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Abstract: This study introduces a flexible model with two parameters by combining the type II
half-logistic-G family with the inverted Topp–Leone distribution. The proposed model is referred to
as the half logistic inverted Topp–Leone (HLITL) distribution. The associated probability density
function can be considered a mixture of the inverted Topp–Leone distributions. The proposed model
can be deemed an acceptable model for fitting the right-skewed, reversed J-shaped, and unimodal
data. The statistical properties, including the moments, Bonferroni and Lorenz curves, Rényi entropy,
and quantile function, are derived. Additionally, the plots of the skewness and kurtosis measures
are plotted based on the quantiles. The parameter estimators are implemented using the maximum
likelihood method based on two sampling schemes: the simple random sample method and the
ranked set sampling method. The proposed method is evaluated by using simulations. The results
show that the maximum likelihood estimates of the parameters under ranked set sampling are more
accurate than those under simple random sampling. Generally, there is good agreement between the
theoretical and empirical results. Two real datasets are used to compare the HLITL model with the
following models: alpha power exponential, alpha power Lindley, odd Fréchet inverse exponential,
and odd Fréchet inverse Rayleigh models. The comparison results show that the HLITL model
represents a better alternative lifetime distribution than the other competitive distributions.

Keywords: type II half-logistic–G class; inverted Topp–Leone distribution; maximum likelihood
method; ranked set sampling

1. Introduction

The Topp–Leone (TL) distribution, also known as the J-shaped distribution, is a
significant model that possesses a bathtub-shaped hazard rate. The probability density
function (PDF) and cumulative distribution function (CDF) of the TL distribution with a
shape parameter, respectively, are given by

f (y; θ) = 2θyθ−1(1− y)(2− y)θ−1, 0 ≤ y ≤ 1, θ > 0, (1)

F(y; θ) = yθ(2− y)θ . (2)

Significant properties of the TL distribution were discussed in [1]. The TL distribution
was analyzed in many studies [2–4]. The inverted (or inverse) distributions are formally
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regarded as inverse transforms of random variables. The inverted distributions have
different densities and hazard rate shapes from the associated noninverted distributions.
The usefulness and applicability of inverted distributions have been used in various fields,
such as survey sampling, biological sciences, life testing problems, and engineering sciences.
In the literature, various inverted distributions and their applications in many areas have
been studied [5–10].

In [11], the inverted Topp–Leone (ITL) was proposed using the transformation
X = 1

Y − 1, where Y denotes a random variable with the CDF and PDF that are, respectively,
defined as

G(x; θ) = 1− (1 + 2x)θ

(1 + x)2θ
, x, θ > 0, (3)

g(x; θ) =
2θx(1 + 2x)θ−1

(1 + x)2θ+1 , x, θ > 0, (4)

where θ is the shape parameter and θ > 0. In [11], several properties and the estimation
of the parameter of the ITL distribution were discussed based on censored samples. Re-
cently, serious efforts have been put into developing new families of continuous probability
distributions that extend the classical ones. These extended distributions have more addi-
tional parameters as well as enhanced flexibility in modeling a variety of data (see [12–17]).
In [18], a highly flexible extended family, called Marshall–Olkin-G (MO-G), was proposed,
and its PDF is expressed as

f (x; δ) =
δg(x){

1− δ
(
G(x)

)}2 , (5)

where δ = 1− δ and G(x) is the survival function (SF) of a baseline distribution with CDF
G(x), and PDF g(x). Several new families that are related to the MO-G family have been
considered in recent studies. This study considers the univariate family generated by a
half-logistic random variable, as presented in [19]. The CDF of the HL-G family approaches
that of the MO-G family. It is specified as follows:

F(x; λ) = 2[G(x)]λ
{

1 + [G(x)]λ
}−1

, x > 0 , λ > 0, (6)

where λ is the shape parameter. For λ = 1 in Equation (6) and δ = 0.5 in Equation (5), the
HL-G and MO-G families coincide. The CDF given by Equation (6) extends several flexible
distributions as specific cases in their skewness and kurtosis, as presented in [20–24].

In [25], the ranked set sampling (RSS) scheme was provided as another sampling
technique for simple random sampling (SRS) in situations where the measurement of the
variable of interest is costly or difficult to conduct. The RSS protocol is more suitable than
the SRS protocol. To obtain an RSS sample, the following steps are performed:

• Draw m random samples with a size n from the desired population such that m = n;
• Without taking any measurements, rank the samples in each dataset according to the

criterion determined by the experimenter;
• Choose a sample for true judgment by involving the smallest ordered unit in the first

set and the second-smallest ordered unit in the second set. The operation is continued
in this manner until the largest-ranked unit is chosen from the final set;

• To collect a sample of a size of mk units, the above operations of the “cycle” may be
repeated k times. For more studies about RSS, we may refer to [26–30].

This paper proposes a more flexible model for the ITL distribution by inducing
one extra shape parameter for enhancing the goodness-of-fit to the real data. The main
motivation for introducing the half-logistic inverted Topp–Leone (HLITL) is as follows:
(1) obtain a more flexible PDF for right-skewed, unimodal, and reversed J-shaped data;
(2) provide decreasing, increasing, and upside-down hazard rate shapes; (3) estimate the
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HLITL distribution parameters on the basis of SRS and RSS; and (4) provide significant
improvement in the data modeling.

The rest of the article is organized as follows. Section 2 defines the PDF, CDF, and
hazard rate function (HRF) of the HLITL distribution. Section 3 derives the structural
properties of the HLITL distribution. Section 4 presents the maximum likelihood (ML)
parameter estimators as well as the simulation study of SRS and RSS. Section 5 describes
the real data analysis. Section 6 concludes the paper.

2. HLITL Model Characterizations

The ITL distribution, having the CDF and PDF defined by Equations (3) and (4), re-
spectively, was presented in [11]. This study considers the HLITL distribution as presented
in Definition 1.

Definition 1. A random variable X is assumed to have the HLITL distribution if its PDF is
represented as follows:

f (x; λ, θ) = 4λθx (1 + x)−2θ−1(1 + 2x)θ−1[1− H]λ−1
[
1 + [1− H]λ

]−2
, x > 0 , λ, θ > 0, (7)

where H = (1 + x)−2θ(1 + 2x)θ , λ and θ denote the shape parameters. A random variable with
the PDF given by Equation (7) is denoted by ∼ (λ, θ). For λ = 1 in Equation (7), a new
distribution called the Marshall–Olkin ITL distribution with δ = 0.5 is obtained. The PDF plots of
the HLITL distribution for some specific values of λ and θ are displayed in Figure 1. The shape of
the HLITL distribution is unimodal, positively skewed, and reverse J-shaped.
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The associated CDF and HRF, respectively, are given by

F(x; λ, θ) = 2[1− H]λ
{

1 + [1− H]λ
}−1

, x, λ, θ > 0, (8)

τ(x; λ, θ) = 4λθx (1 + x)−2θ−1(1 + 2x)θ−1[1− H]λ−1
[
1− [1− H]2λ

]−1
. (9)

The HRF plots for specific values of parameters with various shapes are illustrated in
Figure 2.
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3. Basic Properties of the HLITL Distribution

The basic properties of the HLITL distribution, including moments, skewness, kurtosis,
Rényi entropy, stochastic ordering, and Bonferroni and Lorenz curves, are derived in the
following sections.

3.1. Useful Representation

The properties of the HLITL distribution are deduced through simple elicitation of its
PDF. According to [19], the PDF given by Equation (7) can be represented as

f (x; λ, θ) =
∞

∑
i=0

4λ(−1)i(i + 1)θx
(1 + 2x)θ−1

(1 + x)2θ+1

[
1− (1 + 2x)θ

(1 + x)2θ

]λ(i+1)−1

. (10)

Employing the binomial expansions, the PDF of the HLITL distribution becomes

f (x; λ, θ) =
∞

∑
i,d=0

4θλ(−1)i+d(i + 1)
(

λ(i + 1)− 1
d

)
x (1 + x)−2(d+1)θ−1(1 + 2x)θ(d+1)−1 , (11)

which further leads to

f (x; λ, θ) =
∞

∑
i,d=0

Wi,d g(x; θ(d + 1)) , (12)

where Wi,d = 2λ(−1)i+d (i+1)
d+1

(
λ(i + 1)− 1

d

)
.

The PDF g(x; θ(d + 1)) represents the ITL PDF with the shape parameter θ(d + 1).
Thus, the PDF of the HLITL distribution can be expressed as an infinite linear combination
of ITL PDFs.

3.2. HLITL Entropy

The Rényi entropy of a random variable X with the HLITL distribution for ϕ > 0 and
ϕ 6= 1 is expressed as

Ie(x) = (1− ϕ)−1 log

 ∞∫
0

( f (x; λ, θ))ϕdx

. (13)
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Substituting Equation (7) into Equation (13) leads to

Ie = (1− ϕ)−1 log

 ∞

∑
c=0

υc

∞∫
0

xϕ (1 + x)−ϕ(2θ+1)(1 + 2x)ϕ(θ−1)(1− H)φ(λ−1)+λcdx

, (14)

where υc = (4λθ)ϕ(−1)c
(

2ϕ + c− 1
c

)
. By applying the binomial expansions to

Equation (14), we get

Ie = (1− ϕ)−1 log

(
∞

∑
c,d,k=0

υc(−1)d
(

ϕ(λ− 1) + λc
d

)(
θ(ϕ + d)− ϕ

k

)
B(ϕ + k + 1, θ(ϕ + d) + ϕ− 1)

)
. (15)

where B(.,.) stands for the beta function. The numerical results of Ie of the HLITL distribu-
tion for some ϕ, λ, and θ values are listed in Table 1.

Table 1. Numerical results of Rényi entropy for the HLITL distribution.

Parameters ϕ = 0.5 ϕ = 1.5 ϕ = 2.5

θ = 5, λ = 0.5 0.245 −0.193 −0.321
θ = 5, λ = 1 0.386 0.06 −0.022
θ = 5, λ = 1.5 0.449 0.141 0.064
θ = 5, λ = 2 0.486 0.186 0.111
θ = 5, λ = 2.5 0.513 0.216 0.142
θ = 5, λ = 3 0.533 0.239 0.165
θ = 8, λ = 0.5 0.043 −0.321 −0.437
θ = 8, λ = 1 0.167 −0.095 −0.167
θ = 8, λ = 1.5 0.216 −0.031 −0.099
θ = 8, λ = 2 0.244 0.0022 −0.065
θ = 8, λ = 2.5 0.263 0.023 −0.044
θ = 8, λ = 3 0.277 0.038 −0.029
θ = 10, λ = 0.5 −0.041 −0.38 −0.491
θ = 10, λ = 1 0.076 −0.165 −0.233
θ = 10, λ = 1.5 0.121 −0.107 −0.172
θ = 10, λ = 2 0.145 −0.078 −0.143
θ = 10, λ = 2.5 0.161 −0.061 −0.125

We conclude from Table 1 that as the value of shape parameter θ increased, for the
same value of parameter λ, the value of randomness decreased. In addition, as the value of
ϕ increased, the value of randomness decreased for fixed values of θ and λ. Furthermore,
the values in Table 1 are in the interval [−0.321, 0.533], meaning that λ and θ had pivotal
effects on the information amount. Thus, these parameters had a strong effect on the Rényi
entropy, showing different degrees of uncertainty.

3.3. Quantile Function

The quantile function of X ∼ HLITL(λ, θ) is given as q in (0, 1) as

Q(q; λ, θ) = −V +
√

V2 −V, V = 1−
[

1−
{

q
2− q

} 1
λ

]−1
θ

. (16)

Setting q = 0.5 in Equation (16), we get the median M of the HLITL distribution.
Furthermore, by setting q = 0.25 and 0.75 in Equation (16), the 25th and 75th percentiles are
obtained, respectively. Based on the quantiles, Bowley’s skewness is given by
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Bo =
Q
( 3

4 ; λ, θ
)
− 2Q

(
1
2 ; λ, θ

)
+ Q

(
1
4 ; λ, θ

)
Q
( 3

4 ; λ, θ
)
−Q

(
1
2 ; λ, θ

) . (17)

Moor’s kurtosis is given by

Mo =
Q
( 7

8 ; λ, θ
)
−Q

( 5
8 ; λ, θ

)
−Q

( 3
8 ; λ, θ

)
+ Q

(
1
8 ; λ, θ

)
Q
( 6

8 ; λ, θ
)
−Q

( 2
8 ; λ, θ

) (18)

The Bo and Mo plots of the HLITL distribution were obtained based on the quantile
function, shown in Figure 3.
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Bowley’s skewness was plotted for increasing values of λ and θ. From the plot of
the skewness, it is clear that the distribution was positively skewed, and the skewness
increased with the decrease in θ and increase in λ and vice versa.

Moor’s kurtosis was plotted for increasing values of λ and θ. From the plot, it is clear
that the kurtosis of the distribution increased with the increase in λ and θ.

3.4. Moments and Related Measures

If X has the PDF given by Equation (12), then its nth moment can be calculated as

µ′n =
∞

∑
i,d=0

Wi,d

∞∫
0

2θ(d + 1)xn+1(1 + x)−2θ(d+1)−1 (1 + 2 x)θ(d+1)−1 dx. (19)

Using the binomial expansion, the nth moment of the HLITL distribution can be
obtained as follows:

µ′n =
∞
∑

i,d,k=0
Wi,d 2θ(d + 1)

(
θ(d + 1)− 1

k

)∞∫
0

xk+n+1(1 + x)−θ(d+1)−k−2 dx

=
∞
∑

i,d,k=0
ψi,d,kB(k + n + 2, θ(d + 1)− n),

(20)

where ψi,d,k = 2θ(d + 1)
(

θ(d + 1)− 1
k

)
Wi,d.
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Further, the nth central moment of X is defined as

µn = E(X− µ′1)
n
=

n

∑
i=0

(−1)i
(

n
i

)
(µ′1)

i
µ′n−i. (21)

The numerical values for specific values of the parameters of the first four ordinary
moments µ′1, µ′2, µ′3, and µ′4, the variance (σ2), the coefficient of variation (CV = σ

µ′1
),

the coefficient of skewness (SK = µ3

(µ2)
1.5 ), and the coefficient of kurtosis (KU = µ4

(µ2)
2 ) of the

HLITL distribution are listed in Tables 2 and 3.

Table 2. Some moments of the HLITL distribution.

µ′r
θ = 5.0,
λ = 0.5

θ = 5.0,
λ = 1.0

θ = 5.0,
λ = 1.5

θ = 5.0,
λ = 2.0

θ = 5.0,
λ = 2.5

θ = 5.0,
λ = 3.0

µ′1 0.334 0.555 0.716 0.844 0.951 1.044

µ′2 0.336 0.646 0.928 1.188 1.431 1.659

µ′3 0.804 1.597 2.376 3.14 3.889 4.626

µ′4 5.137 10.268 15.389 20.498 25.594 30.677

σ2 0.225 0.338 0.415 0.475 0.526 0.569

SK 5.079 4.398 4.176 4.071 4.011 3.973

KU 84.146 66.827 61.804 59.545 58.306 57.546

CV 1.418 1.048 0.9 0.816 0.762 0.723

Table 3. Some moments of the HLITL distribution.

µ′r
θ = 8.0,
λ = 0.5

θ = 8.0,
λ = 1.0

θ = 8.0,
λ = 1.5

θ = 8.0,
λ = 2.0

θ = 8.0,
λ = 2.5

θ = 8.0,
λ = 3.0

µ′1 0.233 0.381 0.484 0.565 0.63 0.686

µ′2 0.137 0.259 0.367 0.464 0.552 0.633

µ′3 0.148 0.291 0.43 0.563 0.692 0.816

µ′4 0.261 0.521 0.779 1.034 1.286 1.535

σ2 0.083 0.114 0.132 0.145 0.155 0.162

SK 3.249 2.732 2.566 2.489 2.447 2.421

KU 23.342 18.335 16.955 16.367 16.065 15.891

CV 1.232 0.889 0.751 0.674 0.624 0.587

As shown in Tables 2 and 3, for the same value of θ and for the increasing value of λ,
the values of the moments increased, but the values of SK, KU, and CV decreased. At the
same value of λ, the moment values increased with the value of θ, while the values of SK,
KU, and CV decreased. As the value of θ increased, all measures decreased with the value
of λ. Thus, the HLITL distribution was positively skewed and leptokurtic.

3.5. Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves have been applied to several fields, such as economics
and engineering, and they are respectively defined by
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Lo(x) = (E(X))−1
x∫

0

y f (y; λ, θ)dy, (22)

Be(x) = (F(x; λ, θ))−1Lo(x), (23)

where
x∫

0
y f (y; λ, θ)dy, denotes the lower incomplete moment. For the HLITL distribution,

the Bonferroni and Lorenz curves are respectively defined as follows:

Lo(x) =

∞
∑

i,d,k=0
ψi,d,kB(k + 3, θ(d + 1)− 1, x/(1 + x))

∞
∑

i,d,k=0
ψi,d,kB(k + 3, θ(d + 1)− 1)

, (24)

Be(x) =

{
1 + [1− H]λ

}
2[1− H]λ


∞
∑

i,d,k=0
ψi,d,kB(k + 3, θ(d + 1)− 1, x/(1 + x))

∞
∑

i,d,k=0
ψi,d,kB(k + 3, θ(d + 1)− 1)

, (25)

where ψi,d,k is defined above and B(., ., x/(1 + x)) represents an incomplete beta function.

4. Parameters Estimation

In this section, the estimation of λ and θ of the HLITL distribution under the SRS and
RSS are discussed. Additionally, we examine the behavior of the estimates, namely in the
simulation study.

4.1. Parameter Estimation under SRS

In this section, the HLITL parameters are estimated by the ML method. Let X1, X2, . . . , Xn
be SRS obeying the HLITL distribution with observed values x1, x2, . . . , xn, respectively.
The log-likelihood function of the HLITL distribution, denoted by ln`, is obtained
as follows:

ln` = n ln4λ + nlnθ +
n
∑

i=1
lnxi − (2θ + 1)

n
∑

i=1
ln(1 + xi) + (θ − 1)

n
∑

i=1
ln(1 + 2xi)

+(λ− 1)
n
∑

i=1
ln[1− Hi]− 2

n
∑

i=1
ln
[
1 + [1− Hi]

λ
]
,

(26)

where Hi = (1 + 2xi)
θ(1 + xi)

−2θ . The partial derivatives of the log-likelihood function
associated with λ and θ are respectively given by

∂ln`
∂λ

=
n
λ
+

n

∑
i=1

ln[1− Hi]− 2
n

∑
i=1

ln[1− Hi]
{
[1− Hi]

−λ + 1
}−1

, (27)

∂ln`
∂θ

=
n
θ
− 2

n

∑
i=1

ln[1 + xi] +
n

∑
i=1

ln[1 + 2xi]− (λ− 1)
n

∑
i=1

hi(1− Hi)
−1 +

n

∑
i=1

2λhi[1− Hi]
λ−1

1 + [1− Hi]
λ

, (28)

where hi =
(
(1 + 2xi)(1 + xi)

−2
)θ

ln
(
(1 + 2xi)(1 + xi)

−2
)

.
By solving the nonlinear equations ∂ln`/∂λ = 0 and ∂ln`/∂θ = 0 with respect to λ

and θ, the ML estimators could be obtained.
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4.2. ML Estimation under RSS

Suppose that X(i)ic, i = 1, 2, . . . , m, c = 1, 2, . . . , k denotes a selected RSS from the
HLITL distribution, where the sample size is n = mk, m denotes the set size, and k is
the number of cycles. For simplicity, assume that Yic = X(i)ic. Then, the fixed c, Yic is
independent and has a PDF equal to the PDF of the ith order statistics. The likelihood
function LR of the RSS of samples y1c, y2c, . . . , ymc can be expressed as

LR =
k

∏
c=1

m
∏
i=1

(
m
i

)
[F(yic; λ, θ)]i−1 f (yic; λ, θ) [1− F(yic; λ, θ)]m−i

LR =
k

∏
c=1

m
∏
i=1

(
m
i

) [
2[1−Hic ]

λ

1+[1−Hic ]
λ

]i−1
4λθyic(1+yic)

−2θ−1(1+2yic)
θ−1[1−Hic ]

λ−1[
1+[1−Hic ]

λ
]2[

1−[1−Hic ]
λ

1+[1−Hic ]
λ

]m−i
,

(29)

where Hic =
(1+2yic)

θ

(1+yic)
2θ . The log-likelihood function of the HLITL distribution is given by

lnLR = C + mk ln 4λ + mk ln θ +
k
∑

c=1

m
∑

i=1
(i− 1) ln

[
2[1−Hic ]

λ

1+[1−Hic ]
λ

]
+

k
∑

c=1

m
∑

i=1
ln[yic]

−(2θ + 1)
k
∑

c=1

m
∑

i=1
ln[1 + yic] + (θ − 1)

k
∑

c=1

m
∑

i=1
ln[1 + 2yic]

+(λ− 1)
k
∑

c=1

m
∑

i=1
ln[1− Hic]− 2

k
∑

c=1

m
∑

i=1
ln
[
1 + [1− Hic]

λ
]
+

m
∑

i=1
(m− i) ln

[
1−[1−Hic ]

λ

1+[1−Hic ]
λ

]
,

(30)

where C =
k
∑

c=1

m
∑

i=1
ln
[(

m
i

)]
. The partial derivatives of lnLR associated with unknown

parameters are expressed as follows:

∂lnLR
∂λ = mk

λ −
k
∑

c=1

m
∑

i=1

(i−1) ln[1−Hic ]

1+[1−Hic ]
λ +

k
∑

c=1

m
∑

i=1
i ln[1− Hic]− 2

k
∑

c=1

m
∑

i=1

ln[1−Hic ][1−Hic ]
λ

1+[1−Hic ]
λ

−2
k
∑

c=1

m
∑

i=1

(m−i) ln[1−Hic ](1−Hic)
λ

1−(1−Hic)
2λ ,

(31)

∂lnLR
∂θ = mk

θ +
k
∑

c=1

m
∑

i=1

(i−1)λ(1−Hic)
λ−1hic(

1+(1−Hic)
λ
) − 2

k
∑

c=1

m
∑

i=1
ln[1 + yic]−

k
∑

c=1

m
∑

i=1

(λi−1)hic
1−Hic

+
k
∑

c=1

m
∑

i=1
ln[1 + 2yic] + 2

k
∑

c=1

m
∑

i=1

λ(1−Hic)
λ−1hic

1+(1−Hic)
λ + 2λ

k
∑

c=1

m
∑

i=1

(m−i)hic(1−Hic)
λ−1

1−(1−Hic)
2λ ,

(32)

where hic =

(
1+2yic

(1+yic)
2

)θ

ln
(

1+2yic

(1+yic)
2

)
. In solving the nonlinear equations ∂lnLR/∂λ = 0

and ∂lnLR/∂θ = 0 with respect to λ and θ numerically, the ML estimators can be obtained.

4.3. Simulation Procedures

This section presents the numerical method to obtain the ML estimates (MLEs) of
λ and θ for the HLITL distribution under the RSS and SRS. A comparison study was
conducted based on the mean square error (MSE) value, biases, and relative efficiency (RE).
The following algorithm was performed using MATHEMATICA software [31] to obtain
the MLEs and the suggested criteria measures.

Step 1: A random sample of size n = 30, 50, 100, 200, or 300 with a set size of m and
number of cycles k where n = mk is generated from the HLITL distribution.

Step 2: The chosen values of the parameters are as follows: (λ = 2, θ = 5), (λ = 3,
θ = 5), (λ = 1, θ = 8), (λ = 2, θ = 8), and (λ = 3, θ = 8).
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Step 3: For each n and specified parameter value, the MLE values under SRS and RSS
are obtained.

Step 4: Repeat steps 1–3 N = 2000 times. Then, the bias, MSE, and RE values, where
RE = MSE (SRS)/MSE (RSS), are computed.

Step 5: The outcomes of this study are given in Tables 4–8.

Table 4. MLE, bias, MSE, and RE of the HLITL distribution under SRS and RSS for λ = 2, θ = 5.

n Parameters
SRS RSS

RE
MLE Bias MSE MLE Bias MSE

30
λ 2.24665 0.24665 0.44814 2.05599 0.05599 0.07258 6.17398
θ 5.42395 0.42395 2.15164 5.09999 0.09999 0.40560 5.30488

50
λ 2.13933 0.13933 0.18853 2.02705 0.02705 0.02444 7.71307
θ 5.24674 0.24674 0.96227 5.05890 0.05890 0.12829 7.50083

100
λ 2.02133 0.02133 0.06865 2.01428 0.01428 0.00672 10.21169
θ 5.12873 0.12873 0.42011 5.02657 0.02657 0.03839 10.94189

200
λ 1.98450 −0.01550 0.04086 1.99913 −0.00087 0.00271 15.06497
θ 4.96450 −0.03550 0.19184 4.98999 −0.01001 0.01459 13.14884

300
λ 2.00841 0.00841 0.02286 1.99921 −0.00079 0.00099 23.08329
θ 5.01792 0.01792 0.14397 4.99748 −0.00252 0.00564 25.50732

Table 5. MLE, bias, MSE, and RE of the HLITL distribution under SRS and RSS for λ = 3, θ = 5.

n Parameters
SRS RSS

RE
MLE Bias MSE MLE Bias MSE

30
λ 3.49833 0.49833 1.51722 3.06551 0.06551 0.18998 7.98617
θ 5.54666 0.54666 1.87525 5.08473 0.08473 0.27925 6.71538

50
λ 3.17527 0.17527 0.39593 3.01343 0.01343 0.05829 6.79289
θ 5.23404 0.23404 0.74310 5.01014 0.01014 0.11053 6.72327

100
λ 3.06525 0.06525 0.22305 3.01564 0.01564 0.02158 10.33606
θ 5.10540 0.10540 0.36652 5.01876 0.01876 0.03375 10.85922

200
λ 3.06158 0.06158 0.12887 3.01063 0.01063 0.00599 21.49613
θ 5.05276 0.05276 0.20716 5.01286 0.01286 0.00901 22.98753

300
λ 3.04510 0.04510 0.07566 3.00965 0.00965 0.00249 30.38488
θ 5.00445 0.00445 0.11340 5.01317 0.01317 0.00432 26.24375

Table 6. MLE, bias, MSE, and RE of the HLITL distribution under SRS and RSS for λ = 1, θ = 8.

n Parameters
SRS RSS

RE
MLE Bias MSE MLE Bias MSE

30
λ 1.07235 0.07235 0.07101 1.01680 0.01680 0.01125 6.31288
θ 8.76351 0.76351 7.54481 8.27698 0.27698 1.62355 4.64711

50
λ 1.05411 0.05411 0.04031 1.00142 0.00142 0.00504 7.99685
θ 8.61090 0.61090 4.96154 8.09470 0.09470 0.67902 7.30688

100
λ 1.02216 0.02216 0.01626 0.99950 −0.00050 0.00107 15.16481
θ 8.36669 0.36669 2.78284 7.99541 −0.00459 0.15104 18.42416

200
λ 1.01110 0.01110 0.00669 1.00159 0.00159 0.00031 21.29228
θ 8.15951 0.15951 0.98182 8.02785 0.02785 0.04678 20.98708

300
λ 0.99242 −0.00758 0.00389 0.99977 −0.00023 0.00017 23.37761
θ 7.99837 −0.00163 0.52617 8.00809 0.00809 0.02578 20.41341
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Table 7. MLE, bias, MSE, and RE of the HLITL distribution under SRS and RSS for λ = 2, θ = 8.

n Parameters
SRS RSS

RE
MLE Bias MSE MLE Bias MSE

30
λ 2.11451 0.11451 0.23930 2.04546 0.04546 0.08626 2.77425
θ 8.14470 0.14470 2.72208 8.13691 0.13691 0.95506 2.85016

50
λ 2.10872 0.10872 0.17984 2.01079 0.01079 0.02425 7.41578
θ 8.30965 0.30965 2.20228 8.01382 0.01382 0.32892 6.69551

100
λ 2.07331 0.07331 0.08344 2.01130 0.01130 0.00753 11.07905
θ 8.10855 0.10855 1.24516 8.04232 0.04232 0.10381 11.99414

200
λ 2.00342 0.00342 0.03284 1.99796 −0.00204 0.00277 11.84549
θ 7.95718 −0.04282 0.46577 7.99595 −0.00405 0.03844 12.11569

300
λ 2.02033 0.02033 0.02537 1.99699 −0.00301 0.00103 24.59269
θ 8.09456 0.09456 0.38287 7.98655 −0.01345 0.01498 25.55199

Table 8. MLE, bias, MSE, and RE of the HLITL distribution under SRS and RSS for λ = 3, θ = 8.

n Parameters
SRS RSS

RE
MLE Bias MSE MLE Bias MSE

30
λ 3.41418 0.41418 1.27229 3.09333 0.09333 0.15659 8.12492
θ 8.55175 0.55175 4.23735 8.20260 0.20260 0.50519 8.38760

50
λ 3.22376 0.22376 0.58594 2.99541 −0.00459 0.06124 9.56734
θ 8.39282 0.39282 1.95568 7.99319 −0.00681 0.25080 7.79780

100
λ 3.12361 0.12361 0.21725 3.01169 0.01169 0.02121 10.24074
θ 8.19048 0.19048 1.01699 8.03179 0.03179 0.08586 11.84500

200
λ 3.04516 0.04516 0.11087 3.00666 0.00666 0.00635 17.44767
θ 8.05130 0.05130 0.40836 8.00759 0.00759 0.02846 14.35016

300
λ 3.04564 0.04564 0.07322 3.00014 0.00014 0.00382 19.15888
θ 8.08202 0.08202 0.30526 8.00310 0.00310 0.01608 18.98614

Based on the numerical study, the following conclusions can be drawn.
As presented in Tables 4 and 8, for a fixed value of θ, the MSE of the estimates of λ

increased with the value of λ, while the MSE of the estimates of θ decreased under SRS
and RSS with n. Furthermore, the MSE values of the estimates of λ were smaller than those
of the estimates of θ for all values of n under both sampling schemes.

As λ increased from two to three and θ increased from five to eight, the MSE values
of both estimates increased under both schemes. In addition, the MSE values of the
estimates of θ were smaller than those of the estimates of λ for all sample sizes, as shown
in Tables 4 and 8.

When the value of λ increased and the value of θ decreased, the MSE values of the
estimates of λ increased, while the MSE values of the estimates of θ decreased under both
sampling schemes (see Tables 4 and 6).

Generally, the MLE values of the HLITL distribution under RSS were smaller than
those under the SRS. Additionally, when the MSE values of both estimates decreased, the
RE increased. When n increased, the RE values increased, and the MSE values decreased.

5. Applications to Real Data

The experiments on two real datasets were conducted to assess the flexibility of the
proposed HLITL model. The first dataset included the relief times of 20 patients receiving
an analgesic [32]. The second dataset was taken from [33], which included the failure
times of the air conditioning system of an airplane. The HLITL model was compared with
four competing models: AP exponential (APE) [34], alpha power (AP) Lindley (APL) [35],
Fréchet inverse exponential (OFIE) [36], and odd Fréchet inverse Rayleigh (OFIR) [37].
Some descriptive statistics of the two datasets are given in Table 9, and the boxplot is
shown in Figure 4.
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Table 9. Descriptive statistics for the datasets.

n Min Max Mean Median SK KU

Data 1 20 1.1 4.1 1.9 1.7 1.862 4.185
Data 2 30 1 261 59.6 22 1.784 2.569

Mathematics 2021, 9, x FOR PEER REVIEW 12 of 17 
 

 

θ 8.19048 0.19048 1.01699 8.03179 0.03179 0.08586 11.84500

200 λ 3.04516 0.04516 0.11087 3.00666 0.00666 0.00635 17.44767
θ 8.05130 0.05130 0.40836 8.00759 0.00759 0.02846 14.35016

300 
λ 3.04564 0.04564 0.07322 3.00014 0.00014 0.00382 19.15888
θ 8.08202 0.08202 0.30526 8.00310 0.00310 0.01608 18.98614

Based on the numerical study, the following conclusions can be drawn. 
As presented in Tables. 4 and 8, for a fixed value of θ , the MSE of the estimates of 

λ  increased with the value of λ , while the MSE of the estimates of θ  decreased under 
SRS and RSS with n. Furthermore, the MSE values of the estimates of λ  were smaller 
than those of the estimates of θ  for all values of n under both sampling schemes. 

As λ  increased from two to three and θ  increased from five to eight, the MSE val-
ues of both estimates increased under both schemes. In addition, the MSE values of the 
estimates of θ  were smaller than those of the estimates of λ  for all sample sizes, as 
shown in Tables 4 and 8. 

When the value of λ  increased and the value of θ  decreased, the MSE values of 
the estimates of λ  increased, while the MSE values of the estimates of θ  decreased un-
der both sampling schemes (see Tables 4 and 6). 

Generally, the MLE values of the HLITL distribution under RSS were smaller than 
those under the SRS. Additionally, when the MSE values of both estimates decreased, the 
RE increased. When n increased, the RE values increased, and the MSE values decreased. 

5. Applications to Real Data 
The experiments on two real datasets were conducted to assess the flexibility of the 

proposed HLITL model. The first dataset included the relief times of 20 patients receiving 
an analgesic [32]. The second dataset was taken from [33], which included the failure times 
of the air conditioning system of an airplane. The HLITL model was compared with four 
competing models: AP exponential (APE) [34], alpha power (AP) Lindley (APL) [35], Fré-
chet inverse exponential (OFIE) [36], and odd Fréchet inverse Rayleigh (OFIR) [37]. Some 
descriptive statistics of the two datasets are given in Table 9, and the boxplot is shown in 
Figure 4. 

Table 9. Descriptive statistics for the datasets. 

 n Min Max Mean Median SK KU 
Data 1 20 1.1 4.1 1.9 1.7 1.862 4.185 
Data 2 30 1 261 59.6 22 1.784 2.569 

 
Figure 4. Box plots for both datasets. 

The MLEs, along with their standard errors (SEs) of the model parameters, are pro-
vided in Tables 10 and 11. Tables 12 and 13 give the values of the Anderson–Darling sta-
tistic (A*), Cramér–von Mises statistic (W*), Akaike information criterion (AIC), corrected 

Figure 4. Box plots for both datasets.

The MLEs, along with their standard errors (SEs) of the model parameters, are pro-
vided in Tables 10 and 11. Tables 12 and 13 give the values of the Anderson–Darling
statistic (A*), Cramér–von Mises statistic (W*), Akaike information criterion (AIC), cor-
rected AIC (CAIC), Bayesian information criterion (BIC), and Hannan–Quinn information
criterion (HQIC).

Table 10. MLEs and their SEs (in parentheses) for the first data set.

Model MLE and SE MLE and SE

HLITL (λ, θ) 39.964 (25.292) 7.027 (1.394)
OFIR (α, θ) 1.623 (0.182) 1.462 (0.265)
APL (α, γ) 10540 (15462.663) 1.884 (0.174)
APE (α, γ) 16530 (23359.046) 1.488 (0.161)
OFIE (α, γ) 1.073 (0.0618) 2.929 (0.518)

Table 11. MLEs and their SEs (in parentheses) for the second dataset.

Model MLE and SE MLE and SE

HLITL (λ, θ) 4.519 (1.2539) 0.612 (0.115)
OFIR (α, γ) 6.85 (1.761) 0.229 (0.034)
APL (α, γ) 0.1 (0.104) 0.024 (5.127 × 10−3)
APE (α, γ) 8.688 × 10−10 (5.698 × 10−8) 8.536 × 10−4 (2.844 × 10−3)
OFIE (α, γ) 4.082 (0.7770) 0.47 (0.069)

Table 12. Measures of goodness-of-fit statistics for the first dataset.

Model AIC CAIC BIC HQIC A* W*

HLITL 34.894 35.599 33.496 35.282 0.1702 0.0308
OFIR 35.476 36.181 34.078 35.864 0.23635 0.0399
APL 74.416 75.122 73.018 74.804 0.75697 0.09802
APE 75.411 76.117 74.013 75.8 0.94478 0.10762
OFIE 35.078 35.784 33.68 35.467 0.19209 0.03343
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Table 13. Measures of goodness-of-fit statistics for the second dataset.

Model AIC CAIC BIC HQIC A* W*

HLITL 315.459 315.904 314.414 316.356 0.8386 0.1152
OFIR 341.187 341.893 340.141 342.083 1.53147 0.1613
APL 370.83 371.274 369.784 371.727 1.2629 0.1778
APE 358.775 359.22 357.729 359.672 1.5844 0.1978
OFIE 332.232 332.677 331.186 333.129 1.4387 0.1817

The values in Tables 12 and 13 show that the HLITL distribution had the smallest
values among all fitted distributions. Consequently, this distribution can be considered
more suitable than the others for the considered data. The estimated PDF, CDF, SF, and PP
plots of the HLITL model are presented in Figures 5 and 6, where it can be seen that the
HLITL model exhibits a close fit to both datasets.
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Figure 6. Empirical and estimated CDF, PDF, PP, and SF plots of the HLITL model for the sec-
ond dataset.
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The author of [38] mentioned that the total time test (TTT) represents a useful graphical
approach to confirm whether the data can be applied to a specific distribution or not. The
empirical version of the TTT plot is expressed as

T
( r

n

)
=

∑n
i=1[ yi:n + (n− r)yr:n]

∑n
i=1 yi:n

, (33)

where r = 1, 2, . . . , n and yi:n denote the ith order statistics of the sample. In [38], it was
shown that when the TTT plot represents a straight line, then the HRF is constant, and when
the TTT plot is concave (or convex), the HRF increases (or decreases). Additionally, when
the TTT plot is first convex and then concave, the HRF is U-shaped (bathtub); otherwise,
the HRF is unimodal. The TTT plots presented in Figure 7 show that the estimated HRFs
of the first and second datasets increased and decreased. This claim is also confirmed in
Figure 8.
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For both real datasets, the MLE values of both parameters under RSS were ob-
tained. The observed RSS of the first dataset with the set size of four were 1.1, 2.7, 3,
and 4.1, and those of the second dataset with the set size of five were 1, 5, 7, 11, and
261. The MLE values of the HLITL distribution for the first dataset and their SE val-
ues were λ̂ = 6.653(5.558) and θ̂ = 2.766(1.348), and those of the second dataset were
λ̂ = 2.239(1.3448) and θ̂ = 0.844(0.071).

6. Conclusions

This paper proposes an HLITL distribution with two parameters. It is demonstrated
that the HLITL distribution can be regarded as a mixture of ITL distributions. Its statistical
properties, including the moments, quantile function, skewness, kurtosis, Bonferroni and
Lorenz curves, and stochastic ordering, are defined. The maximum likelihood estimators
of the HLITL distribution parameters are derived under both SRS and RSS schemes. It was
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shown empirically that the maximum likelihood estimates taken from the observed RSS
were more efficient than the corresponding SRS. The merit of the HLITL distribution was
evaluated experimentally using two real datasets. The results show that it performed better
than the other fitted distributions. Based on the obtained results, the proposed distribution
can be useful for modeling data in various fields.
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