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Abstract: In this paper, we consider the application of several gradient methods to the traffic
assignment problem: we search equilibria in the stable dynamics model (Nesterov and De Palma,
2003) and the Beckmann model. Unlike the celebrated Frank–Wolfe algorithm widely used for the
Beckmann model, these gradients methods solve the dual problem and then reconstruct a solution
to the primal one. We deal with the universal gradient method, the universal method of similar
triangles, and the method of weighted dual averages and estimate their complexity for the problem.
Due to the primal-dual nature of these methods, we use a duality gap in a stopping criterion. In
particular, we present a novel way to reconstruct admissible flows in the stable dynamics model,
which provides us with a computable duality gap.

Keywords: stable dynamics model; Beckmann model; traffic equilibrium; universal gradient method;
universal method of similar triangles; method of weighted dual averages; duality gap

1. Introduction

The Beckmann model for searching static traffic equilibria in road networks is among
the most widely used models by transportation planners [1,2]. The equilibria found are
practical for evaluating the network efficiency and distribution of business centers and
residential areas, and establishing urban development plans, etc. This model introduces
a cost function on every link of a transportation network, which defines a dependence
of the travel cost on the flow along the link. In practice, the BPR functions are usually
employed [3]:

τe( fe) = t̄e

(
1 + ρ

(
fe

f̄e

) 1
µ

)
, (1)

where t̄e are free flow times, and f̄e are road capacities of a given network’s link e. We take
these functions with parameters ρ = 0.15 and µ = 0.25.

Nesterov and de Palma [4] proposed an alternative model called the stable dynamics
model, which takes an intermediate place between static and dynamic network assignment
models. Namely, its equilibrium can be interpreted as the stationary regime of some
dynamic process. Its key assumption is that we no longer introduce a complex dependence
of the travel cost on the flow (as in the standard static models) but only pose capacity
constraints, i.e., the flow value on each link imposes the feasible set of travel times

τe( fe) =


t̄e, 0 ≤ fe < f̄e,
[t̄e, ∞], fe = f̄e,
+∞, fe > f̄e.

(2)
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Unlike in the Beckmann model, there is no one-to-one correspondence between equilibrium
travel times and flows on the links of the network. We can illustrate the difference on a
simple example of two parallel routes (Figure 1).

Figure 1. Parallel routes.

Let the input flow take values 1000, 2000, and 3000 veh/h. For the stable dynamics
model, in the first and second cases, all drivers choose the upper route; the equilibrium
travel time simply equals the upper route’s free flow time (0.5 h) in the first case and varies
from 0.5 to 1 h (according to the model) in the second. In the third case, the input flow
exceeds the upper route’s capacity, so the upper route’s flow is 2000 veh/h, the lower one
is 1000 veh/h, and the equilibrium travel time is 1 h. All these equilibria can be interpreted
as stationary regimes of some dynamic processes, e.g., the last case can be viewed as the
result of the queue at the beginning of the upper route (since this route’s capacity is smaller
than the input flow) created by drivers who wanted to take this route until the waiting
time plus the route’s travel time reached the lower route’s travel time [4]. In the Beckmann
model, equilibria are as follows: for all three cases, only the upper route is used, and the
equilibrium travel times are approximately 0.5, 0.6, and 0.9 h, respectively. Chudak, Dos
Santos Eleuterio, and Nesterov [5] conducted a detailed comparison—for large and small
networks—of equilibria in these two models.

In the Beckmann model, searching equilibria reduces to minimization of a potential
function. One of the most popular and effective approaches to solve this problem numeri-
cally is the famous Frank–Wolfe method [6,7] as well as its numerous modifications [8–11].

In the case of the stable dynamics model, one cannot directly apply the Frank–Wolfe
method. However, an equilibrium can be found as a solution of a pair of primal and dual
optimization problems. The same holds also for the Beckmann model, so in both cases we
can apply primal-dual (sub)gradient methods.

In this work, we compare several primal-dual gradient methods for searching equilib-
ria in both the Beckmann and the stable dynamics models, namely, the universal gradient
method (UGM) [12], the universal method of similar triangles (UMST) [13], and the method
of weighted dual averages (WDA) [14]. The main advantage of the above universal meth-
ods is an automatic adjustment to a local (Hölder) smoothness of a minimized function,
which is especially important since the dual problems we are dealing with are essentially
non-smooth. Due to the primal-dual nature of these methods, one can use an adaptive
stopping criterion guaranteeing required accuracy.

The main contributions of this paper include the following:

• We propose a novel way to reconstruct admissible flows (i.e., meeting the capacity
constraints and induced by flows on the paths) in the stable dynamics model and a
novel computable duality gap, which can be used in a stopping criterion.

• We provide theoretical upper bounds on the complexity of searching equilibria by the
considered algorithms: UMST, UGD, and WDA.

• We conducted numerical experiments comparing these algorithms on the Anaheim
transportation network—the source code is available for use and can be found in [15].

The paper is organized as follows. In Section 2, we give a problem statement and
define equilibria in the Beckmann and the stable dynamics models and corresponding
optimization problems. Section 3 is devoted to the complexity analysis of UGM, UMST,
and WDA. We show that the number of iterations required to obtain an ε-solution of primal
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and dual problems is O(1/ε2) for UGM and UMST. In Section 4, results of experiments on
the Anaheim transportation network are presented. Finally, some conclusions are drawn in
Section 5.

2. Problem Statement

Let the urban road network be represented by a directed graph G = (V, E), where
vertices V correspond to intersections or centroids [16] and edges E correspond to roads,
respectively. Suppose we are given the travel demands: namely, let dw (veh/h) be a trip
rate for an origin–destination pair w from the set OD ⊆ {w = (i, j) : i ∈ O, j ∈ D}. Here,
O ⊆ V is the set of all possible origins of trips, and D ⊆ V is the set of destination nodes.
For OD pair w = (i, j) denote by Pw the set of all simple paths from i to j. Respectively,
P =

⋃
w∈OD Pw is the set of all possible routes for all OD pairs. Agents traveling from

node i to node j are distributed among paths from Pw, i.e., for any p ∈ Pw there is a flow
xp ∈ R+ along the path p, and ∑p∈Pw xp = dw. Flows from vertices from the set O to
vertices from the set D create the traffic in the entire network G, which can be represented
by an element of

X =
{

x ∈ R|P|+ : ∑
p∈Pw

xp = dw, w ∈ OD
}

.

Note that the dimension of X can be extremely large: e.g., for n× n Manhattan network
log |P| = Ω(n). To describe a state of the network, we do not need to know an entire vector
x but only flows on arcs:

fe(x) = ∑
p∈P

δepxp for e ∈ E,

where δep = 1{e ∈ p}. Let us introduce a matrix Θ such that Θe,p = δep for e ∈ E, p ∈ P,
so in vector notation we have f = Θx. To describe an equilibrium we use both path- and
link-based notations (x, t) or ( f , t).

Beckmann model.

One of the key ideas behind the Beckmann model is that the cost (e.g., travel time, gas
expenses) of passing a link e is the same for all agents and depends solely on the flow fe
along it. In what follows, we denote this cost for a given flow fe by te = τe( fe). Another
essential point is a behavioral assumption on agents called the first Wardrop’s principle:
we suppose that each of them knows the state of the whole network and chooses a path p
minimizing the total cost

Tp(t) = ∑
e∈p

te.

The cost functions are supposed to be continuous, non-decreasing, and non-negative.
Then (x∗, t∗), where t∗ = (t∗e )e∈E, is an equilibrium state, i.e., it satisfies conditions

t∗e = τe( f ∗e ), where f ∗ = Θx∗,

x∗pw > 0 =⇒ Tpw(t
∗) = Tw(t∗) = min

p∈Pw
Tp(t∗),

if and only if x∗ is a minimum of the potential function:

Ψ(x) = ∑
e∈E

∫ fe

0
τe(z)dz︸ ︷︷ ︸

σe( fe)

−→ min
f=Θx, x∈X

⇐⇒ Ψ( f ) = ∑
e∈E

σe( fe) −→ min
f=Θx: x∈X

,

and t∗e = τe( f ∗e ) [1].
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Another way to find an equilibrium numerically is by solving a dual problem. Ac-
cording to Theorem 4 from [4], we can construct it in the following way:

min
f=Θx: x∈X

Ψ( f ) = min
x∈X, f

[
Ψ( f ) + sup

t∈R|E|
〈t, Θx− f 〉

]
= sup

t∈R|E|
min

x∈X, f
[Ψ( f ) + 〈t, Θx− f 〉]

= sup
t∈R|E|

[
−∑

e∈E
max

fe
{te fe − σe( fe)}+ min

x∈X
∑
p

∑
e∈E

teδepxp

]

= max
t∈dom σ∗

−
[

∑
e∈E

σ∗e (te)− ∑
w∈OD

dwTw(t)

]
= −min

t≥t̄
Q(t),

where

σ∗e (te) = sup
fe≥0
{te fe − σe( fe)} = f̄e

(
te − t̄e

t̄eρ

)µ (te − t̄e)

1 + µ

is the conjugate function of σe( fe), e ∈ E. Finally, we obtain the dual problem, the solution
of which is t∗:

Q(t) = − ∑
w∈OD

dwTw(t) + ∑
e∈E

σ∗e (te) −→ min
t≥t̄

. (3)

When we search for the solution to this problem numerically, on every step of an
applied method, we can reconstruct primal variable f from the current dual variable t:
f ∈ ∂ ∑w∈OD dwTw(t) (see Section 3.1). Then we can use the duality gap, which is always
nonnegative, for the estimation of the method’s accuracy:

∆( f , t) = Ψ( f ) + Q(t).

It vanishes only at the equilibrium ( f ∗, t∗).

Stable dynamics model [4].

An equilibrium state (x∗, t∗) of the stable dynamics model satisfies the next conditions:

t∗e ∈ τe( f ∗e ),

x∗pw > 0 =⇒ Tpw(t
∗) = Tw(t∗),

where τ( f ) is defined earlier by (2). The above formula can be reformulated in terms of an
optimization problem:

x∗ = arg min
x∈X

∑
w∈OD

∑
p∈Pw

xpTp(t∗)

= arg min
x∈X

∑
e∈E

t∗e fe(x)

= arg min
x∈X

∑
e∈E

[t∗e fe(x)− (t∗e − t̄e) f̄e],

t∗e ∈ τe( f ∗e )⇐⇒ t∗e = arg max
te≥t̄e

te( f ∗e − f̄e)

= arg max
te≥t̄e

[te( f ∗e − f̄e) + t̄e f̄e].

Here, we add underlined constant terms to show that the pair ( f ∗, t∗) is an equilibrium
if and only if it is a solution of the saddle-point problem

∑
e∈E

[te fe − (te − t̄e) f̄e] −→ min
f=Θx:
x∈X

max
te≥t̄e

,
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where its primal problem is

Ψ(x) = sup
te≥t̄e

∑
e∈E

[te fe − (te − t̄e) f̄e] = ∑
e∈E

t̄e fe + ∑
e∈E

sup
te≥t̄e

(te − t̄e)( fe − f̄e) −→ min
f=Θx:x∈X

⇐⇒ Ψ( f ) = ∑
e∈E

fe t̄e −→ min
f=Θx:

x∈X, fe≤ f̄e

,

and its dual problem is

Q(t) = − inf
f=Θx:x∈X

∑
e∈E

[te fe − (te − t̄e) f̄e]

= − ∑
w∈OD

dwTw(t) + 〈t− t̄, f̄ 〉 −→ min
te≥t̄e

.

In contrast with the Beckmann model, the equilibrium state in the stable dynamics
model is defined by pair ( f ∗, t∗) (in particular, it differs from the system optimum ( f ∗, t̄)
in the model only by the time value).

3. Numerical Methods

We have the following objective functions

• The stable dynamics model:

Q(t) = − ∑
w∈OD

dwTw(t)︸ ︷︷ ︸
Φ(t)

+ 〈t− t̄, f̄ 〉︸ ︷︷ ︸
h(t)

,

• The Beckmann model:

Q(t) = − ∑
w∈OD

dwTw(t)︸ ︷︷ ︸
Φ(t)

+ ∑
e∈E

f̄e

(
te − t̄e

t̄eρ

)µ (te − t̄e)

1 + µ︸ ︷︷ ︸
h(t)

.

In both cases, it has the form

Q(t) = Φ(t) + h(t) −→ min
t≥t̄

. (4)

The optimization problem (4) is convex, non-smooth, and composite. We use all these
properties to identify the best optimization method to solve the considered problem.

3.1. Subgradient

In our research, we consider first-order methods, i.e., they require a subgradient of
Φ(t), the properties and effective computation of which we discuss in this section.

To get the subdifferential ∂ Φ(t), let us re-write Φ(t) in the following way:

Φ(t) = − ∑
w∈OD

dwTw(t) = − ∑
w∈OD

dw min
p∈Pw
〈t, ap〉,

where the vector ap = (δep)e∈E encodes a path p. Obviously, the shortest path may not be
unique. Using the rules of subgradient calculus [17] we get the following expression:

∂ Φ(t) = − ∑
w∈OD

dw ∂

(
min
p∈Pw
〈t, ap〉

)
= − ∑

w∈OD
dwConv{ap : p ∈ Pw, Tp(t) = Tw(t)},
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i.e., the subdifferential ∂ Φ(t) is a sum of convex hulls of binary vectors that encode
the shortest length paths. An important consequence is that for any t1, t2 ∈ R|E|+ and
∇Φ(t1) ∈ ∂ Φ(t1), ∇Φ(t2) ∈ ∂ Φ(t2), the following bound holds:

‖∇Φ(t1)−∇Φ(t2)‖2 ≤ M =
√

2H ∑
w∈OD

dw, (5)

where H is the diameter of the graph G.
Note that any element from the set ∂ Φ(t) has the form∇Φ(t) = − f , where f = Θx is

a flow distribution on links induced by x ∈ X concentrated on the shortest paths for given
times t (and vice versa: any such f corresponds to a subgradient of Φ(t)).

In practice, the calculation of flows f is the most expensive part, since we have to find
the shortest paths for all pairs w ∈ OD. We use the following Algorithm 1. We use Dijkstra’s
Algorithm [18] to find the shortest paths in line 3, which runs in O(|E|+ |V| log |V|) time;
finding the traversal order with topological sort (Section 22.4 in [19]) and further flows
aggregation have linear performance O(|V|). Hence, the total complexity of Algorithm 1 is
O
(
|O|(|E|+ |V| log |V|)

)
. When the transportation network is an (almost) planar graph or

another sparse graph, |E| = O(|V|) and the complexity is O(|O| · |V| log |V|). Moreover,
flows reconstruction for every source o ∈ O can be computed in parallel, and Dijkstra’s
algorithm can also be parallelized and has efficient implementations [20,21].

Algorithm 1 Flows reconstruction.

Input: times t
1: f := 0|E| {flows on edges}
2: for origin o in O do
3: Get a shortest-path tree To from o to all destinations in D with weights t
4: traversal_order := TopologicalSort(To) {sorting from furthest to closest vertices}
5: fout := 0|V| {total output flow from each vertex}
6: fout[v] := dw for w = (o, v) ∈ OD
7: for v in traversal_order do
8: Get predecessor p of v in To
9: e := (p, v)

10: f [e] := f [e] + fout[v]
11: fout[p] := fout[p] + fout[v]
12: end for
13: end for
14: return flows f

3.2. Reconstruction of Admissible Flows in SD Model

For given times t considered, Algorithm 1 reconstructs feasible flows f , i.e., f = Θx
for some x ∈ X. These flows meet all the constraints in the Beckmann model, but they
can violate the capacity constraints in the stable dynamics model. In the latter case,
an additional step is required to obtain admissible flows from f . Note that we could instead
find flows that meet capacity constraints first (Theorem 8 from [4]), but to reconstruct
feasible flows from them is a more complex problem.

Suppose we are given some flows g = Θx such that

ξ = 1−max
e∈E

ge/ f̄e > 0. (6)

Then for any f = Θx we can construct admissible flows π( f ) in the following way: let
η = maxe∈E fe/ f̄e − 1, then

π( f ) =

{
f , η ≤ 0,
ξ f+ηg

ξ+η , η > 0.
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In practice, we propose the following procedure to find admissible flows g: run some
optimization method (e.g., UGM) for a small number of iterations for the same problem but
with decreased capacities: 1

2 f̄ instead of f̄ ; if obtained feasible flows f̂ N satisfy f̂ N ≤ 3
4 f̄ ,

then take g = f̂ N ; otherwise, run it again with capacities 3
4 f̄ and check f̂ N ≤ 7

8 f̄ , etc.

Stopping criterion.

The stopping criterion we use for the stable dynamics model is based on a duality gap

Q(t̂N) + Ψ(π( f̂ N)) ≤ ε, (7)

where f̂ N ∈ {Θx : x ∈ X}, t̂N ≥ t̄ are estimates of an equilibrium ( f ∗, t∗) after N iterations
of the applied method. Note that here the duality gap with f̂ N is not applicable.

3.3. Universal Gradient Method

The method for solving non-smooth problems with smooth techniques was proposed
by Nesterov [12] and was called the universal gradient method. The pseudocode of UGM
for the considered problem (4) is provided in Algorithm 2. Here, the euclidean prox-
structure is used. Note that we did not specify the stopping criterion as it can be different
for different models.

Algorithm 2 Universal gradient method.

Input: L0 > 0, accuracy ε > 0
1: Set t0 := t̄, k := 0
2: repeat
3: Lk+1 := Lk/2
4: while true do

5: tk+1 := arg min
t∈dom h

〈∇Φ(tk), t− tk〉+ h(t) + Lk+1
‖t−tk‖2

2
2

6: if Φ(tk+1) ≤ Φ(tk) +
〈
∇Φ(tk), tk+1 − tk

〉
+ Lk+1

‖tk+1−tk‖2
2

2 + ε
2 then

7: break
8: else
9: Lk+1 := 2Lk+1

10: end if
11: end while
12: k := k + 1
13: until Stopping criterion is fulfilled

Now let us define

f̂ N = − 1
SN

N−1

∑
k=0

∇Φ(tk)

Lk+1
, t̂N =

1
SN

N

∑
k=1

tk

Lk
, SN =

N

∑
k=1

1
Lk

, (8)

where Lk are the estimates of the local Lipschitz constant in UGM and UMST methods.
Convergence of the UGM was proved in [12] and is summarized in the following

lemma and theorem. Appendix A is the proofs for UGM.
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Lemma 1. After N iterations of UGM for the stable dynamics model, it holds that

Q(t̂N)−Q(t∗) ≤ R2

SN
+

ε

2
, (9)

0 ≤ Q(t̂N) + Ψ( f̂ N) + 〈t∗ − t̄, ( f̂ N − f̄ )+〉 ≤
R2

SN
+

ε

2
, (10)

‖( f̂ N − f̄ )+‖2 ≤
4R
SN

+

√
2ε

SN
, (11)

where f̂ N , t̂N , and SN are defined by (8), and R = ‖t∗ − t̄‖2 is the distance from the starting point
to a solution.

Theorem 1. Let L0 ≤ M2

ε , where M comes from (5). Then, after at most

NQ = 2
(

RM
ε

)2
(12)

iterations of UGM for the stable dynamics model, it holds that Q(t̂N)− Q(t∗) ≤ ε. Moreover,
the stopping criterion (7) is fulfilled after at most

Nstop = O

((
RM

ε

)2
max

{
1,
(
〈g− f ∗, t̄〉
ξR mine f̄e

)2
})

(13)

iterations, where ξ comes from (6).

Now we provide results on the rate of convergence for the Beckmann model. The stop-
ping criterion in this case is the following:

Q(t̂N) + Ψ( f̂ N) ≤ ε. (14)

Lemma 2. After N iterations of UGM for the Beckmann model, it holds that

Q(t̂N)−Q(t∗) ≤ R2

SN
+

ε

2
,

0 ≤ Q(t̂N) + Ψ( f̂ N) ≤
‖τ( f̂ N)− t̄‖2

2
SN

+
ε

2
,

where f̂ N , t̂N , SN are defined by (8), and R = ‖t∗ − t̄‖2

Theorem 2. Let L0 ≤ M2

ε , where M comes from (5). Then after at most

NQ = 2
(

RM
ε

)2
(15)

iterations of UGM for the Beckmann model, it holds that Q(t̂N)−Q(t∗) ≤ ε. Moreover, the stop-
ping criterion (14) is fulfilled after at most

Nstop = 2
(

R̃M
ε

)2

(16)

iterations, where

R̃2 = ρ2 ∑
e∈E

t̄2
e

f̄ 2/µ
e

(
∑

w∈OD
dw

)2/µ

. (17)
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3.4. Universal Method of Similar Triangles

Let us introduce the following notations:

φ0(t) =
1
2

∥∥∥t− t0
∥∥∥2

2
,

φk+1(t) = φk(t) + αk+1

[
Φ(yk+1) +

〈
∇Φ(yk+1), t− yk+1

〉
+ h(t)

]
.

Flows are reconstructed in the following way:

f̂ N = − 1
AN

N

∑
k=1

αk∇Φ(yk) (18)

Lemma 3. After N iterations of UMST for the stable dynamics model, it holds that

Q(tN)−Q(t∗) ≤ R2

AN
+

ε

2
, (19)

0 ≤ Q(tN) + Ψ( f̂ N) + 〈t∗ − t̄, ( f̂ N − f̄ )+〉 ≤
R2

AN
+

ε

2
, (20)

‖( f̂ N − f̄ )+‖2 ≤
4R
AN

+

√
2ε

AN
, (21)

where f̂ N is defined by (18) and R = ‖t∗ − t̄‖2 is the distance from the starting point to a solution.

Theorem 3. Let L0 ≤ 4M2

ε , where M comes from (5). Then, after at most

NQ = 4
(

RM
ε

)2
(22)

iterations of UGM for the stable dynamics model, it holds that Q(tN)− Q(t∗) ≤ ε. Moreover,
the stopping criterion (7) with t̂N = tN is fulfilled after at most

Nstop = O

((
RM

ε

)2
max

{
1,
(
〈g− f ∗, t̄〉
ξR mine f̄e

)2
})

(23)

iterations, where ξ comes from (6).

Theorem 4. Let L0 ≤ 4M2

ε , where M comes from (5). Then, after at most

NQ = 4
(

RM
ε

)2
(24)

iterations of UMST for the Beckmann model, it holds that Q(tN)−Q(t∗) ≤ ε. Moreover, the stop-
ping criterion (14) with t̂N = tN is fulfilled after at most

Nstop = 4
(

R̃M
ε

)2

(25)

iterations, where R̃ is defined by (17). Appendix B is the proofs for UMST.

3.5. Method of Weighted Dual Averages

Convergence of the WDA method was proved in [14] and is summarized in the
following theorem. Appendix C is the proofs for WAD.
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Theorem 5. Non-composite WDA-method satisfies the following bounds

• For the stable dynamics model:

Q(t̂k)−Q(t∗) = O
(

M + ‖ f̄ ‖2√
k

(
R2

χ
+ χ

))
,

• For the Beckmann model if µ ≤ 1:

Q(t̂k)−Q(t∗) = O
(

1√
k

(
M + max

e
f̄e

[
2R + χ

t̄eρ

]µ)(R2

χ
+ χ

))
.

4. Numerical Experiments

This section presents numerical results for the algorithms described above, namely,
composite variants of UMST and UGM, both composite and non-composite WDA-method,
on the Anaheim network [5,22]. The network consists of 38 zones, 416 nodes, and 916 links.
Experiments and the source code in Python 3 [23] can be found in [15]. We used Dijkstra’s al-
gorithm for finding the shortest paths in the network from the graph-tool library [24], where
it is implemented in C++. We also used the Numpy library [25] for all vector operations.

Stable dynamics model.

Parameters of the network are adjusted to the Beckmann model, so we have to increase
the capacities to ensure the existence of an equilibrium for the stable dynamics model.
In our experiments, the capacities are multiplied by 2.5. In Figure 2, we plot the number of
(inner) iterations of the algorithms required to fulfill the stopping criterion (7) against 1/ε.
We consider the number of inner iterations for Algorithms 3 and 2 since the complexity
of an inner iteration in this case is similar to the complexity of an iteration of the other
algorithms. Note that according to ([12], formula (2.23)) the number N(k) of inner iterations
of UGM or UMST at step k is bounded as

N(k) ≤ 2k + log2

(
M2

εL0

)
,

so asymptotic rates from Theorems 1–4 are still valid.

Figure 2. Convergence rates of UMST, UGM, composite and non-composite WDA-methods for the
stable dynamics model with the stopping criterion (7). Here, ε̃ is the relative accuracy ε/∆0, where
∆0 is the duality gap at the start point.

As we can see, the best results are shown by UMST, followed by UGM having sim-
ilar performance. Both composite and non-composite WDA-method in Algorithm 4 are
much slower.
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Algorithm 3 Universal Method of Similar Triangles.

Input: L0 > 0, accuracy ε > 0
1: u0 = t0 := t̄, A0 := 0, k := 0
2: repeat
3: Lk+1 := Lk/2
4: while true do

5:


αk+1 := 1

2Lk+1
+
√

1
4L2

k+1
+ Ak

Lk+1
, Ak+1 := Ak + αk+1

yk+1 := αk+1uk+Aktk

Ak+1
, uk+1 := arg min

t∈dom h
φk+1(t)

tk+1 := αk+1uk+1+Aktk

Ak+1

6: if Φ(tk+1) ≤ Φ(yk+1) +
〈
∇Φ(yk+1), tk+1 − yk+1

〉
+

Lk+1
2

∥∥∥tk+1 − yk+1
∥∥∥2

2
+

αk+1
2Ak+1

ε

then
7: break
8: else
9: Lk+1 := 2Lk+1

10: end if
11: end while
12: k := k + 1
13: until Stopping criterion is fulfilled

Algorithm 4 Method of Weighted Dual Averages.

Input: accuracy ε > 0, constant χ > 0
1: s0 :=~0, t0 := t̄, k := 0
2: repeat
3: Compute subgradient gk, set sk+1 := sk + 1

‖gk‖2
gk

• non-composite case: gk := ∇Φ(tk) +∇h(tk)

• composite case: gk := ∇Φ(tk)

4: Set βk+1 := β̂k+1
χ , where β̂k+1 = ∑k

i=0
1
β̂i

, β̂0 = 1

5: Set tk+1

• non-composite case: tk+1 := arg min
t∈dom h

〈sk+1, t〉+ βk+1
2

∥∥t− t0
∥∥2

2

• composite case: tk+1 := arg min
t∈dom h

〈sk+1, t〉+ βk+1
2

∥∥t− t0
∥∥2

2 + ∑k
i=0

1
‖gk‖2

h(t)

6: k := k + 1
7: until Stopping criterion is fulfilled

Beckmann model.

For the Beckmann model, we also compare our methods with the Frank–Wolfe algo-
rithm (Algorithm 5), of which the theoretical convergence rate for a convex objective (with
Lipschitz-continuous gradient) is O(1/ε) [7,26].

Figure 3 shows the convergence rates of the methods for the Beckmann model.
The Frank–Wolfe method demonstrates the best results and is followed by UMST. Unlike
the stable dynamics case, the composite WDA-method is faster than UGM. However,
the non-composite WDA-method has the worst performance again.
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Figure 3. Convergence rates of UMST, UGM, composite and non-composite WDA-methods, and the
Frank–Wolfe method for the Beckmann model with the stopping criterion (14). Here, ε̃ is the relative
accuracy ε/∆0, where ∆0 is the duality gap at the start point.

Algorithm 5 Frank–Wolfe algorithm.

Input: accuracy ε > 0
1: t0 := t̄, f 0 := arg min

s∈{Θx:x∈X}
〈t0, s〉, k := 0

2: repeat

3: sk := arg min
s∈{Θx:x∈X}

〈tk, s〉, tk
e := ∂Ψ( f k)

∂ fe
= τe( f k)

4: γk := 2
k+2 , f k+1 := (1− γk) f k + γksk

5: k := k + 1
6: until Stopping criterion is fulfilled

5. Conclusions

We considered several primal-dual subgradient methods for finding equilibria in the
stable dynamics and the Beckmann models. We suggested a way to reconstruct admissible
flows in the stable dynamics model, which provides us with a novel computable duality
gap. Complexity bounds for UMST and UGM were presented in terms of the iterations
number required to achieve a desired accuracy in the dual function value or the duality gap.
Finally, we conducted numerical experiments comparing convergence of the considered
algorithms on the Anaheim transportation network: UMST is the best one for optimization
of the dual problems in both models. Furthermore, using the duality gap as a stopping
criterion, we compared these methods with the Frank–Wolfe algorithm for the Beckmann
model, which, as expected, remains the most suitable approach in this case (but it is not
applicable for the stable dynamics model).

The reader may be interested in another related topic—searching stochastic traffic
equilibria. In [27,28], we (with our colleagues) studied the application of the UMST for
finding Nash–Wardrop stochastic equilibria in the Beckmann model. In this case, a driver
selects a route randomly according to Gibbs’ distribution taking into account current time
costs on the links of the network. It leads to iteration complexity O( 1√

γε ), where γ > 0 is
a stochasticity parameter (when γ→ 0, the model boils down to the ordinary Beckmann
model). However, the great decrease in the number of iterations comes along with a more
expensive calculation of the objective function’s gradient.
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Appendix A. Proofs for UGM

Proof of Lemma 1. Note that function Φ(t) satisfies (5). Then according to Theorem 1
in [12], applied with ν = 0, one has

Q(t̂N) ≤ 1
SN

N

∑
k=1

1
Lk

Q(tk)

≤ min
t≥t̄

{
1

SN

N−1

∑
k=0

1
Lk+1

[
Φ(tk) + 〈∇Φ(tk), t− tk〉

]
+ h(t) +

‖t− t0‖2
2

SN

}
+

ε

2
. (A1)

Equation (9) follows immediately if one substitutes t = t∗. Now let us estimate the
first term on the r.h.s.

min
t≥t̄

{
1

SN

N−1

∑
k=0

1
Lk+1

[
Φ(tk) + 〈∇Φ(tk), t− tk〉

]
+ h(t) +

‖t− t̄‖2
2

SN

}

= min
t≥t̄


1

SN

N−1

∑
k=0

1
Lk+1

[
Φ(tk) + 〈∇Φ(tk), 0− tk〉

]
︸ ︷︷ ︸

≤Φ(0)

−〈 f̂ N , t〉+ 〈 f̄ , t− t̄〉+
‖t− t̄‖2

2
SN


≤ Φ(0)− 〈 f̂ N , t̄〉+ min

t≥t̄

{
〈 f̄ − f̂ N , t− t̄〉+

‖t− t̄‖2
2

SN

}

= −Ψ( f̂ N)−
SN‖( f̂ N − f̄ )+‖2

2
4

.

Here, we used Φ(0) = −∑w∈OD dwTw(0) = 0. Therefore,

Q(t̂N) + Ψ( f̂ N) +
SN‖( f̂ N − f̄ )+‖2

2
4

≤ ε

2
.

Now, notice that since the flow f̂ N is induced by some traffic distribution x ∈ X, we have

0 ≤ Φ(t∗) + 〈t∗, f̂ N〉
= Q(t∗)− 〈t∗ − t̄, f̄ 〉+ Ψ( f̂ N)− 〈t̄, f̂ N〉+ 〈t∗, f̂ N〉
= Q(t∗) + Ψ( f̂ N) + 〈t∗ − t̄, f̂ N − f̄ 〉
≤ Q(t̂N) + Ψ( f̂ N) + 〈t∗ − t̄, ( f̂ N − f̄ )+〉,

hence
Q(t̂N) + Ψ( f̂ N) ≥ −〈t∗ − t̄, ( f̂ N − f̄ )+〉 ≥ −R‖( f̂ N − f̄ )+‖2.
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This yields
SN‖( f̂ N − f̄ )+‖2

2
4

− R‖( f̂ N − f̄ )+‖2 ≤
ε

2
,

and thus

‖( f̂ N − f̄ )+‖2 ≤
2R
SN

(
1 +

√
1 +

εSN

2R2

)
≤ 4R

SN
+

√
2ε

SN
.

Proof of Theorem 1. Theorem 1 in [12] ensures that Lk ≤ M2

ε for all k ≥ 0, thus SN ≥ εN
M2 .

Then the first bound (12) follows immediately from (9).
Now, let us prove the second bound. First, suppose f̂ N

e ≤ f̄e for all e ∈ E. Then
π( f̂ N) = f̂ N , thus by (10) for N = NQ

Q(t̂N) + Ψ(π( f̂ N)) = Q(t̂N) + Ψ( f̂ N) ≤ R2

SN
+

ε

2
≤ (RM)2

εN
+

ε

2
≤ ε.

Otherwise, if f̂ N
e 6≤ f̄e, one has π( f̂ N) = ξ f̂ N+ηg

ξ+η , where η = maxe∈E f̂ N
e / f̄e − 1,

hence (9) and (10) yield

Q(t̂N) + Ψ(π( f̂ N)) ≤ ξ

ξ + η

(
Q(t̂N) + Ψ( f̂ N)

)
+

η

ξ + η

(
Q(t̂N) + Ψ(g)

)
=

ξ

ξ + η

(
Q(t̂N) + Ψ( f̂ N)

)
+

η

ξ + η

(
Q(t̂N)−Q(t∗)

)
+

η

ξ + η
(Ψ(g)−Ψ( f ∗))

≤ R2

SN
+

ε

2
+

η

ξ
〈g− f ∗, t̄〉.

Finally, according to (11)

η = max
e∈E

f̂ N
e / f̄e− 1 =

∥∥∥∥∥ ( f̂ N − f̄ )+
f̄

∥∥∥∥∥
∞

≤ 1
mine f̄e

∥∥∥( f̂ N − f̄ )+
∥∥∥

2
≤ 1

mine f̄e

(
4R
SN

+

√
2ε

SN

)
.

Combining all bounds together we obtain

Q(t̂N) + Ψ(π( f̂ N)) ≤ R2M2

εN
+
〈g− f ∗, t̄〉
ξ mine f̄e

(
4RM2

εN
+

√
2M2

N

)
+

ε

2
,

and substituting N = Nstop, we conclude that the stopping criterion (7) is fulfilled.

Proof of Lemma 2. First of all, note that

max
t≥t̄

{
〈 f̂ N , t〉 − ∑

e∈E
σ∗e (te)

}
= ∑

e∈E
σe( f̂ N

e ) = Ψ( f̂ N),

and maximum is attained at point t = ∇Ψ( f̂ N) = τ( f̂ N). As in the proof of Theorem 1,
the inequality (A1) holds in Beckmann’s model case. Then, the first term in the r.h.s. can be
estimated as follows
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min
t≥t̄

{
1

SN

N−1

∑
k=0

1
Lk+1

[
Φ(tk) + 〈∇Φ(tk), t− tk〉

]
+ h(t) +

‖t− t̄‖2
2

SN

}

= min
t≥t̄


1

SN

N−1

∑
k=0

1
Lk+1

[
Φ(tk) + 〈∇Φ(tk), 0− tk〉

]
︸ ︷︷ ︸

≤Φ(0)

−〈 f̂ N , t〉+ ∑
e∈E

σ∗e (te) +
‖t− t̄‖2

2
SN


≤ Φ(0) +

{
∑
e∈E

σ∗e (te( f̂ N
e ))− 〈 f̂ N , τ( f̂ N)〉+

‖τ( f̂ N)− t̄‖2
2

SN

}

= −Ψ( f̂ N) +
1

SN
‖τ( f̂ N)− t̄‖2

2,

and we finally get an upper bound on the duality gap:

0 ≤ Q(t̂N) + Ψ( f̂ N) ≤
‖τ( f̂ N)− t̄‖2

2
SN

+
ε

2
.

At the same time, substituting t = t∗ one obtains

Q(t̂N) ≤ Q(t∗) +
‖t∗ − t̄‖2

SN
+

ε

2
.

Proof of Theorem 2. By construction, t̂N
e ≤ ∑w∈OD dw for all e ∈ E, thus ‖τ( f̂ N)− t̄‖2 ≤ R̃.

According to Theorem 1 in [12] SN ≥ εN
M2 ; thus, the statement follows immediately from

Lemma 2.

Appendix B. Proofs for UMST

Proof of Lemma 3. According to the inequality (30) in [13]

Q(tN) ≤ min
t≥t̄

{
1

AN

N

∑
k=1

αk

[
Φ(yk) +

〈
∇Φ(yk), t− yk

〉]
+ h(t) +

‖t− t0‖2
2

2AN

}
+

ε

2
. (A2)

Note that the above inequality has the same form as (A1), if one replaces SN with

AN , 1
Lk+1

with αk, yk with tk, and ‖t−t0‖2
2

SN
with ‖t−t0‖2

2
2AN

. Then the claim follows by the same
reasoning as in the proof of Lemma 1.

Proof of Theorem 3. Due to (5) one has

Φ(tk+1) ≤ Φ(yk+1) + 〈∇Φ(yk+1), tk+1 − yk+1〉+ M‖tk+1 − yk+1‖2.

From Young’s inequality we get that

M‖tk+1 − yk+1‖2 ≤
αk+1

2Ak+1
ε +

Ak+1M2

2αk+1ε
‖tk+1 − yk+1‖2

2.

If Lk+1 ≥
Ak+1 M2

αk+1ε , then the stopping condition for inner iterations is fulfilled. Therefore,

at the end of the k-th iteration either Lk+1 <
2Ak+1 M2

αk+1ε or Lk+1 = Lk
2 .

Now we are going to prove by induction that αk ≥ ε
2M2 , which is equivalent to

Lk ≤ 2M2

ε + 4M4

ε2 Ak, for all k ≥ 1. For k = 1 it follows from A1 = α1 and L0 ≤ 4M2

ε . In the

case where Lk+1 <
2Ak+1 M2

αk+1ε equation Ak+1 = Lk+1α2
k+1 immediately yields αk+1 ≥ ε

2M2 .
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If Lk+1 = Lk
2 , then by the induction hypothesis and monotonicity of the sequence {Ak}k∈N

we obtain

Lk+1 ≤
M2

ε
+

2M4

ε2 Ak−1 <
2M2

ε
+

4M4

ε2 Ak.

Therefore,

AN ≥
εN

2M2 . (A3)

Arguing in the same way as in the proof of Theorem 1, we obtain that

Q(tN)−Q(t∗) ≤ 2R2M2

εN
+

ε

2

and

Q(t̂N) + Ψ(π( f̂ N)) ≤ 2R2M2

εN
+
〈g− f ∗, t̄〉
ξ mine f̄e

(
8RM2

εN
+

√
4M2

N

)
+

ε

2
.

After substitution N = NQ or N = Nstop the claim follows.

Proof of Theorem 4. Repeating the proof of Theorem 2, we obtain that

Q(tN)−Q(t∗) ≤ R2

AN
+

ε

2
, Q(tN) + Ψ( f̂ N) ≤ R̃2

AN
+

ε

2
.

Then, we conclude applying (A3).

Appendix C. Proof for WDA

Proof of Theorem 5. According to Equation (3.5) from [14],

Q(t̂k)−Q(t∗) = O
(

L√
k

(
R2

χ
+ χ

))
,

whenever ‖gk‖2 ≤ L for all k.
In case of the stable dynamics model ∇h(t) = f̄ ; thus, we can take L = M + ‖ f̄ ‖2.
For the Beckmann model

∂h(t)
∂te

= f̄e

(
te − t̄e

t̄eρ

)µ

.

Theorem 3 in [14] yields that ‖tk − t∗‖2
2 ≤ R2 + χ2 for all k, thus ‖tk − t̄‖2 ≤ 2R + χ.

Then, using µ ≤ 1 one obtains

‖∇h(tk)‖2 ≤ ‖tk − t̄‖µ
2 max

e

f̄e

(t̄eρ)µ ≤ (2R + χ)µ max
e

f̄e

(t̄eρ)µ ,

thus we can take

L = M + max
e

f̄e

(
2R + χ

t̄eρ

)µ

.
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