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Abstract: In this paper, we develop a method to solve for periodic orbits, i.e., Lyapunov and Halo
orbits, using a functional interpolation scheme called the Theory of Functional Connections (TFC).
Using this technique, a periodic constraint is analytically embedded into the TFC constrained
expression. By doing this, the system of differential equations governing the three-body problem
is transformed into an unconstrained optimization problem where simple numerical schemes can
be used to find a solution, e.g., nonlinear least-squares is used. This allows for a simpler numerical
implementation with comparable accuracy and speed to the traditional differential corrector method.

Keywords: functional interpolation; Theory of Functional Connections; ordinary differential
equations; least-squares

1. Introduction

According to Poincaré, “periodic orbits” provide the only gateway into the otherwise
impenetrable domain of nonlinear dynamics. With the advent of space exploration, periodic
orbits have become an indispensable part of missions in space. The amazing fish-like
Apollo orbit was the first three-body orbit used for space missions. The second three-body
orbit used for space missions was the Halo orbit, discovered by Robert Farquhar in his
Ph.D. thesis [1] under John Breakwell [2]. In 1978, Farquhar convinced NASA and led
the International Sun-Earth Explorer 3 mission (ISEE3) to study the Sun from a Halo orbit
around the Earth’s L1 Lagrange point. Farquhar’s original idea was to place a satellite
in Halo orbit around the Lunar L2 for telecommunication support for the backside of the
Moon. Today, this is indeed part of NASA’s planned return of humans to the Moon in the
next few years.

Computing Halo orbits, and finding nonlinear periodic orbits in general, has become
an important part of modern mission design. This paper introduces a novel, simple, and
efficient method for finding periodic orbits using the Theory of Functional Connections
(TFC) [3,4]. First, we review perhaps the most popular standard method for computing
periodic orbits: the differential correction method (also called shooting method), such as
presented by Kathleen Howell [5]. One begins with an approximate solution obtained
typically from normal form expansions. Using the variational equation, the guess solution
is iteratively corrected for periodicity. Assuming that the initial guess is in a reasonable basis
of attraction to a periodic orbit, the process converges to a periodic orbit. In Hamiltonian
systems, periodic orbits typically occur in one-parameter families. Often, there are multiple
families nearby. Hence, the convergence may not always lead to the desired orbit. Moreover,
control over the specific features of the periodic orbit, such as its period or energy, requires
additional work—for example, using continuation methods to reach the exact orbit desired.
Using TFC, the functional interpolation theory, a simpler formulation and more efficient
algorithm for finding periodic orbits is possible.
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With this work, we removed the need for a shooting method by analytically embed-
ding the boundary conditions in the solution space using TFC [3,4]. These expressions,
which will be explicitly derived in the following sections, transform a differential equation
subject to constraints into an unconstrained problem, reducing the whole solution function
space to only the subspace satisfying the constraints. This method drastically simplifies
the problem and allows for simple numerical implementation; in our case, we utilize a
nonlinear least-squares technique.

2. Circular-Restricted Three-Body Problem

The circular-restricted three-body problem (CR3BP) is a dynamical model used to
describe the motion of a particle r = {x, y, z}T of negligible mass under the influence of
a primary body of mass m1 and the secondary body of mass m2. Furthermore, the orbits
of m1 and m2 are subject to circular motion about the system’s barycenter and lie in the
x-y plane as depicted in Figure 1. Following this, the system can be non-dimensionalized
by the following scaled units: unit mass is defined as m1 + m2; unit length is taken as the
separation between m1 and m2; the unit time is chosen such that the orbital periods of m1
and m2 about the system’s barycenter are 2π. By following these steps, the system can be
reduced to a single parameter called the mass parameter, µ, where,

µ =
m2

m1 + m2
(1)

From this, we define the terms µ1 and µ2 based on Equation (1) as

µ1 = 1− µ and µ2 = µ.

Using this definition of the system, the equations of motion can be derived in the
rotating frame, leading to the following system of equations:

ẍ− 2ẏ =
∂Ω
∂x

ÿ + 2ẋ =
∂Ω
∂y

(2)

z̈ =
∂Ω
∂z

such that the shorthand dot notation is used to signify a derivative with respect to time

(e.g., ẋ :=
dx
dt

). Additionally, Ω is defined as

Ω(x, y, z) :=
1
2
(x2 + y2) +

1− µ

R1
+

µ

R2
+

1
2
(1− µ)µ (3)

where R1 =
√
(x + µ)2 + y2 + z2 and R2 =

√
(x + µ− 1)2 + y2 + z2 are the distances to

the primaries. Furthermore, the equations of motion are Hamiltonian and independent
of time and, thanks to Noether’s theorem, have an energy integral of motion E , where, in
the celestial mechanics community, the Jacobi constant is used, which is C := −2E and
given as

C = 2 Ω− (ẋ + ẏ + ż) = (x2 + y2) + 2
1− µ

R1
+ 2

µ

R2
+ (1− µ)µ− (ẋ + ẏ + ż). (4)
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Moving forward, we solve the dynamics defined by the system of equations in
Equation (2) such that the orbit is at a fixed energy level (or rather Jacobi constant) using
Equation (4). For our implementation, it is useful to define the residuals of these equations:

0 = Fx := ẍ− 2ẏ− ∂Ω
∂x

(5)

0 = Fy := ÿ + 2ẋ− ∂Ω
∂y

(6)

0 = Fz := z̈− ∂Ω
∂z

(7)

0 = Fc := (x2 + y2) + 2
1− µ

R1
+ 2

µ

R2
+ (1− µ)µ− (ẋ + ẏ + ż)− C (8)

Next, we generate analytical expressions for the states to guarantee a periodic orbit.
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Figure 1. Geometry of the circular-restricted three-body problem where the secondary body, m2, is
in a circular orbit around the primary body, m1. The third-body, whose mass is m3 � m2 < m1, is
negligible and at a distance R1 from m1, R2 from m2, and r from the system’s barycenter (the system’s
center of mass).

However, before moving forward, it is necessary to summarize the major steps of
the differential corrector method [5], since this technique is used as a baseline to compare
results with the proposed method. In general, the differential correction method can be
classified as a shooting method since it relies on transforming the boundary-value problem
into an initial-value problem where the initial conditions are iteratively adjusted. First,
unlike the the proposed technique, the differential correction method can take advantage
of the symmetry of the orbits about the x-z plane, which leads to the following conditions:

X(0) =
{

x0, 0, z0, 0, ẏ0, 0
}T (9)

and
X(T/2) =

{
x, 0, z, 0, ẏ, 0

}T (10)

where Equations (9) and (10) represent the initial state and the state at half of the period, T,
where the orbit crosses the x-z plane (the sign of the y variable). Therefore, the equations
of motion only need to be propagated to this sign change. At this point, if the values of
|ẋ| and |ż| are zeros within an acceptable tolerance (Ref. [5] uses 10−8), then the orbit is
considered periodic. If they are not, the initial conditions are updated by determining

δX(0) =
{

δx0, 0, δz0, 0, δẏ0, 0
}T (11)

and adding the result to Equation (9). The values in Equation (11) are determined by
the state transitions matrix calculated in the propagation step and the fact that the only
changes to state should be the variables ẋ and ż, which should be equal to the negative
of their values at T/2, i.e., δẋ should be −ẋ (see Refs. [2,5] for the detailed equations).
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After updating the initial conditions, the equations of motion are propagated again and the
process continues until the periodic conditions are met.

3. Solving the Problem Using the Theory of Functional Connections Framework

The numerical technique to solve differential equations based on the Theory of Func-
tional Connections [4] has produced machine error accuracy within milliseconds for both
linear and nonlinear [6] differential equations for a wide array of constraint cases. In fact,
several works have already adopted the TFC framework to solve mathematical problems
including hybrid systems [7], optimal control problems [8,9], quadratic and nonlinear
programming [10], and other applications [11,12].

The foundation of this approach is the ability to derive a class of functionals, called
constrained expressions, which have the characteristic of always analytically satisfying as-
signed linear constraints. Using these constrained expressions, the differential equation can
be transformed into an algebraic expression that can ultimately be solved via a variety of
optimization techniques. In general, the TFC methodology provides functional interpolation
by embedding a set of k linear constraints. Let g(t) be a general function in our uncon-
strained function space, G. We define next the subspace, Γ ⊂ G, of constrained functions,
x(t, g(t)), subject to these k linear constraints written as the following functional:

x(t, g(t)) = g(t) +
k

∑
j=1

φj(t) ρj(t, g(t)), (12)

where g(t) is a free function, and φj(t) are switching functions—by definition, a function is
equal to 1 when evaluated at the constraint it is referencing, and equal to 0 when evaluated
at all other constraints. In our case, the switching functions are composed of a set of
mutually linearly independent functions called support functions, sk(t), with unknown
coefficients αij, such that φj(t) = si(t) αij; however, the switching functions can be very
general depending on the nature of the original function space, G.

Furthermore, ρj(t, g(t)) are called projection functionals, since they are derived by
setting the constraint function equal to zero and replacing x(t) with g(t). The following
step-by-step procedure can be used to derive a constrained expression from Equation (12):

1. Choose k linearly independent support functions, sk(t).
2. Write each switching function as a linear combination of the support functions with k

unknown coefficients.
3. Based on the switching function definition, write a system of equations to solve for

the unknown αij coefficients.

3.1. Derivation of Constrained Expression

First, since, in our problem, the orbital period is unknown, let us normalize the time
domain from t ∈ [0, T], where t0 = 0, t f = T, to τ ∈ [−1,+1], where τ0 = −1, τf = +1.
The simplest mapping is a linear one as follows:

τ(t) = τ0 +
τf − τ0

t f − t0
(t− t0) ←→ t = t0 +

t f − t0

τf − τ0
(τ − τ0). (13)

where we defined the following coefficient term of the derivative of τ with respect to t.
(Note: here, we define the coefficient term as the square of b in order to ensure that the
ratio is always positive, i.e., the problem domain is always consistent. This is important in
numerical implementation when solving for the value of b.)

b2 :=
dτ

dt
=

τf − τ0

t f − t0
, (14)

Now, we write the constrained expression in terms of this new variable τ. Let us define
the position vector of the spacecraft as r(τ) = {rx(τ), ry(τ), rz(τ)}T = {x(τ), y(τ), z(τ)}T.
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Since the problem presented in this paper is to find periodic orbits in the CR3BP, we can
use the TFC expression to satisfy the following constraints:

ri(τ0) = ri(τf ) = αi and r′i(τ0) = r′i(τf ) =
βi
b2

or, in other words, the trajectory must return to the initial state at some period. Since the
constraints for each component of the vector ri(τ) are of the same form, Equation (12) can
be easily adapted to the vector form:

ri(τ, gi(τ)) = gi(τ) +
k

∑
j=1

φj(τ) ρj(t, gi(τ)), (15)

Following the process detailed in the prior section, one must first choose the support
functions sk(τ). For these specific constraints, the support functions are defined in the same
manner as Ref. [9], where sk(τ) = τ(k−1). Now, the definition of the switching functions is
used to produce a set of equations. For example, the first switching function has the four
following equations:

φ1(τ0) = 1, φ1(τf ) = 0, φ′1(τ0) = 0, and φ′1(τf ) = 0,

These equations are expanded in terms of the support functions:

φ1(τ0) = (1) · α11 + (τ0) · α21 + (τ2
0 ) · α31 + (τ3

0 ) · α41 = 1

φ1(τf ) = (1) · α11 + (τf ) · α21 + (τ2
f ) · α31 + (τ3

f ) · α41 = 0

φ′1(τ0) = (0) · α11 + (1) · α21 + (2τ0) · α31 + (3τ2
0 ) · α41 = 0

φ′1(τf ) = (0) · α11 + (1) · α21 + (2τf ) · α31 + (3τ2
f ) · α41 = 0

which can be written in matrix form as
1 τ0 τ2

0 τ3
0

1 τf τ2
f τ3

f
0 1 2τ0 3τ2

0
0 1 2τf 3τ2

f




α11
α21
α31
α41

 =


1
0
0
0

.

The same is done for the other three switching functions to produce a set of equations
that can be solved by matrix inversion, where τ0 = −1 and τf = 1.

1 τ0 τ2
0 τ3

0
1 τf τ2

f τ3
f

0 1 2τ0 3τ2
0

0 1 2τf 3τ2
f




α11 α12 α13 α14
α21 α22 α23 α24
α31 α32 α33 α34
α41 α42 α43 α44

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

that is,


α11 α12 α13 α14
α21 α22 α23 α24
α31 α32 α33 α34
α41 α42 α43 α44

 =


1 τ0 τ2

0 τ3
0

1 τf τ2
f τ3

f
0 1 2τ0 3τ2

0
0 1 2τf 3τ2

f


−1

=
1
4


2 2 1 −1
−3 3 −1 −1

0 0 −1 1
1 −1 1 1

.
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This leads to the switching functions,

φ1(τ) =
1
4

(
2− 3τ + τ3

)
φ2(τ) =

1
4

(
2 + 3τ − τ3

)
φ3(τ) =

1
4

(
1− τ − τ2 + τ3

)
φ4(τ) =

1
4

(
− 1− τ + τ2 + τ3

)
.

By their definition, the projection functionals are

ρ1 = αi − gi(τ0) ρ2 = αi − gi(τf )

ρ3 =
βi
b2 − g′i(τ0) ρ4 =

βi
b2 − g′i(τf )

Collecting these terms in the form of Equation (15), the constrained expression and its
derivatives can be expressed as

ri(τ, gi(τ)) = gi(τ) + φ1(τ)
(

αi − g(τ0)
)
+ φ2(τ)

(
αi − g(τf )

)
+ φ3(τ)

( βi
b2 − g′(τ0)

)
+ φ4(τ)

( βi
b2 − g′(τf )

)
(16)

In order to use this expression in our differential equation, we need to utilize the
mapping parameter b from Equation (14), where

dri
dt︸︷︷︸
ṙi

= b2 dri
dτ︸︷︷︸
r′i

.

3.2. Definition of the Free Function gj(τ)

For this application, let the free function be expressed as a linear combination of basis
functions multiplied with unknown coefficients according to

gi(τ) =
m

∑
j=1

aij Tj(τ) = ξT
i h(τ) (17)

where h ∈ Rm is a vector of the basis functions Tj(τ) and ξ i ∈ Rm is the unknown coefficient
vector associated with the ith vector component. Like the original work on the solution of
ordinary differential equations with TFC [6], we utilize Chebyshev orthogonal polynomials
in the paper. The orthogonal polynomial representations are generally preferred due to
their approximating and convergence properties. For example, Chebyshev polynomials
generate a function that minimizes the maximum error in its application, and, therefore,
they are well suited to approximating other functions [13,14].

However, due to the structure of the constrained expression, the free functions can
be defined by a variety of function approximation methods, including other orthogonal
polynomial sets and techniques in the field of machine learning. In fact, the application
to neural networks (NN) was studied in Ref. [11], and promising results have been
obtained by using the Extreme Learning Machine (ELM) [15], which is a single-layer feed-
forward NN. The interested reader is directed to Ref. [16] for an in-depth look at the ELM
implementation with TFC and Ref. [17] for applications of this technique to problems
in spaceflight.

3.3. Discretization of the Domain

In order to solve problems numerically, the problem domain (and therefore the basis
function domain) must be discretized. Since this article uses Chebyshev orthogonal poly-
nomials, an optimal discretization scheme is the Chebyshev–Gauss–Lobatto nodes [18,19]
shown in Equation (18). For N + 1 points, the discrete points are calculated as
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τk = − cos
(

kπ

N

)
for k = 0, 1, 2, · · · , N. (18)

Compared with the uniform distribution, the collocation point distribution results
in a much slower increase in the condition number of the matrix to be inverted in the
least-squares as the number of basis functions, m2, increases. The collocation points can be
realized in the problem domain through the relationship provided in Equation (13).

3.4. Solution of the Resulting Algebraic Equation

By defining gi(t) according to Equation (17), our definition of Equations (2) and (3) is
converted into four algebraic equations:

F̃i(τ, Ξ) = 0 for i = x, y, z, c (19)

defined from Equation (5) through Equation (8). Note that the tilde symbol (∼) is used
to signify that the differential Equation (5) through Equation (8) have been transformed
into a new set of equations with embedded constraints. Additionally, Ξ represents the
unknown parameters of this transformed set of equations, and these are defined in the
following equations.

Next, we evaluate the three differential equations and one algebraic equation given
by Equation (19) at the discretization points to construct a loss vector of the residuals of
these equations.

Li(Ξ) =
{

F̃i(τ0, Ξ), . . . , F̃i(τk, Ξ), . . . , F̃i(τf , Ξ)
}T

= 0T

with the total loss vector of

L(Ξ) =
{
LT

x(Ξ), LT
y(Ξ), LT

z(Ξ), LT
c(Ξ)

}T

= 0T
4N×1 (20)

where the unknown vector, of size composed of 3m + 7 terms, is defined as

Ξ =
{

ξT
x, ξT

y, ξT
z, αT, βT, b

}T

= 0T

Since the governing dynamics of the circular-restricted three-body problem are nonlin-
ear, the unknown parameters occur nonlinearly in the loss vector, Equation (20). Therefore, a
nonlinear least-squares technique was utilized using Equation (21) to update the parameters:

Ξk+1 = Ξk + ∆Ξk (21)

where Equation (22) is the classical least-squares equation using the Moore–Penrose inverse
of the Jacobian of Equation (20):

∆Ξk = −
(
J T(Ξk) J(Ξk)

)−1
J T(Ξk)L(Ξk), (22)

This nonlinear least-squares method, known as the Gauss–Newton algorithm, is
a modification of Newton’s method for finding a minimum of a function—in our case,
minimizing the sum of the squared residual values in Equation (20).

The iteration continues until one of the following conditions is met:

max |L(Ξk)| < ε max |∆Ξk| < ε,

based on the user defined tolerance, ε, or the iteration exceeding some user-defined maximum.

4. Numerical Test

In the numerical implementation, all Jacobians were calculated using the JAX pack-
age [20,21] utilizing automatic differentiation [22]. In the nonlinear least-squares steps,
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NumPy’s pinv()was used to calculate the Moore–Penrose pseudo-inverse through singular-
value decomposition (SVD). Additionally, a just-in-time compiler was used to optimize the
code. All timing was handled by the process_time() from the Python package time. For
all problems, we considered the Earth–Moon system with the parameters given in Table 1.
Additionally, for the TFC implementation, the parameters used are summarized in Table 2.

Table 1. Earth–Moon system parameters.

Variable Value

Earth mass m1 (kg) 5.9724× 1024

Moon mass m2 (kg) 7.3460× 1022

Table 2. TFC algorithm parameters.

Variable Value

N [number of points] 140 [Lyapunov] or 200 [Halo]
m [basis terms] 130 [Lyapunov] or 190 [Halo]

ε [tolerance] 2.22× 10−16

Maximum iterations 20
Least-squares method numpy.pinv()

4.1. Initialization

For all numerical tests, the unknown vector must be initialized. First, the terms ξx,
ξy, and ξz were all initialized by a null vector, which ultimately represents the simplest
interpolating expression for the state variables. This initialization represents the worst-case
scenario when there is no estimation of the trajectory, but just fitting the constraints. Next,
the other unknown values of α, β, and b (which are associated with the position, velocity,
and the period of the orbit) were initialized using Richardson’s third-order analytical
method for Halo-type periodic motion [23]. This initialization was used to find the first
orbit of the specified Jacobi constants. For the following orbits, the desired Jacobi constant
was incrementally increased, and the converged values from the prior Jacobi constant level
were used to initialize each following step.

The same process was utilized for the differential corrector method [5], which was im-
plemented to compare with TFC. In the differential corrector inner-loop, the desired Jacobi
constant was obtained by an iterative least-squares approach to update the initial guess.

4.2. Lyapunov Orbits

First, the TFC method was used to explore the computation of Lyapunov orbits, which
lie in the x-y plane, the orbital plane of the two primaries. For our test, the Lyapunov
orbits were computed over a range of Jacobi constants, starting close to the equilibrium
point’s specific energy levels and terminating at a Jacobi constant of 2.92. The associated
trajectories for the orbits around L1 and L2 are provided in Figure 2a,b.
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(a) Lyapunov orbits around L1 Lagrange point
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0.4

0.6

y

(b) Lyapunov orbits around L2 Lagrange point

Figure 2. Trajectories of Lyapunov orbits for the Earth–Moon system ranging from energies close to the L1/L2 equilibrium
points to 2.92.

For the solution of Lyapunov orbits, it was important to transform the time for orbits
of lower Jacobi constants, i.e., orbits closer to the secondary body, m2. This was done by
the time transformation from Ref. [5], where t→ ζ, such that

dt
dζ

= R2. (23)

This produces the following chain of transformations t→ ζ → τ, or rather [0, T]→
[0, ζ f ]→ [−1,+1], which produces the final transformation:

ṙi(t) =
dri
dt

=
dri
dτ
· dτ

dζ
· dζ

dt
=

b2

R2
r′i(τ)

To stress the importance of this scaling, Figure 3 shows both the scaled and non-scaled
TFC solution for Lyapunov orbits around L1 (Figure 3a) and L2 (Figure 3b).

It can be seen that this scaling has a drastic effect on the accuracy of the converged
solution. For orbits around L1, without scaling, significant accuracy loss is observed
starting at a Jacobi constant of around 3.15. For orbits around L2, this accuracy reduction
starts at a Jacobi constant of around 3.06, but is just as drastic.

Additionally, a comparison with the differential corrector method is provided in terms
of speed and accuracy. Figure 4 compares the residuals for both methods, where it can be
seen that the TFC approach is around two orders of magnitude more accurate than the
differential corrector at higher Jacobi constants. Furthermore, the computation of the TFC
solution is slightly faster, a little over 0.25 s in the extreme case, as displayed in Figure 5.



Mathematics 2021, 9, 1210 10 of 17
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(a) Solution for L1 Lagrange point

2.90 2.95 3.00 3.05 3.10 3.15 3.20
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(b) Solution for L2 Lagrange point

Figure 3. Accuracy comparison of the scaled vs. non-scaled solution of Lyapunov orbits. The scaled solution utilizes the
time transformation given by Equation (23) and clearly produces more accurate results as the Jacobi constant decreases. The
scaled formulation was used in all of the following results for Lyapunov orbits.

2.90 2.95 3.00 3.05 3.10 3.15 3.20
Jacobi Constant

10 15

10 14

10 13

10 12

Re
sid

ua
ls

TFC Differential Corrector E(L1) E(L2)

Figure 4. Maximum residuals of the loss vector for the TFC method solving for the trajectories
plotted in Figure 2a compared to that of the differential corrector. The lines of E(L1) and E(L2)
represent the energy of the L1 and L2 Lagrange points, respectively. The TFC approach has a slight
accuracy advantage (an order of magnitude) as compared to the differential corrector method at
higher Jacobi constants.

To further understand the computation time associated with the TFC approach, con-
sider the computational breakdown given in Figure 6. Additionally, the statistics associated
with this breakdown, in terms of mean and standard deviation, are given in Table 3. In the
TFC method, the three major computations in each nonlinear least-squares iteration are
evaluating the loss vector, the Jacobian, and the least-squares. Figure 6 shows that around
77% of the total computation time is associated with the least-squares portion. This should
come as no surprise since the Jacobian is a 4 N × 2 m matrix—560× 260 for this problem.
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Figure 5. Computational time of the the TFC method for the trajectories plotted in Figure 2a compared to
that of the differential corrector. The TFC method holds a slight speed gain over the differential corrector.

While the least-squares, i.e., matrix inversion, is the main bottleneck with the com-
putational efficiency, a marginal speed gain could be achieved by removing the reliance
on automatic differential through JAX [20,21] for the computation of the loss vector and
Jacobian. Admittedly, these two could be “hard-coded” since the partial derivatives popu-
lating the Jacobian can be analytically derived. However, the speed gain associated with
this is unknown and should be the focus of future implementations and numerical tests.
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Figure 6. Breakdown of computation time for the trajectories solved in Figure 2a. Each bar represents
the total computation time (all nonlinear least-squares iterations). On average, the evaluation of the
loss vector (Equation (20)), the Jacobian, and the nonlinear least-squares represent 1.3%, 21.4%, and
77.3% of the computation time, respectively. A further breakdown of the computation time statistics
is provided in Table 3.

Table 3. Statistics associated with the computational breakdown given in Figure 6.

Variable Average (ms) Standard Deviation (ms)

Loss vector 5.69 3.46
Jacobian 91.1 55.8

Least-squares 329.8 203.8



Mathematics 2021, 9, 1210 12 of 17

Similar to the L1 Lagrange point test, Figure 2a displays the computed trajectories
around the L2 Lagrange point. Additionally, as in Figures 4 and 5, the accuracy and
computation time for these tests are provided in Figures 7 and 8. In Figure 7, the TFC
method is more accurate, albeit only slightly. At a Jacobi constant level of around 3.00
and above, the differential corrector method does not converge, as shown by the jump in
accuracy. At this Jacobi constant level, the TFC method’s accuracy starts to decrease before
failing to converge at the Jacobi constant value of 2.92. This drop-off in the accuracy of the
TFC method can easily be seen by analyzing Figure 8, where the red box highlights where
the TFC method’s max iteration limit is reached. In other words, at the Jacobi constant
levels lower than 3.00, the representation of the orbit through the free function composed
of Chebyshev polynomials starts to fail.

Differential corrector diverged

Figure 7. Maximum residuals of the loss vector for the TFC method solving for the trajectories plotted
in Figure 2b as compared to the differential corrector. For the trajectories around L2, the differential
corrector diverged around a Jacobi constant level of 3.00, while the TFC method was able to solve the
problem with diminishing accuracy. The black box highlights the diverged cases.

Condition on 
max iteration reached

Differential corrector diverged

Figure 8. Computational time of the TFC method for the trajectories plotted in Figure 2b compared
to that of the differential corrector. Again, the black box highlights where the differential corrector
diverged. Additionally, the red box shows where the TFC method reached its maximum allowed
iterations of 20. These cases are correlated to the reduction in accuracy seen in Figure 7.
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In both Lyapunov orbits around L1 and L2, the reduction in accuracy can be attributed
to the definition of the free function, g(x), not fully capturing the solution space of the
trajectory. As the Jacobi constant decreases, the complexity of the trajectory’s shape
increases and therefore an increasing number of basis functions is needed. However,
contrary to this, increasing the basis terms to more than 130 does not provide a more
accurate solution in the numerical implementation. Therefore, when solving lower Jacobi
constant level Lyapunov orbits, a different definition of the free function must be used;
future effort should focus on exploring other basis types.

4.3. Halo Orbits

Next, the proposed technique was utilized to compute Halo orbits around L1 and L2.
These orbits differ from the Lyapunov orbit because they are not restricted to the x-y plane
and are therefore three-dimensional. In fact, this family of orbits is a bifurcation of the
Lyapunov orbits computed in the previous section and is characterized by “northern” and
“southern” bifurcations. However, using the TFC method to compute these Halo orbits,
the only difference is in the initialization of the α, β, and b parameters. Additionally, for
Halo orbits, the time transformation introduced in Equation (23) was not used because it
produced unfavorable convergence properties, i.e., the method would simply converge to
the Lyapunov family of orbits. First, we look at the computation of the “northern” family
of Halo orbits around L1 and L2, as plotted in Figure 9.
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Figure 9. Halo orbits of the “northern” bifurcation around both L1 and L2 Lagrange points.

In these plots, we can see that, around the L1 equilibrium point, the method converged
to Lyapunov orbits for higher Jacobi constants. However, as the Jacobi constant decreases
below 3.025, the method does not converge to a periodic orbit, as shown by the increase
in residuals around the Jacobi constant value of 3.025. At the other equilibrium point, L2,
the method converges for all Jacobi constant values; however, at values below 3.025, the
solution jumps to a circular orbit around the Moon. Therefore, these orbits were not plotted.
This “jumping” from the Halo orbit bifurcation to the circle orbit bifurcation is the major
drawback with the algorithm in its current state; however, it is noted that the differential
corrector approach also suffers from this. The reason that the TFC method exhibits this
behavior is that the numerical solution, i.e. the nonlinear least-squares optimization step,
has no information on the desired bifurcation. Therefore, the solution becomes closely
linked to (1) the initialization of the unknown parameters and (2) the definition of the
free function g(x). In other words, the initialized parameters will converge to the closest
local minimum.

Like the Lyapunov orbit tests, the loss vector’s maximum residual was recorded and
is plotted in Figure 10. For almost all converged solutions, the residuals were on the order
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of O(10−14); however, around a Jacobi constant level of 3.025, the accuracy decreases for
orbits around L1. The convergence for Halo orbits took longer, with some cases taking 8 s,
while, on average, the solution time was around 2 s, as shown in Figure 11. Similar to the
“northern” Halo orbits plotted in Figure 9, the Halo orbits of the “southern” bifurcation
were computed with similar findings and, therefore, omitted from this paper for brevity.
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Figure 10. Maximum residuals of the loss vector for the TFC method solving for the trajectories
plotted in Figure 9. For almost all cases, the solution accuracy is on the order of O(10−14). However,
around a Jacobi constant level of 3.025, the accuracy decreases for orbits around L1. The solutions for
orbits around L2 lower than 3.025 are not plotted because, while they converged to a valid period
orbit with high accuracy, it was not a Halo-type orbit.
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Figure 11. Computational time of the TFC method for the solution of “northern” Halo orbits around
L1 and L2 plotted in Figure 9. At first glance, it can easily be seen that the computation of these
orbits took around twice as long to compute as the Lyapunov orbits. One cause of the increased
computation time is that the system of equations increased since more points and basis functions
were need in the computation of these orbits.

5. Conclusions

In this paper, we implemented a functional interpolation method, based on the Theory
of Functional Connections (TFC), to computed periodic orbits, i.e., Lyapunov and Halo
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orbits, in the circular-restricted three-body problem. The TFC approach allowed for the
analytical embedding of the periodic constraint, such that the orbit’s initial and final
position and velocity repeated after some period T. This process reduces the search space
of the numerical algorithm to only those trajectories satisfying the periodic constraint.

In general, the method produced comparable results to the differential corrector
method; however, the ease of implementation of the TFC method provides one bene-
fit. For example, when using the TFC method, the user only needs to code the loss
vector, Equation (20), and the parameter update is handled through automatic differenti-
ation. For readers interested in this implementation, the authors direct them to the TFC
GitHub (https://github.com/leakec/tfc, accessed on 15 February 2021) [24], where both
codes for the Lyapunov (https://github.com/leakec/tfc/tree/main/examples/Hunte
r_Johnston_Dissertation/Chapter_4/Example_4_8, accessed on 15 February 2021) and
Halo (https://github.com/leakec/tfc/tree/main/examples/Hunter_Johnston_Dissertat
ion/Chapter_4/Example_4_9, accessed on 15 February 2021) orbit cases are provided.
In addition to the code used to produce the results of this paper, this toolbox provides
examples to the solution of a wide variety of ODEs and PDEs.

In all, this work was the first time that the TFC method was utilized to enforce
the constraints of periodic orbits. Future work in this area should focus on two major
aspects in order to increase speed, accuracy, and robustness of the technique, which are
summarized below:

• Definition of the free function. In this study, Chebyshev orthogonal polynomials
were used to define the free function; however, a large number of basis terms were
needed to accurately describe the trajectories for both Lyapunov and Halo orbits. One
idea to remedy this is to use a hybrid basis composed of terms to capture the periodic
and non-periodic portions separately.

• Faster least-squares implementation. As seen in Figure 6, the major bottleneck
with computation time lies in the least-squares portion, which is an order of mag-
nitude slower than the evaluation of the loss vector and Jacobian combined. The
authors acknowledge that a more efficient algorithm than NumPy’s pinv() could
be implemented.
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Abbreviations
The following abbreviations are used in this manuscript:

CR3BP circular-restricted three-body problem
ELM Extreme Learning Machine
ISEE3 International Sun-Earth Explorer 3
JPL Jet Propulsion Laboratory
NASA National Aeronautics and Space Administration
NN neural networks
NSTRF NASA Space Technology Research Fellowship
ODE ordinary differential equation
PDE partial differential equation
SVD singular-value decomposition
TFC Theory of Functional Connections
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