[ex
1 ]k1

2(1−t) (
1−w

2 )
2
)2

, p∗ = 1+w
2 and z∗ = ( 1−w

2 )
2
. Hence, by using these solutions, the

equilibrium points pN
2 = 2

3 , wN
2 = 1

3 , tN
2 = 0, AN

2 = 1
324 E[ex

1 ]
2k2

2 and aN
2 = 1

324 E[ex
1 ]

2k2
1 are

easily derived.

Appendix C. Proof of Theorem 3

In this case, as mentioned earlier, the manufacturer and the retailer play a leader and
a follower, respectively. So, under this approach, the best responses of the retailer should
be substituted (i.e., Equations (18) and (19)) into the manufacturer’s profit function. The
manufacturer’s profit function in the first model changes to:
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Max
w,A,t

E[Π1
m(w, A, t)] = E[ex

1 ]D0(w− c)×
(

e(w+d)
e−1

)−e
α2 − β2

(
γE[ex

1 ]D0β2 A−δe−e( w+d
e−1 )

1−e

1−t

) −γ
γ+1

A−δ


− A− t

(
γE[ex

1 ]D0β2 A−δe−e( w+d
e−1 )

1−e

1−t

) 1
γ+1

s.t. 0 ≤ A, c ≤ w ≤ 1, and 0 ≤ t ≤ 1

(A11)

By simplifying the above equation, we have:

Max
w,A,t

E[Π1
m(w, A, t)] = −A− E[ex

1 ]
1

γ+1 D0
1

γ+1 A
−δ

γ+1 t(1− t)
−1

γ+1 (e− 1)
e−1
γ+1 e

−e
γ+1 (w + d)

1−e
γ+1 β2

1
γ+1 γ

1
γ+1

−E[ex
1 ]

1
γ+1 D0

1
γ+1 A

−δ
γ+1 (1− t)

γ
γ+1 (e− 1)

e+γ
γ+1 e

−e
γ+1 (w + d)

−(γ+e)
γ+1 (w− c)β2

1
γ+1 γ

−γ
γ+1

+E[ex
1 ]D0α2(e− 1)ee−e(w + d)−e(w− c)

(A12)

Equation (A12) can be rewritten as follows:

Max E[Π1
m(w, A, t)] = −A + xA

−δ
γ+1 (1− t)

−1
γ+1 t + yA

−δ
γ+1 (1− t)

γ
γ+1 + z (A13)

where x, y and z are given by:

x = −E[ex
1 ]

1
γ+1 D0

1
γ+1 (e− 1)

e−1
γ+1 e

−e
γ+1 (w + d)

1−e
γ+1 β2

1
γ+1 γ

1
γ+1 (A14)

y = −E[ex
1 ]

1
γ+1 D0

1
γ+1 (e− 1)

e+γ
γ+1 e

−e
γ+1 (w + d)

−(γ+e)
γ+1 (w− c)β2

1
γ+1 γ

−γ
γ+1 (A15)

z = E[ex
1 ]D0α2(e− 1)ee−e(w + d)−e(w− c) (A15)

To determine the optimal value of t, first, take the first derivative of Πm regarding t
and then set it to zero. So, the procedure is as follows:

∂E[Π1
m(w,A,t)]

∂t =

(
(1− t)

−1
γ+1 + 1

γ+1 (1− t)
−(γ+2)

γ+1 t
)

xA
−δ

γ+1 − γ
γ+1 (1− t)

−1
γ+1 yA

−δ
γ+1

= 1
γ+1 A

−δ
γ+1 (1− t)

−(γ+2)
γ+1 (γ(1− t)(x− y) + x) = 0

(A17)

For every A > 0 and 0 ≤ t ≤ 1, we have 1
γ+1 A

−δ
γ+1 (1− t)

−(γ+2)
γ+1 ≥ 0. Therefore, the

partial derivative is determined by using γ(1− t)(x − y) + x. As a result, we have t =
1+ x

γ(x−y) . The optimum value of t as a function of w is now obtained by substituting x and

y given in Equations (A14) and (A15), respectively. So, t = 1+ (w+d)
γ(w+d)−(e−1)(w−c) is the same

as when there is no noise effect. However, according to the research of Szmerekovsky and
Zhang [11] in which they have shown that the optimal value of t = 1 + (w+d)

γ(w+d)−(e−1)(w−c)
is always equal to zero and in this case (with the noise effect) by using the same approach,
it can be shown that the optimal value of t∗ is zero, too (see Szmerekovsky and Zhang [11]).

Moreover, to determine the optimum value of A, we get the second partial derivative
of Equation (A13) regarding A as follows:

∂2E[Π1
m(w, A, t)]
∂A2 =

δ(δ + γ + 1)

(γ + 1)2 A
−(δ+2γ+2)

γ+1 x(1− t)
−1

γ+1 t +
δ(δ + γ + 1)

(γ + 1)2 A
−(δ+2γ+2)

γ+1 y(1− t)
γ

γ+1 (A18)

According to the sign of x and y, for all c < w and 0 ≤ t ≤ 1, we have ∂2E[Π1
m(w,A,t)]
∂A2 ≤ 0.

Thus, the optimal value of A is obtained as follows:

∂E[Π1
m(w, A, t)]
∂A

= −1− δ

γ + 1
A
−(δ+γ+1)

γ+1 x(1− t)
−1

γ+1 t− δ

γ + 1
A
−(δ+γ+1)

γ+1 y(1− t)
γ

γ+1 = 0 (A19)
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So, we have:

A
(δ+γ+1)

γ+1 = − δ

γ + 1
(1− t)

−1
γ+1 (xt + y(1− t)) (A20)

By replacing the values of x and y shown in Equations (A14) and (A15), respectively,
the optimal value of A is as follows:

A = δ
1+γ

1+γ+δ E[ex
1 ]

1
1+γ+δ D0

1
1+γ+δ (e− 1)

e−1
1+γ+δ e

−e
1+γ+δ (1− t)

−1
1+γ+δ (w + d)

−γ−e
1+γ+δ β2

1
1+γ+δ γ

−γ
1+γ+δ (γ + 1)

−(1+γ)
1+γ+δ

×(γ(w + d)t + (w− c)(1− t)(e− 1))
1+γ

1+γ+δ

(A21)

To get the wholesale price w, we must determine the first derivative of E[Π1
m(w, A, t)]

regarding w.

∂E[Π1
m(w,A,t)]
∂w = α2E[ex

1 ]D0(
e

e−1 )
−e
[
−e(w + d)−e−1(w− c) + (w + d)−e

]
−E[ex

1 ]D0(
e

e−1 )
−e
(

γ−γβ2E[ex
1 ]
−γD−γ

0 A−δeeγ(e− 1)γ−eγ(1− t)γ
) 1

γ+1

×
[
−(γ+e)

γ+1 (w + d)
−(2γ+e+1)

γ+1 (w− c) + (w + d)
−(γ+e)

γ+1

]
−t
(

γβ2E[ex
1 ]D0 A−δe−e(e− 1)e−1(1− t)−1

) 1
γ+1
[

1−e
γ+1 (w + d)

−(e+γ)
γ+1

]
(A22)

Then, the optimum value for w is calculated by using Equation (A22). By using the
optimal value of w, the other optimal values are obtained.

Appendix D. Proof of Theorem 4

In this case, similar to the previous one, the follower’s responses should be substituted
(i.e., Equations (20) and (21)) into the manufacturer’s profit function (E[Π2

m(w, A, t)]) as
follows:

Max E[Π2
m(w, A, t)] = E[ex

1 ]w( 1−w
2 )

((
E[ex

1 ]k
2
1

2(1−t) (
1−w

2 )
2
)
+ k2
√

A
)
− A− E[ex

1 ]
2k2

1t
4(1−t)2 (

1−w
2 )

4

s.t. 0 ≤ A, 0 ≤ w ≤ 1, and 0 ≤ t ≤ 1
(A23)

The optimal values of A, t, and w are determined using the first partial deriva-
tive of E[Π2

m(w, A, t)] regarding A, t, and w, respectively. From the first derivative of
E[Π2

m(w, A, t)] regarding A, the optimal value of A is:

∂E[Π2
m(w, A, t)]
∂A

=
E[ex

1 ]k2

2
√

A
(

1− w
2

)w− 1 = 0 ⇒ A =
E[ex

1 ]
2k2

2
16

w2(1− w)2 (A24)

The first derivative regarding t is given by:

∂E[Π2
m(w,A,t)]

∂t = (
E[ex

1 ]
2k2

1
2(1−t)2 )(

1−w
2 )

3
w− E[ex

1 ]
2k2

1
4 ( t+1

(1−t)3 )(
1−w

2 )
4

=
E[ex

1 ]
2( 1−w

2 )
3
k2

1
2(1−t)2

[
w− t+1

4(1−t) (1− w)
]
= 0

(A25)

Hence, the optimal value of t is:

t =
5w− 1
3w + 1

(A26)

Moreover, the first derivative regarding w is equal to:

∂E[Π2
m(w, A, t)]
∂w

= 8k2(1− 2w)(1− t)2√A + E[ex
1 ]k

2
1(1− 4w)(1− w)2(1− t) + E[ex

1 ]k
2
1(1− w)3t = 0 (A27)
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Substituting the optimal values of A and t into Equation (A27) yields:

∂E[Π2
m(w,A,t)]
∂w = 8(1− 2w)( 2(1−w)

3w+1 )
2
k2

(
E[ex

1 ]k2
4 w(1− w)

)
+E[ex

1 ]k
2
1(1− 4w)(1− w)2( 2(1−w)

3w+1 ) + E[ex
1 ]k

2
1(1− w)3 5w−1

3w+1 = 0
(A28)

Equation (A28) is expressed as a quadratic function of w and is shown as below:

w2(16k2
2 + 9k2

1)− w(8k2
2)− k2

1 = 0 (A29)

Since 0 < w < 1 and using k = k2
2

k2
1

, the optimal value of w is as follows:

w =
4k +

√
16k2 + 16k + 9
9 + 16k

(A30)

Using Equation (A30), the optimal values for the decision variables are derived and they are

given by ASM
2 =

(
E[ex

1 ]k2
4

)2
×
(

(
√

16k2+16k+9−4k)−1

(
√

16k2+16k+9−4k)
2

)2
, pSM

2 =
(
√

16k2+16k+9−4k)+1

2(
√

16k2+16k+9−4k)
, tSM

2 =

5+4k−
√

16k2+16k+9
3−4k+

√
16k2+16k+9

, wSM
2 = 1√

16k2+16k+9−4k
, and aSM

2 =
(

E[ex
1 ]k1

16

)2
(

(
√

16k2+16k+9−4k)−1√
16k2+16k+9−4k

)2

(
3+(
√

16k2+16k+9−4k)√
16k2+16k+9−4k

)2
. It is important to remark that we use the superscript SM to refer

to the Stackelberg game when the manufacturer is the leader.

Appendix E. Proof of Theorem 5

As in the previous section, t = 0, w′ = p′
2 , and A =

(
δD0β2(w− c)(p′)−ea−γ

) 1
δ+1

should be replaced into Equation (16); then, the retailer’s objective function is:

Max
p,a

E[Π1
r (p, a)] = E[ex

1 ]D0(p′ − w′)(p′ + (c + d))−e(α2 − β2a−γ A−δ)− (1− t)a

s.t. w′ ≤ p′ and 0 ≤ a,
(A31)

To solve this problem, we define y = p′
2 (p′ + (c + d))−e. Then, by taking the partial

derivative of y regarding p′, we have:

∂y
∂p′

=
1
2
(p′ + (c + d))−e − p′

2
e(p′ + (c + d))−e−1

= (p′ + (c + d))−e
(

1
2
− p′

2
e(p′ + (c + d))−1

)
= 0 (A32)

Since (p′ + (c + d))−e > 0, from Equation (A32), the value of p = p1 is equal to p′ =
c+d
e−1 . The range for y is determined as p′ = 0⇒ y = 0 , p′ = c+d

e−1 ⇒ y = e−e

2 ( c+d
e−1 )

1−e
> 0 ,

and p′ → ∞⇒ y = 0 . So, the maximum value of z is p′ = c+d
e−1 and its minimum value

is zero. Therefore, the range for y is 0 ≤ y ≤ e−e

2 ( c+d
e−1 )

1−e
. Now, the retailer’s problem in

Equation (A31) is rewritten as follows:

Max
p,a

E[Π1
r (p, a)] = E[ex

1 ]D0y(α2 − β2a−γ(δβ2ya−γ)
−δ
δ+1 )− a

s.t. 0 ≤ y ≤ e−e

2 ( c+d
e−1 )

1−e
and 0 ≤ a,

(A33)

The optimal value of y is equal to y∗ = ymax = e−e

2 ( c+d
e−1 )

1−e
. Since the second

derivative of E[Π1
r (p, a)] regarding a is negative, the optimal value of a is obtained as

below:

∂2E[Π1
r (p, a)]

∂a2 = −( γ

δ + 1
)(

γ + δ + 1
δ + 1

)E[ex
1 ]D0yβ2

1
δ+1 (δyE[ex

1 ]D0)
−δ
δ+1 a

−γ
δ+1−2 < 0 (A34)
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So, we have:

∂E[Π1
r (p,a)]
∂a = γ

δ+1 E[ex
1 ]D0yβ2

1
δ+1
(
δyE[ex

1 ]D0
) −δ

δ+1 a
−(γ+δ+1)

δ+1 − 1 = 0

⇒ a =

(
γ

β2
1

δ+1 δ
−δ
δ+1

δ+1

) δ+1
δ+γ+1 (

yE[ex
1 ]D0

) 1
δ+γ+1

(A35)

According to the Equations p′ = p− (c + d) and p′ = c+d
e−1 , we have pSR

1 = c+d
e−1 + c + d.

Hence, wSR
1 = 1

2 (
c+d
e−1 ) +

c+d
2 . Using Equation (A35) and y∗ = e−e

2 ( c+d
e−1 )

1−e
, we have aSR

1 =(
γ

β2
1

δ+1 δ
−δ

δ+1

δ+1

) δ+1
δ+γ+1 (

E[ex
1 ]D0

e−e

2 ( c+d
e−1 )

1−e) 1
δ+γ+1 . Additionally, we will have the optimum

values of tSR = 0 and ASR
1 =

(
δβ2E[ex

1 ]D0
e−e

2 ( c+d
e−1 )

1−e
a−γ

) 1
δ+1 for the Stackelberg-retailer

equilibrium solution. Note that we use the superscript SR to refer to the Stackelberg game
when the retailer is the leader.

Appendix F. Proof of Theorem 6

By substituting Equations t∗ = 0, w∗ = p
2 ,A∗ =

(
1
2 E[ex

1 ]k2w(1− p)
)2

into Equation
(17), the retailer’s objective function is:

Max
p,a

E[Π2
r (p, a)] = E[ex

1 ]
p
2 (1− p)

(
k1
√

a + 1
4 D0k2

2 p(1− p)
)
− a

s.t. 0 ≤ p ≤ 1 and 0 ≤ a,
(A36)

We define y = p
2 (1− p). According to ∂y

∂p = (1−p)
2 − p

2 = 0, the value of p = p2 is equal

to 1
2 . The range for y is determined such that if p = 0⇒ y = 0 , if p = p1 ⇒ y = 1

8 > 0 ,
and if p = 1⇒ y = 0 , so 0 ≤ y ≤ 1

8 . Now, the retailer’s profit function shown in Equation
(A36) is re-expressed as follows:

Max
p,a

E[Π2
r (p, a)] = E[ex

1 ]y
(

k1
√

a + 1
4 D0k2

2y
)
− a

s.t. 0 ≤ y ≤ 1
8 and 0 ≤ a

(A37)

Similar to the first model, the optimal values of y and a are equal to y∗ = ymax = 1
8

and ∂E[Π2
r (p,a)]
∂a = 1

2 E[ex
1 ]k1ya−

1
2 − 1 = 0, which yields a = ( 1

2 E[ex]k1y)
2
. Therefore, the

optimal values are pSR
2 = 1

2 , wSR
2 = 1

4 , tSR
2 = 0, aSR

2 =
(

E[ex
1 ]

k1
8

)2
and ASR

2 =
(

E[ex
1 ]

k2
16

)2
.

Appendix G. Proof of Theorem 7

To prove this theorem, z is defined as follows:

z = (p− c− d)(p−e)
s.t. c + d ≤ p

(A38)

The first derivative of z regarding t is equal to ∂z
∂p = p−e − ep−e−1(p − c − d) =

p−e(1− ep−1(p− c− d)
)
= 0. Since p−e > 0, p = p1 = e(c+d)

(e−1) , if p = c + d⇒ z = 0 , if

p = p1 ⇒ z = e−e( c+d
e−1 )

1−e
> 0 , and if p→ ∞⇒ z = 0 . So, we have 0 ≤ z ≤ e−e( c+d

e−1 )
1−e

.
The objective function of the supply chain problem shown in Equation (23) is expressed as
follows:

Max
p,a,A

E[∏1
sc(p, a, A)] = D0E[ex

1 ]z(α2 − β2a−γ A−δ)− a− A

s.t. 0 ≤ z ≤ e−e( c+d
e−1 )

1−e
and 0 ≤ a, A

(A39)
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Since ∂E[∏1
sc(p,a,A)]
∂z = D0(α2 − β2a−γ A−δ) > 0, we have z∗ = zmax = e−e( c+d

e−1 )
1−e

. To
determine the optimal values for A and a, we calculate the second partial derivatives for
the total supply chain profit in Equation (23) regarding A and a,

∂E[∏1
sc(p, a, A)]

∂a
= γD0E[ex

1 ]β2a−γ−1 A−δz− 1 ⇒ ∂2E[∏1
sc(p, a, A)]

∂a2 =
−γ(γ + 1)D0E[ex

1 ]β2z
aγ+2 Aδ

< 0 (A40)

∂E[∏1
sc(p, a, A)]

∂A
= δD0E[ex

1 ]β2 A−δ−1a−γz− 1 ⇒ ∂2E[∏1
sc(p, a, A)]

∂A2 =
−δ(δ + 1)D0E[ex

1 ]β2z
aγ Aδ+2 < 0 (A41)

Since the second derivatives are both negative, the optimal values of A and a are easily
obtained from the first derivative:

a =
(

γD0E[ex
1 ]β2 A−δz

) 1
γ+1 (A42)

A =
(
δD0E[ex

1 ]β2a−γz
) 1

δ+1 (A43)

Hence, the optimal values for the decision variables in the cooperative game are

pco
1 = e(c+d)

(e−1) , Aco
1 = δ

γ aco
1 and aco

1 =
(( γ

δ

)δD0E[ex
1 ]β2e−e( c+d

e−1 )
1−e) 1

δ+γ+1 . It is important to
mention that we use the superscript co to refer to the cooperative game.

Appendix H. Proof of Theorem 8

According to the objective function of the supply chain given by Equation (24), z is
defined as follows:

z = p(1− p)
s.t. 0 ≤ p ≤ 1

(A44)

Such that if p = 0⇒ z = 0 , if p = p1 ⇒ z = 1
4 > 0 and if p = 1⇒ z = 0 . So, we

have 0 ≤ z ≤ 1
4 and then we can rewrite the objective function as follows:

Max E[∏2
sc(p, a, A)] = E[ex

1 ]z(k1
√

a + k2
√

A)− a− A
s.t. 0 ≤ z ≤ 1

4 , 0 ≤ a, A
(A45)

Since ∂E[∏2
sc(p,a,A)]
∂z = E[ex

1 ](k1
√

a + k2
√

A) > 0, we have z∗ = zmax = 1
4 . To obtain the

values of a and A we use the Hessian matrix as below:

H =

 ∂2E[∏2
sc(p,a,A)]
∂a2

∂2E[∏2
sc(p,a,A)]

∂a∂A
∂2E[∏2

sc(p,a,A)]
∂a∂A

∂2E[∏2
sc(p,a,A)]
∂A2

 =

[ −k1z
4a
√

a 0

0 −k1z
4A
√

A

]
(A46)

The Hessian matrix is negative definite, so the optimal values are:

∂E[∏2
sc(p, a, A)]

∂a
=

1
2

E[ex
1 ]k1za−

1
2 − 1 = 0 ⇒ a =

(
1
2

E[ex
1 ]k1z

)2
(A47)

∂E[∏2
sc(p, a, A)]

∂A
=

1
2

E[ex
1 ]k2zA−

1
2 − 1 = 0 ⇒ A =

(
1
2

E[ex
1 ]k2z

)2
(A48)

Therefore, the optimal values of the cooperative game in the second model are pco
2 = 1

2 ,

Aco
2 =

(
1
8 E[ex

1 ]k2

)2
, and aco

2 =
(

1
8 E[ex

1 ]k1

)2
.
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