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Abstract: In the present paper, we introduce S-evolution algebras and investigate their solvability,
simplicity, and semisimplicity. The structure of enveloping algebras has been carried out through the
attached graph of S-evolution algebras. Moreover, we introduce the concept of E-linear derivation of
S-evolution algebras, and prove such derivations can be extended to their enveloping algebras under
certain conditions.
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1. Introduction

It is well-known that several classes of non-associative algebras such as baric, evolu-
tion, Bernstein, train, stochastic, etc., were tied up with abstract algebra and biology [1–3].
The investigation of such kinds of algebras has offered many significant contributions to
population genetics theory [3]. We point out that first population genetics problems can
be traced back to the work of Bernstein [4] where evolution operators were examined,
which naturally describe genetic algebras (see [3,5]). Evolution algebras are considered
as a type of genetic algebras which are non-associative algebras with a dynamic nature.
Such a type of algebras has been introduced in [6,7]. After that, in [8] the foundations of
these algebras have been established. Later on, evolution algebras are used to model non-
Mendelian genetics laws [9–13]. Moreover, these algebras are tightly connected with group
theory, the theory of knots, dynamic systems, Markov processes and graph theory [14–18].
Evolution algebras allowed introduce useful algebraic techniques and methods into the
investigation of some digraphs because such kind of algebras and weighted digraphs
can be canonically identified [7,19]. In most investigations, considered evolution alge-
bras were taken nilpotent [19–24]. A few papers are devoted to non-nilpotent evolution
algebras [25–27]. In [28–30], a new class of evolution algebras, called Lotka–Volterra evolu-
tion algebras, has been introduced (see also [31]). It turns out that such kind of algebras
are not nilpotent. Given an evolution algebra E, then its enveloping algebra M(E) is con-
sidered as a subalgebra of full matrix algebra hom(E,E) of the endomorphism of linear
space E, generated by all left multiplications. The common properties between algebra
and its enveloping algebra are essential tasks in algebra [32]. Therefore, it is natural to
find which algebraic properties can be extended from the algebra to its enveloping. Some
extendible properties among those algebras have been found (see [33] and the references
given therein). It is worth pointing out that majority of studies constraint nilpotent algebras.
In the present paper, we introduce a new class of evolution algebras called S-evolution
algebras. These algebras are not nilpotent, but naturally extend Lotka–Volterra ones [30].
We point out that directed weighted graphs associated with S-evolution algebras have
meaning while the Lotka–Volterra ones do not. Therefore, the study structure of these
algebras may give some information about electrical circuits, find the shortest routes, and
construct a model for analysis and solution of other problems [9,10,34].
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One of this paper’s main aims is to study basic algebraic properties of S-evolution
algebras such as simplicity, semisimplicity [25]. Up to now, there are not any investigations
between evolution algebras and their enveloping algebras. Therefore, we will investigate
the evolution algebras together with the specific properties of their enveloping algebras.
Besides, the extendibility of derivations of S-evolution algebras will be examined as well.
We notice that derivations of evolution algebras have been studied in [16,20,33,35–38].

Let us briefly highlight an organization of this paper. In Section 2, we provide ceratin
basic properties of S-evolution algebras and their graphs. In Section 3, we study the struc-
ture of enveloping algebras generated by S-evolution algebras, whose attached graphs are
complete. Furthermore, we prove that if two S-algebras are isomorphic, then their corre-
sponding enveloping algebras are isomorphic, but the converse is not valid. In Section 4,
we investigate properties of enveloping algebras generated by S-evolution algebras. Fur-
thermore, in Section 5, a concept of E-linear derivation is defined of enveloping algebras
of S-evolution algebras. In the final Section 6, a description of all E-linear derivations of
enveloping algebra generated by 3-dimensional S-evolution algebras is provided.

2. S-Evolution Algebras and Their Graphs

Let us start with a definition of evolution algebras.

Definition 1. Let E be a vector space over a fieldKwith multiplication · and a basis {e1, e2, . . . , en}
such that

ei · ej = 0, i 6= j,

ei · ei =
n

∑
k=1

aikek, i ≥ 1,

then E is called an evolution algebra and the basis {e1, e2, . . . , en} is said to be natural basis.
Here, the matrix A = (aij)

n
i,j=1 is called a structural matrix of the algebra E in the natural

basis {e1, . . . , en}.

One can immediately see that every evolution algebra is commutative (therefore, flexi-
ble). Moreover, we have rankA = dim(E · E) this yields that for every finite-dimensional
evolution algebra its rank of the matrix does not depend on the choice of natural basis. In
what follows, we will consider non-degenerate evolution algebras, i.e., eiei 6= 0 for any i.
For convenience, we write uv instead of u · v for any u, v ∈ E and we shall write E2 instead
of E · E.

Definition 2. A matrix A = (aij)
n
i,j=1 is called an S-matrix if

(i) aii = 0 for all 1 ≤ i ≤ n;
(ii) aij 6= 0 if and only if aji 6= 0.

We notice that if A = (aij)
n
i,j=1 is an S-matrix, then there is a family of injective

functions { fij : K→ K}1≤i<j≤n with fij(0) = 0 such that aji = fij(aij) for all 1 ≤ i < j ≤ n.
Hence, each S-matrix is uniquely defined by off diagonal upper triangular matrix (aij)i<j
and a family of functions ( fij)i<j. This allows us to construct lots of examples of S-matrices.

Example 1. Let (aij)i<j be a given upper triangular matrix. Let us construct certain examples of
S-matrices as follows:

1. Assume that B is a symmetric matrix such that bij = aij and bji = aij for all i < j. In this
setting, one can see that fij(x) = x;

2. Assume that C is a skew-symmetric matrix such that cij = aij, cji = −aij for all i < j. It is
clear that fij(x) = −x;

3. Assume that M is a matrix such that mjj = −aij, mji = (−1)i+jaij for all i < j. In this
setting, we have fij(x) = (−1)i+jx.
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Definition 3. An evolution algebra E is called an S-evolution algebra if its structural matrix is an
S-matrix.

Remark 1. We note that evolution algebras corresponding to skew-symmetric matrices are called
Lotka–Volterra (or Volterra) evolution algebras. Such kind of algebras have been investigated
in [30,39]. From the given Example 1, we can see that Lotka–Volterra algebras and S-evolution
algebras (different from those ones) may not share common properties. For example, if A is a
skew-symmetric matrix, then its rank could be even, while if one considers an S-matrix which is
symmetric, then its rank could be any positive integer.

Remark 2. The motivation behind introducing S-evolution algebra is that such algebras have
certain applications in the study of electrical circuits, find the shortest routes, and construct a model
for analysis and solution of other problems [9,38]. From the physical point of view, if one considers
{1, 2, · · · , n} species than a pair (i, j) interacts with aij rate. Therefore, it is natural investigate
algebraic properties of such kind of interactions. On the other hand, such kind of interactions lead
us to the game theory like zero-sum games [40,41]. Moreover, recently, Lotka–Volterra matrices
have been considered within the framework of phase transitions and Gibbs measures [42–44].

Example 2. Let us provide a more concrete example. Let us consider two players A and B stochastic
game, who move a token along one of the outgoing arcs [34]

1 2

3
−2

1

−3

−1 32

To determine whose turn, a coin is flipped. If head it is A′s turn and if tail then B′s turn. A pays to
B the weight of the arc along which the token is moved. Such kinds of games have a lot of applications
in economics, evolutionary biology, etc. One can see that the given weighted graph defines a matrix. 0 1 2

−3 0 −2
−1 3 0


which is clearly an S-matrix. Hence, we can investigate the algebraic properties of the corresponding
evolution algebra ( This is an S-evolution algebra). It is stressed that the evolution algebra is not
Lotka–Volterra one. Therefore, it is natural to investigate such algebra, which may open some shed
into these games from an algebraic point of view. Note that evolution algebra associated with the
Markov process has been considered in [8,15,45]. However, the considered evolution algebra is not
Markov evolution algebra, and hence, it is needed for the investigation (algebraic properties )

Example 3. Another implementation of S-evolution algebras could be in a face recognition. Suppose
we are interested in designing a model to face recognition. The first step in any model of face
recognition is devoted to finding out the coordinates of faces. If one person stands in front of the
camera, the system will find the coordinates of the face and install them in a big matrix. If we
assume that the region is related to the coordinate A(i, i) = 0, this region is common and has the
same properties in each person. One of the significant challenges of any face recognition system
is the rotation of the person’s face when he stands in front of the camera. Usually, the company
stored several images of its Customers in its database. The implementation of S-evolution algebra
as follows:

Suppose the system took a picture of person A and installed it in the matrix, then the corre-
sponding S-evolution algebra is denoted by En and if we assume that this person has ten pictures
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in the database, then each picture related to S-evolution algebra Eni where i = 1, . . . , 10. Now our
model will check the isomorphism between En and all S-evolution algebras generated by the pictures
in the database. Surely, the system will find En ∼= Eni where i = 1, . . . , 10. Hence, in this way, we
can identify this person.

In what follows, for the sake of simplicity, we always assume that K is taken as the
field of the complex numbers C.

Let E be an S-evolution algebra w.r.t. natural basis {e1, e2, . . . , en}, then the canonical
form of the table of multiplications is given by

ei · ej = 0, i 6= j; (1)

ei · ei =
i−1

∑
k=1

fki(aki)ek +
n

∑
m=i+1

aimem. (2)

We notice that if i = 1 then the first summand of (2) is zero, if i = n then the second
summand is zero.

Let us define the following sequences:

E(1) = E, E(k+1) = E(k)E(k),

E<1> = E, E<k+1> = E<k>E,

E1 = E, Ek+1 =
k

∑
i=1

EiEk+1−i, k ≥ 1

Next inclusions are true for k ≥ 1 :

E<k> ⊆ Ek, E(k+1) ⊆ E2k
.

Due to the commutativity of E one has Ek = ∑
1≤i≤k−i

EiEk−i.

Definition 4. An evolution algebra E is called

(i) solvable if there exists n ∈ N such that E(n) = 0 and the minimal such number is called index
of solvability;

(ii) right nilpotent if there exists n ∈ N such that E<n> = 0 and the minimal such number is
called index of right nilpotency;

(iii) nilpotent if there exists n ∈ N such that En = 0 and the minimal such number is called index
of nilpotency.

Remark 3. We point out that the nilpotency of evolution algebra implies its right nilpotentcy and
solvability. Moreover, the solvablity of evolution algebra does not imply its right nilpotency ([20],
Example 2.4).

Definition 5. Let E be an evolution algebra with a natural basis B = {e1, . . . , en} and a structural
matrix A =

(
αij
)
.

(i) A graph Γ(E, B) = (V, E), with V = {1, . . . , n} and E = {(i, j) ∈ V × V : αij 6= 0}, is
called the graph attached to the evolution algebra E relative to the natural basis B.

(ii) The triple Γw(E, B) = (V, E, ω), with Γ(E, B) = (V, E) and where ω is the map E → F
given by ω

(
(i, j)

)
= αij, is called the weighted graph attached to the S- evolution algebra E

relative to the natural basis B.

A graph Γ(E, B) is called complete if every two vertices of the graph are connected
by an edge. Moreover, Γ(E, B) is connected if there is a path between any two vertices,
otherwise is called disconnected.
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Definition 6 ([25]). An evolution subalgebra of an evolution algebra E is a subalgebra E′ ⊆ E

such that E′ is an evolution algebra, i.e., E′ has a natural basis.

We notice that the definition of evolution subalgebra, which is given in [7,8] has more
restrictive than the Definition 6. The concepts of evolution subalgebra and evolution ideal
in the sense of definition given in [7,8] are equivalent. However, they are not equivalent
in the sense of Definition 6 (see Example 2.6 [25]). In this paper, we will consider the
Definition 6.

Definition 7 ([25]). An evolution ideal of an evolution algebra E is an ideal I of E such that I has
a natural basis.

Recall that an evolution algebra E is called simple if E2 6= 0 and it has no non-trivial
proper ideal, and it is called semisimple if it can be written as direct sum of simple subalge-
bras. An ideal is called simple if it does not contain any proper sub-ideal.

Remark 4. In [46] a notion of basic ideals of evolution algebras is defined and corresponding
basic simple evolution algebras are studied. A relation between simplicity and basic simplicity is
established as well. These results allowed to describe four dimensional perfect non-simple evolution
algebras over a field with mild restrictions.

Proposition 1 ([25]). Let A be an evolution algebra and B = {ei | i ∈ V} be its natural basis.
Consider the following conditions:

(i) E is simple.
(ii) E satisfies the following properties:

(a) E is non-degenerate.
(b) E = lin{e2

i | i ∈ V}.
(c) lin{e2

i | i ∈ V′} is a non-zero ideal of A for a non-empty V′ ⊆ V then |V′| = |V|.
Then (i)⇒ (ii) and (ii)⇒ (i) if |V| < ∞.

In what follow, we always consider |V| < ∞.

3. Some Properties of S-Evolution Algebras

In this section, we are going to study some properties of S-evolution algebras.
In [30] we have recently proved the following fact.

Theorem 1 ([30]). Let E be a non-trivial Lotka–Volterra evolution algebra then E is not nilpotent.

It turns out that this result could be extended for S-evolution algebras in a more
general setting.

Theorem 2. Let E be a non-trivial n-dimensional S-evolution algebra, then E is not solvable.

Proof. Let E = alg〈e1, e2, . . . , en〉, since E is non-degenerate, then there exists
ei ∈ alg〈e1, e2, . . . , en〉 such that e2

i 6= 0. Therefore, one finds k 6= i such that aik 6= 0,
since the structural matrix of E is a S-matrix, then f (aik) 6= 0, so, 〈ei, ek〉 ⊆ E(2). We claim
that 〈ei, ek〉 ⊆ E(n), for any positive integer n. Let us prove it by induction. Assume that
〈ei, ek〉 ⊆ E(n−1), due to E(n) = E(n−1)E(n−1) and 〈ei, ek〉 ⊆ E(n−1), we get 〈ei, ek〉 ⊆ E(n).
This yields that E(n) 6= 0 for any positive n. Hence, E is not solvable.

The proved theorem together with Remark 3 implies that any non-degenerate S-
evolution algebra is not nilpotent.
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Let B = {ei | i ∈ V} be a natural basis of an evolution algebra E and let i0 ∈ V.The
first-generation descendants of i0 are the elements of the subset D1(i0) given by:

D1(i0) := {j ∈ V | aji0 6= 0}.

Note that j ∈ D1(i0) if and only if, πj(e2
i0
) 6= 0 (where πj is the canonical projection of

E over Cej). Similarly, we say that j is a second-generation descendant of i0 whenever
j ∈ D1(k) for some k ∈ D1(i0). Therefore,

D2(i0) =
⋃

k∈D1(i0)

D1(k).

By recurrency, we define the set of mth-generation descendantsof i0 as

Dm(i0) =
⋃

k∈Dm−1(i0)

D1(k).

Finally, the set of descendants of i0 is defined as the subset of ∨ given by

D(i0) =
⋃

m∈N
Dm(i0).

On the other hand, we say that j ∈ V is an ascendant of i0 if i0 ∈ D(j); that is, i0 is a
descendant of j.

Proposition 2. Let E be an S-evolution algebra with natural basis B = {ei | i ∈ V}. If Γ(E, B) is
complete, then D(i0) = V for any i0 ∈ V.

Proof. Since the attached graph is complete, then, for any i0 ∈ V

D1(i0) = {j ∈ V : j 6= i0}.

From i0 ∈ D1(j) we infer
D2(i0) =

⋃
k∈D1(i0)

D1(k) = V.

Consequently,
Dm(i0) =

⋃
k∈Dm−1(i0)

D1(k) = V.

Therefore,
D(i0) =

⋃
m∈N

Dm(i0) = V.

Due to the arbitrariness of i0 we get the assertion.

Theorem 3. Let E be an S-evolution algebra with B = {ei : i ∈ V}. Then E is simple if and only
if det(A) 6= 0, where A is the structural matrix of E.

Proof. Let E be a simple algebra then by Proposition 1(b), we have E = lin{e2
i | i ∈ V}.

Hence, the set {e2
i | i ∈ V} contains linearly independent vectors, this implies that det(A) 6= 0.

Conversely, let us assume the contrary, i.e., E is not simple. Then, there exists I ∈ E

such that 〈I〉 is a non-zero proper ideal of E. Let j ∈ V such that πj(I) 6= 0. Then
〈

e2
j

〉
is a

non-zero ideal of E contained in 〈I〉 but〈
e2

j

〉
= lin{e2

k : k ∈ D(j) ∪ {j}}
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Due to det(A) 6= 0, we have

D(j) ∪ {j} = V

which means
〈

e2
j

〉
= E which is a contradiction as

〈
e2

j

〉
a proper ideal of E. This completes

the proof.

Corollary 1. Let E be a simple S-evolution algebra with B = {ei : i ∈ V}. Then Γ(E, B)
is connected.

We stress that the converse of Corollary 1 is not true. For example, let us consider a
three dimensional S-evolution algebra with a table of multiplication given by:

e2
1 = e2, e2

2 = e1 + e3, e2
3 = e2.

It is clear that Γ(E, B) is connected. However, E is not simple as lin{e2
1, e2

2} is a non-zero
proper ideal of E.

Proposition 3. Let E be an n-dimensional S-evolution algebra with disconnected attached graphs,

i.e., Γ(E, B) =
p⋃

i=1
Ai and Am ∩ Ak = φ, for any m 6= k, where p is the number of disconnected

graphs. Then each graph Ai corresponds to a proper ideal of E.

Proof. As before, the attached graph of E is denoted by Γ(E, B). Let IAi := {ei : i ∈ V(Ai)}.
We claim that span{IAi} is an ideal. Since IAk ∩ IAm = φ for any k 6= m one finds eres = 0
for all er ∈ IAk and es ∈ IAm . Next, fix i and pick er ∈ IAi then e2

r = ∑
el∈IAi

αlel . Hence,

e2
r ∈ IAi whenever, er ∈ IAi This means that span{IAi} is an ideal of E.

Example 4. Let us consider an algebra E with the following structural matrix:
0 a1
−a1 0

0

0 0 a2
−a2 0


The attached graphs are

e1 e2

a1

,
e3 e4

a2

Then span{IA1} = span{e1, e2} and span{IA2} = span{e3, e4} are proper ideals of E.

Corollary 2. Let E be an n-dimensional S-evolution algebra with disconnected attached graphs,

Γ(E, B) =
p⋃

i=1

Γ(Ei, Bi),

where Γ(Ek, Bk)∩Γ(Em, Bm) = φ, for any k 6= m and p is the number of disconnected graphs. Then

E ∼=
⊕

i
Ei,

if and only if each Ei is a simple S-evolution algebra .
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Theorem 4. If a non-trivial finite dimensional S-evolution algebra E is semisimple, then the
attached graph Γ(E, B) of E is disconnected.

Proof. Assume that E is semisimple, then there exists a non-trivial proper ideal I of E. Let
us define the following set

A := {i : ei ∈ I}.

It follows that if m /∈ A then em /∈ I. Since e2
i ∈ I, one has that aim = 0 for any i ∈ A.

Hence, the vertex m is not connected to any vertex of A. Therefore, the attached graph
is disconnected.

Remark 5. The converse of the Theorem 4 is, in general, not true. Namely, if the attached graph is
disconnected then an evolution algebra may be not semisimple.

Example 5. Let us consider an S-evolution algebra E with the following table of multiplication:

e2
1 = e2, e2

2 = e1, e2
3 = 0.

It is clear that the attached graph is disconnected. However, E 6= E1 ⊕ E2 where E1 = 〈e1, e2〉, and
E2 = 〈e3〉. From E2

2 = 0 we infer that E2 is not simple.

In [30] we have established an isomorphism criteria of Lotka–Volterra evolution algebras.

Theorem 5 ([30]). Let E1, and E2 be two Lotka–Volterra evolution algebras whose attached graphs
are complete. Then E1

∼= E2 if and only if
aij
bij =

alm
blm

, for any 1 ≤ i 6= j ≤ n and 1 ≤ l 6= m ≤ n.

Next result extends the formulated one to S-evolution algebras.

Theorem 6. Let E1 and E2 be two S-evolution algebras with (aij)
n
i,j=1, (bij)

n
i,j=1 structural matri-

ces, respectively, whose attached graphs are complete. Then E1
∼= E2 if and only if the following

conditions are satisfied( aij

bij

)2( fij(aij)

gij(bij)

)
=

(
aik
bik

)2( fik(aik)

gik(bik)

)
, 1 ≤ i < j < k ≤ n.( api

bpi

)( fpi(api)

gpi(bpi)

)2

=

(
aik
bik

)2( fik(aik)

gik(bik)

)
, 1 ≤ p < i < k ≤ n.( api

bpi

)( fpi(api)

gpi(bpi)

)2

=

( aqi

bqi

)( fqi(aqi)

gqi(bqi)

)2

, 1 ≤ p ≤ q < i ≤ n.

Proof. Let E1 = 〈e1, e2, . . . , en〉 and E2 = 〈 f1, f2, . . . , fn〉. Assume that E1
∼= E2, then one

can write

fi =
n

∑
i=1

αikek.

From fi f j = 0 for any i 6= j, without loss of generality, we can assume that fi = αiiei. Then

f 2
i = α2

ii

( i−1

∑
p=1

fpi(api)ep +
n

∑
q=i+1

aiqeq

)
. (3)

On the other hand,

f 2
i =

( i−1

∑
p=1

αppgpi(bpi)ep +
n

∑
q=i+1

αqqbiqeq

)
. (4)
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Comparing (3) and (4), we obtain

fpi(api)α
2
ii = gpi(bpi)αpp, p = 1, i− 1 (5)

aiqα2
ii = biqαqq, q = i + 1, n.

For any i < j, from (5) one finds

aijα
2
ii = bijαjj

fij(aij)α
2
jj = gij(bij)αii

Solving the above equations, we get

αii =
3

√√√√( bij

aij

)2( gij(bij)

fij(aij)

)
, or αii =

3

√√√√( bij

aij

)2( gij(bij)

fij(aij)

)(
1±
√

3i
2

)

αjj =
3

√√√√( bij

aij

)( gij(bij)

fij(aij)

)2

, or αjj =
3

√√√√( bij

aij

)( gij(bij)

fij(aij)

)2(1±
√

3i
2

) (6)

The arbitrariness of j implies( aij

bij

)2( fij(aij)

gij(bij)

)
=

(
aik
bik

)2( fik(aik)

gik(bik)

)
, 1 ≤ i < j < k ≤ n.( api

bpi

)( fpi(api)

gpi(bpi)

)2

=

(
aik
bik

)2( fik(aik)

gik(bik)

)
, 1 ≤ p < i < k ≤ n.( api

bpi

)( fpi(api)

gpi(bpi)

)2

=

( aqi

bqi

)( fqi(aqi)

gqi(bqi)

)2

, 1 ≤ p ≤ q < i ≤ n.

Conversely, the isomorphism between E1 and E2 can be established by the following
change of basis

f1 =
3

√(
b12

a12

)2( g12(b12)

f12(a12)

)
e1

f j =
a1j

b1j

(
3

√(
b12

a12

)2( g12(b12)

f12(a12)

))2

ej, 1 < j ≤ n.

4. Enveloping Algebras Generated by S-Evolution Algebras

Let us recall some notions from [32]. Let E be an evolution algebra, by La we denote
the left multiplication operator by an element a:

La : x 7→ x · a.

By Hom(E, E) we denote the full matrix algebra of endomorphisms of E. A subalgebra
of Hom(E, E) generated by {La : a ∈ E}, is called multiplication algebra of E, denoted
by M(E).

Proposition 4. Let E be an S-evolution algebra and M(E) be its associative enveloping algebra.
Then the vectors Rei ◦ Rej , Rei ◦ Rek ◦ . . . ◦ Rem ◦ Rej are linearly dependent.
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Proof. We first observe that

Rei ◦ Rej = aij

n

∑
k=1

ajkEik.

and

Rei ◦ Rek ◦ . . . ◦ Rem ◦ Rej = aik . . . amj

n

∑
k=1

ajkEik.

If aij = 0, then Rei ◦ Rej = 0 which implies that these two vector are linearly dependent. If
aij 6= 0, one has that

Rei ◦ Rek ◦ . . . ◦ Rem ◦ Rej =
aik . . . amj

aij
Rei ◦ Rej .

Hence, in both cases they are linearly dependent.

For fixed i, we define

A(i) := {Rei ◦ Rej : j 6= i, j = 1, n}.

Proposition 5. Let E be an S-evolution algebra whose attached graph is complete, with matrix
of structural constants A and M(E) be its associative enveloping algebra, then the following
statements hold true:

(1) if E is simple then for each i, dim(span(A(i))) = Rank(A)− 1.
(2) if E is not simple then for each i, dim(span(A(i))) = Rank(A).
(3) if the sets A(i), A(j) contain linearly independent vectors then A(i) ∪ A(j) contains linearly

independent vectors for any i 6= j.

Proof. (i) Consider

∑
j 6=i

αj(Rei ◦ Rej) = ∑
j 6=i

αjaij

n

∑
k=1

ajkEik = 0.

Since aij 6= 0 for any 1 ≤ i 6= j ≤ n. Then one gets the following system of homogeneous
linear equations:

〈ai1, ai2, . . . aii−1, aii+1, . . . , ain〉 •
〈
at

1, at
2, . . . , at

i−1, at
i+1, . . . , at

n
〉


α1
α2
...

αi−1
αi+1

...
αn


= [0]n×1 (7)

where a1, a2, . . . , ai−1, ai+1, . . . , an are the row vectors of the structural matrix A without
the ith row, and • stands for the dot product given by

〈ai1, ai2, . . . aii−1, aii+1, . . . , ain〉 •
〈
at

1, at
2, . . . , at

i−1, at
i+1, . . . , at

n
〉
= ai1at

1 + ai2at
2 + . . . + ainat

n.

Denote
A′n×n−1 := ai1at

1 + ai2at
2 + . . . + ainat

n.
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then we can rewrite (7) as follows

A′n×n−1



α1
α2
...

αi−1
αi+1

...
αn


= [0]n×1

Since det(A) 6= 0, then Rank(A′) = n− 1. Therefore, the only solution of (7) is

α1 = α2 = . . . = αi−1 = αi+1 = . . . = αn = 0.

Hence, A(i) contains Rank(A)− 1 linearly independent vectors. Let x, y ∈ A(i) then one
can easily show that xy, x + y ∈ span(A(i)). Hence, dim(span(A(i))) = Rank(A)− 1.

(ii) Next, assume that det(A) = 0 and rank(A) = m < n. Now, by removing dependent
rows, we obtain a matrix A′′m×n. Clearly, Rank(A′′m×n) = m. Then, let us consider

m+1

∑
k=1, k 6=i

αk(Rei ◦ Rek ) = [0]n×n−m.

From the last equation, we get

A′′n×m



α1
α2
...

αi−1
αi+1

...
αm+1


= [0]n×1

The solution of the last system is trivial, hence a maximum number of independent vectors
is rank(A) = m. Therefore, dim(span(A(i))) = rank(A).

(iii) Finally, assume that A(i) contains linearly independent elements for all 1 ≤ i ≤ n.
Then span(A(i)) is a subspace. Now let us suppose that span(A(i))∪ span(A(i)) are linearly
dependent. It is clear that A(i) ∩ A(j) = φ for any i 6= j, which yields span(A(i)) ∩
span(A(i)) = {0}. Assume that

n

∑
k 6=i

αk(Rei ◦ Rek ) +
n

∑
m 6=j

βm(Rej ◦ Rem) = 0, k, m = 1, n.

Now, we consider the following cases:
If αk = 0 for all k then we get A(j) is linearly dependent which is a contradiction. If

βm = 0 for all m then we get A(i) is linearly dependent which is again a contradiction.
Now, if

n

∑
k 6=i

αk(Rei ◦ Rek ) = −
n

∑
m 6=j

βm(Rej ◦ Rem)

then−∑n
m 6=j βm(Rej ◦Rem) ∈ span(A(i)), but it contradicts to span(A(i))∩ span(A(i)) = {0}.

Hence, A(i) ∪ A(j) contains linearly independent vectors for any i 6= j.
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Corollary 3. Let A(1), A(2), . . . , A(n) contain linearly independent vectors then
n⋃

k=1
A(k) is lin-

early independent.

Proposition 6. Let M(E) be an associative enveloping algebra generated by an S−evolution
algebra E whose attached graph Γ(E, B) is complete. Then the following statements are true:

(i) vectors of A = {Rei : 1 ≤ i ≤ n} are linearly independent;
(ii) if E is simple then for each i, the set A(i) ∪ {Rei} is linearly independent;
(iii) if E is not simple then for each i, the set A(i) ∪ {Rei} is linearly dependent.

Proof. (i). Let us consider

n

∑
i=1

αiRei =
n

∑
i=1

αi

( n

∑
k=1

aikEik

)
= [0]n×n.

Since Γ(E, B) is complete, then aik 6= 0 for any i 6= k, i, k = 1, n. This implies that αi = 0 for
all 1 ≤ i ≤ n. Hence, the set A contains linearly independent vectors.

(ii) Consider the equality

α1Rei +
n

∑
k=2

αk(Rei ◦ Rek ) = [0]n×n.

Then

〈ai1, ai2, . . . , 1, aii+1, . . . , ain〉 •
〈
at

1, at
2, . . . , at

n
〉


α1
α2
...

αn

 = [0]n×n, (8)

here, as before, a1, a2, . . . , an are row vectors of the structural matrix A. Now,

〈ai1, ai2, . . . , 1, aii+1, . . . , ain〉 •
〈
at

1, at
2, . . . , at

n
〉


α1
α2
...

αn

 = A′


α1
α2
...

αn

 = [0]n×n. (9)

with det(A′) = (ai1ai2 . . . 1aii+1 . . . ain)det(A). Since det(A) 6= 0 and the attached graph
is complete, we find det(A′) 6= 0. Hence, the only solution of the system Equation (9) is
trivial. Therefore, the set A(i) ∪ {Rei} contains linearly independent vectors.

(iii) Due to the fact det(A′) = (ai1ai2 . . . 1aii+1 . . . ain)det(A) and from det(A) = 0,
one has that there is a non-trivial solution of (9). Hence, in this case the set A(i) ∪ {Rei}
contains linearly dependent vectors. This completes the proof.

Theorem 7. Let M(E) be an associative enveloping algebra generated by an S-evolution algebra E

whose attached graph Γ(E, B) is complete. Then the following statements are true:

(i) if E is simple then

M(E) =
n⋃

i=1

(
A(i) ∪ {Rei}

)
, dim(M(E)) = dim(E)dim(E2) = n2

(ii) if E is not simple and rank(A) = m. Then

M(E) =
n⋃

i=1

(
Ā(i) ∪ {Rei}

)
, dim(M(E)) = dim(E)dim(E2) = nm,
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where Ā(i) = A(i) 	 {Rei ◦ Rem+1}

Proof. By compiling Propositions 5 and 6, we get the assertion.

Definition 8. If a graph Γ has a vertex with no edges, then such vertex is called isolated.

Let us denote the set of isolated vertices by iso(V). It is obvious that in a complete
graph |iso(V)| = 0, where |iso(V)| is the number of isolated vertices in Γ(E, B).

Remark 6. If i ∈ iso(V), then Rei = 0. Hence, Rei ◦ Rej = Rej ◦ Rei = 0 for all 1 ≤ j ≤ n.

Corollary 4. Let M(E) be an associative enveloping algebra generated by an n-dimensional S-
evolution algebra E with disconnected attached graph Γ(E, B) = Γ(E1, B1) ∪ Γ(E2, B2) where
Γ(E1, B1) is complete and Γ(E2, B2) contains the isolated vertices. Then the following statements
hold true:

(i) If E1 is simple then dim(M(E)) = 2|E|+ |V| − |iso(V)|, where |E| is the number of edges
in Γ(E, B).

(ii) If E1 is not simple and rank(A) = m. Then dim(M(E)) = m(|V| − |iso(V)|).

Proof. Note that
span(A) = 〈Rei : i /∈ iso(V)〉.

Then,
dim(span(A)) = |V| − |iso(V)|.

Consider
E = {(i, j) : w(i, j) 6= 0}.

It is clear that Rei ◦ Rej ∈ A(i) if and only if (i, j) ∈ E. Since the structural matrix is an

S-matrix, then (i, j) ∈ E if and only if (j, i) ∈ E. This implies that Rei ◦ Rej ∈ A(i) if and

only if Rej ◦ Rei ∈ A(j). Then dim(span(∪n
i=1 A(i))) = 2|E|. Therefore, by Theorem 7

dim(M(E)) = dim(span(∪n
i=1 A(i))) + dim(span(A)) = 2|E|+ |V| − |iso(V)|.

Next, if det(A) = 0,and rank(A) = m. Then

span(A) = 〈Rei : i /∈ iso(V)〉.

Then,
dim(span(A)) = |V| − |iso(V)|.

Note that
dim

(
span(A) ∩ (span(∪n

i=1 A(i)))
)
= m.

However,
dim

(
span(A) ∩ (span(∪n

i=1 Ā(i)))
)
= 0.

Now, after removing dependent vectors from the structural matrix A we have a new
structural matrix say A′n×m where its attached graph has n vertices such that the first m
vertices will joint m− 1 vertices and the rest will join m vertices. Hence,

dim(span(∪n
i=1 Ā(i))) = (m− 1)(|V| − |iso(V)|).
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Consequently,

dim(M(E)) = dim(span(∪n
i=1 Ā(i))) + dim(span(A))

= (|V| − |iso(V)|)(m− 1) + |V| − |iso(V)|

= m(|V| − |iso(V)|)

This completes the proof.

Remark 7. We point out that a table of multiplication of the enveloping algebra M(E) is given
as follows: 

Rei ◦ (Rel ◦ Rem) =
ail alm

aim
(Rei ◦ Rem) if i < l < m.

Rei ◦ (Rel ◦ Rei ) = ail fil(ail)Rei if i < l.
(Rei ◦ Rej) ◦ (Rel ◦ Rem) =

aijajl alm
aim

(Rei ◦ Rem) if i < j < l < m.

(Rei ◦ Rej) ◦ (Rel ◦ Rei ) = aijajl fil(ail)Rei if i < j < l.

(10)

Theorem 8. Let M(E) be an associative enveloping algebra generated by an n-dimensional simple
S-evolution algebra E whose attached graph Γ(E, B) is complete. Then

M(E) = lin{Eij : 1 ≤ i, j ≤ n}.

Proof. Let us denote M̃ := lin{Eij : 1 ≤ i, j ≤ n}. Then dim(M̃) = n2. Due to Rei ∈ M̃
for any i = 1, n, we infer that M(E) is a subalgebra of M̃. Now, let us pick any arbitrary
element of M̃ say Epq, we have to show that Epq ∈ M(E). Indeed, if we consider the
following equality

Epq = αpRep +
n

∑
k 6=p

αk(Rep ◦ Rek ).

Then we have the following system of equations:

〈ai1, ai2, . . . , 1, aii+1, . . . , ain〉 ·
〈
at

1, at
2, . . . , at

n
〉


α1
α2
...

αn

 = Epq. (11)

Now,

〈ai1, ai2, . . . , 1, aii+1, . . . , ain〉 ·
〈
at

1, at
2, . . . , at

n
〉


α1
α2
...

αn

 = A′


α1
α2
...

αn

 = Epq. (12)

with det(A′) =

(
n

∏
j=1, j 6=p

apj

)
det(A). Now the simplicity of E (as det(A) 6= 0) implies

det(A′) 6= 0. Hence, by the Gaussian elimination of system (12) we obtain a unique solution.
Therefore, Epq ∈ M(E), so M̃ ⊆ M(E). This completes the proof.

Corollary 5. Let M(E) be an enveloping algebra generated by a simple S-evolution algebra E

whose attached graph is complete, then M(E) = Mn(C).

Let us consider the following example.



Mathematics 2021, 9, 1195 15 of 23

Example 6. Let E be a two dimensional S-evolution algebra with the following matrix of struc-
tural constants. (

0 a
−a 0

)
The table of multiplication of enveloping algebra M(E) is given by

Re1 ◦ Re2 = −a2E11.
Re2 ◦ Re1 = −a2E22

(Re1 ◦ Re2) ◦ Re1 = −a2Re1

(Re2 ◦ Re1) ◦ Re2 = −a2Re2

(Re1 ◦ Re2) ◦ (Re1 ◦ Re2) = −a3(Re1 ◦ Re2)

(Re2 ◦ Re1) ◦ (Re2 ◦ Re1) = −a3(Re2 ◦ Re1)

(13)

then the attached graph as follows:

1 2

a

Then A = {Re1 , Re2}, A(1) = {Re1 ◦ Re2}, and A(2) = {Re2 ◦ Re1}

M(E) = lin
〈{(

−a 0
0 0

)
,
(

0 0
0 a

)
,
(

0 a
0 0

)
,
(

0 0
−a 0

)}〉
with dim(M(E)) = 2(1) + 2 = 4. Furthermore, this algebra is simple.

Example 7. Let E be a three dimensional S-evolution algebra with the following structural matrix: 0 a 0
−a 0 0
0 0 0




Re1 ◦ Re2 = −a2E11.
Re2 ◦ Re1 = −a2E22

(Re1 ◦ Re2) ◦ Re1 = −a2Re1

(Re2 ◦ Re1) ◦ Re2 = −a2Re2

(Re1 ◦ Re2) ◦ (Re1 ◦ Re2) = −a3(Re1 ◦ Re2)

(Re2 ◦ Re1) ◦ (Re2 ◦ Re1) = −a3(Re2 ◦ Re1)

(14)

then the attached graph is:

1 2

3

a

In this example, we have |iso(V)| = 1, and |V| = 3 then dim(M(E)) = 2(3− 1) = 4. Further-
more, this algebra is neither simple nor semisimple.

Theorem 9 ([47]). Every finite-dimensional simple algebra over C is isomorphic to Mn(C).

Theorem 10. Let E be an n-dimensional S-evolution algebra E, whose attached graph Γ(E, B) is
complete. Then E is simple if and only if M(E) is simple.
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Proof. Let I be an ideal of M(E) such the I 6= {0}. We notice that one dimensional
subalgebras 〈Rei 〉 and 〈Rel ◦ Rem〉 (for some 1 ≤ i, m, l ≤ n) are not ideals. As Rei I ⊆ I, then
any ideal of M(E) should contain Rei for some 1 ≤ i ≤ n. This implies that the subalgebras
Rei M(E) and M(E)Rei are contained in I. For fixed i, let

Ki := 〈Rei , Rei ◦ Re` , Rel ◦ Rei : ` = 1, · · · , n, ` 6= i〉.

It is easy to check that Ki contains Rei M(E) and M(E)Rei . Moreover,

dim(Ki) =
dim(E)dim(E2)

2
− 1.

Since Rel ◦ Rei ∈ I, for all 1 ≤ l 6= i ≤ n, then (Rel ◦ Rei )M(E) is a sub-algebra. Let

Kl = 〈(Rel ◦ Rei )M(E)〉 	 〈Rel ◦ Rei 〉 = 〈Rel , Rel ◦ Rep : p 6= i〉,

where 	 stand for removing the subalgebra 〈Rel ◦ Rei 〉 from Kl . Note that Kl is a sub-
algebra. Moreover,

n⋂
l=1, 6=i

Kl = {0}.

Assume that

N :=
n⋃

l=1, 6=i

Kl .

Then dim(N) = dim(E)dim(E2)
2 + 1. Moreover, N ∩ Ki = {0}. Then

dim(Ki ∪ N) =
dim(E)dim(E2)

2
− 1 +

dim(E)dim(E2)

2
+ 1 = dim(E)dim(E2).

However, Ki ∪ N ⊆ I, then dim(I) = dim(E)dim(E2) = dim(M(E)). Hence, I = M(E).
This implies that M(E) is simple.

Conversely, let us assume that M(E) is simple, then by Theorem 8, we have
M(E) = Span{Eij : 1 ≤ i, j ≤ n}. Hence, for any Epq ∈ M(E) again by the proof of
Theorem 8, one has

A′


α1
α2
...

αn

 = Epq.

Then, det(A′) 6= 0 but det(A′) =

(
n

∏
j=1, j 6=p

apj

)
det(A), as E has complete attached graph,

so det(A) 6= 0. Therefore, Theorem 3 implies that E is simple. This completes the proof.

Corollary 6. If M(E) is an enveloping algebra generated by an n-dimensional not simple S-
evolution algebra, then M(E) is not simple.

Proof. Since E is not simple and dim(M(E)) = nm, then M(E) � Mn(C). Hence, by
Theorem 9, we have M(E) is not simple.

Corollary 7. Let E1 and E2 be two n-dimensional simple S-evolution algebras, whose attached
graphs are complete. Then M(E1) ∼= M(E2).

Proof. As E1 and E2 are simple. Hence, by Theorems 9 and 10, one gets M(E1) ∼= Mn(C),
M(E2) ∼= Mn(C), so M(E1) ∼= M(E2).
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From the above corollary, we infer that if the attached graphs of two simple S-evolution
algebras are complete, then the corresponding enveloping algebras are isomorphic. How-
ever, the corollary does not give an explicit isomorphism. Therefore, it will be interesting
to find an explicit construction of the isomorphism. However, the job of finding explicit
isomorphism between two enveloping algebra is tricky. In the next result, it turns out that
such an isomorphism can be constructed explicitly for Lotka–Volterra evolution algebras.

Theorem 11. Let E1 and E2 be Lotka–Volterra evolution algebras whose attached graphs are com-
plete. If E1

∼= E2, then M(E1) ∼= M(E2). Moreover, the isomorphism can be explicitly constructed.

Proof. Let M(E1) = 〈Rei ◦ Rej , Rei : 1 ≤ i 6= j ≤ n〉, and M(E2) = 〈R fi
◦ R f j

, R fi
:

1 ≤ i 6= j ≤ n〉. Define a mapping ψ : M(E1)→ M(E2) by

ψ(Rei ) = R fi
and ψ(Rei ◦ Rej) = R fi

◦ R f j
.

Let us check that ψ is a homomorphism. Indeed,

ψ(Rei ◦ (Rei ◦ Rej)) = ψ

(
ailalm

aim
(Rei ◦ Rem)

)
=

ailalm
aim

(
R fi
◦ R fm

)
.

On the other hand,

ψ(Rei ) ◦ ψ(Rei ◦ Rej) = R fi
◦ (R fl

◦ R fm) =
bilblm

bim

(
R fi
◦ R fm

)
.

Due to E1
∼= E2, by Theorem 5 we have ail alm

aim
= bilblm

bim
. Hence,

ψ(Rei ◦ (Rei ◦ Rej)) = ψ(Rei ) ◦ ψ(Rei ◦ Rej)).

The equality of other elements in the table of multiplication are proceeded by the same way.
Thus, ψ is an algebra homomorphism from M(E1) into M(E2). Moreover, ker(ψ) = {0}.
This implies that the mapping ψ is an isomorphism.

Remark 8. The converse of Theorem 11 is not true, i.e., if two S-evolution algebras are not
isomorphic then their corresponding enveloping algebras could be isomorphic.

Example 8. Let E1 and E2 be two three dimensional S-evolution algebras with the following
structural matrices:  0 1 −2

−2 0 1
2 −1 0

,

0 1 −1
1 0 −1
1 1 0


respectively. Then by Theorem 6, these algebras are not isomorphic. Since E1 and E2 have complete
attached graphs, and their determinates are not zero then Theorem 10 implies the corresponding
enveloping algebras M(E1) and M(E2) are simple, then by Theorem 9, we have M(E1) ∼= M(E2).

Theorem 12. Any non-trivial finite dimensional S-evolution algebra E is semisimple if and only if
its enveloping algebra M(E) is semisimple.

Proof. Assume that E is semisimple, then by Theorem 4, its attached graph Γ(E, B) is

disconnected. Therefore, Γ(E, B) =
n⋃

i=1
Γi, then by Proposition 3 each Γi corresponds to a

simple ideal, say IΓi . Due to the semisimplicity of E one has E =
n⊕

i=1
IΓi . Define

M(EIΓi
) = {Rek : ek ∈ IΓi} ∪ {Rek ◦ Rel : el , ek ∈ IΓi}.
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We claim that M(EIΓi
) is a proper simple ideal of M(E). First observe that

M2(EIΓi
) ⊆ M(EIΓi

). On the other hand, for any ep /∈ IΓi , then by Theorem 4, we have
epek = 0 for any ek ∈ IΓi . Consequently, Rep M(EIΓi

) = 0. Hence, M(EIΓi
) is a proper simple

ideal of M(E), then M(E) =
n⊕

i=1
M(EIΓi

). Thus, M(E) is semisimple.

Conversely, assume that M(E) is semisimple, then there exists a non-trivial proper
ideal I of M(E). On the contrary, suppose that E is not semisimple, then by Theorem 4
Γ(E, B) is connected. Hence, dim(M(E)) = 2|E|+ n. Due to the connectivity of Γ(E, B),
then there is a path between any two different vertices. Fix Rei ∈ I, then we have a non-zero
element Rei ◦ Rej , Rej ◦ Rei ∈ I. Additionally, connectivity allows the existence of a cycle
path, which means that there is a non-zero element, say Rek ◦ Rel ◦ . . . ◦ Rek = αRek ∈ I.
This implies that Rek ∈ I for all 1 ≤ k ≤ n. Therefore, dim(I) = 2|E|+ n = dim(M(E))
which contradicts to the simisimplicity of M(E). Thus, E is semisimple.

Remark 9. We emphasize that the above theorem is not valid for general evolution algebras, i.e., if
an evolution algebra is semisimple then the corresponding enveloping algebra may not be semisimple.
The following example ensures this fact.

Example 9. Let E be an evolution algebra, with the following matrix of structural constant:(
1 0
0 1

)
It clear that E = 〈e1〉 ⊕ 〈e2〉, where 〈e1〉, 〈e2〉 are ideals of E. The corresponding enveloping algebra
M(E) = alg〈Re1 , Re2 , Re1 ◦ Re2 , Re2 ◦ Re1〉 which is simple.

5. E-Linear Derivation of Enveloping Algebras Generated by S-Evolution Algebras

In this section, we are going to describe E-linear derivations of enveloping algebras
generated by S-evolution algebras.

Definition 9. A linear mapping ∆ : M(E)→ M(E) is called E-linear if

∆(Rei ) =
n

∑
k=1

dikRek , 1 ≤ i ≤ n. (15)

for some matrix (dik).

Definition 10. A derivation ∆ of M(E) is called E-derivation if ∆ is E-linear.

By DM(E) we denote the set of all E-derivations of M(E).

Theorem 13. Let M(E) be enveloping algebra generated by E whose attached graph is complete.
Then the following assertions hold true:

(i) If n = 2, then

DM(E) =

{(
α 0
0 −α

)
: α ∈ C

}
(ii) If n ≥ 3, then DM(E) = {0}, i.e., any E-derivation is trivial.

Proof. (i) Assume that n = 2, then the structural matrix of E is given by(
0 a

f (a) 0

)
.
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Note that the attached graph is complete, therefore, a 6= 0. Since ∆ is E− linear, then

∆(Rei ◦ Rei ) = ∆(Rei ) ◦ Rei + Rei ◦ ∆(Rei ) = dij(Rej ◦ Rei ) + dij(Rei ◦ Rej) = 0.

Since Rei ◦ Rej , Rej ◦ Rei are linearly independent, we have dij = 0, for any 1 ≤ i 6= j ≤ 2.
Consequently,

∆(Rei ◦ Rej) = (dii + djj)(Rei ◦ Rej).

Next,
∆(Rei ◦ Rej ◦ Rei ) = ∆(a f (a)Rei ).

Then
a f (a)(dii + djj)Rei + a f (a)diiRei = a f (a)diiRei .

So, one has dii = −djj. This completes prove of (i).
(ii) Assume that n ≥ 3, for fixed i we have

∆(Rei ◦ Rei ) =
n

∑
i 6=j=1

dij(Rej ◦ Rei ) +
n

∑
i 6=j=1

dij(Rei ◦ Rej) = 0

Since the set {Rei ◦ Rej} and the set {Rej ◦ Rei} are linearly independent for any
1 ≤ i 6= j ≤ n, then dij = 0. So,

DM(E) ⊆ diag{dii : 1 ≤ i ≤ n}.

Now, consider

∆((Rei ◦ Rej) ◦ Rei ) = aij fij(aij)(dii + djj)Rei + aij fij(aij)dii.

One the other hand,

∆((Rei ◦ Rej) ◦ Rei ) = aij fij(aij)∆(Rei ) = aij fij(aij)dii.

Since the attached graph is complete, then fij(aij)aij 6= 0, for any 1 ≤ i 6= j ≤ n. Hence,
dii = −djj. This implies

DM(E) ⊆ diag{−dii : 1 ≤ i ≤ n}.

Therefore,

DM(E) ⊆ diag{dii : 1 ≤ i ≤ n} ∩ diag{−dii : 1 ≤ i ≤ n} = {0}.

This completes the proof.

In [30] we have established the following result.

Theorem 14 ([30]). Let E be a Lotka–Volterra evolution algebra whose associated graph is complete.
Then any derivation of E is trivial.

Theorem 15. Let M(E) be an enveloping algebra generated by an n-dimensional S-evolution
algebra E whose attached graph is Γ = H1 ∪ H2 where H1 is complete graph and H2 contains all
isolated vertices, and |H2| = k. Then any E-linear derivation of M(E) has the following form

(0)n−k×n−k (0)n−k×k

(0)k×n−k

dk,k . . . dk,n
...

. . .
...

dn,k . . . dn,n


.
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Proof. From ∆(Rei ◦ Rei ) = ∆(Rei )Rei + Rei ∆(Rei ), due to the E-linearity of ∆, we have

∆(Rei ◦ Rei ) =
k−1

∑
i 6=j=1

dij(Rej ◦ Rei ) +
k−1

∑
i 6=j=1

dij(Rei ◦ Rej) = 0.

Since the set {Rei ◦ Rej}, and the set {Rej ◦ Rei} are linearly independent for all j 6= i, then
dij = 0 for all 1 ≤ j 6= i ≤ k− 1. Next, act ∆ on the basis Rei ◦ Rej , as

∆(Rei ◦ Rej) = (dii + djj)(Rei ◦ Rej).

Therefore,
∆((Rei ◦ Rej) ◦ Rei ) = −(2dii + djj)Rei .

On the other hand, one has

∆((Rei ◦ Rej) ◦ Rei ) = −∆(Rei ) = −diiRei + dikRek + . . . + dinRen .

Comparing both sides, we obtain dik = . . . = din = 0, and dii = −djj, for any 1 ≤ i ≤ k− 1.
Since (Rei ◦ Rej) ◦ (Rei ◦ Rej) = aij fij(aij)aij(Rei ◦ Rej), and applying ∆ for both sides, one
gets dii = djj = 0, for any 1 ≤ i ≤ k− 1. Finally, let 1 ≤ m0 ≤ k− 1 and k ≤ l0 ≤ n, then it
is clear that Rem0

◦ Rel0
= 0. Consider ∆(Rem0

◦ Rel0
) = Rem0

∆(Rel0
) = 0. This implies that

dl0 p = 0, for all 1 ≤ p ≤ l0 − 1. This completes the proof.

Remark 10. We point out that Theorem 13 is a particular case of Theorem 15 when H2 is empty.

6. E-Linear Derivation of Enveloping Algebras Generated by Three Dimensional
S-Evolution Algebras

In this section we are going to fully describe all possible E-linear derivations of
enveloping algebras generated by three dimensional S-evolution algebras.

The possible graphs of three dimension non-isomorphic S-evolution algebras are the
following ones

1 2

3 a3

a1

a2

1 2

3

a1

a2

1 2 3
1

Theorem 16. Let M(E) be an enveloping algebra generated by three dimensional S-evolution
algebra E, then the following statements hold true:

(i) If the attached graph is a complete, then any E-linear derivation is trivial.
(ii) If the attached graph is disconnected, then any E-linear derivation has the following form

DM(E) =

0 0 0
0 0 0
0 0 d33

.

(iii) If the attached graph is connected, but not complete, then any E-linear derivation has the
following form

DM(E) =

α 0 0
0 −α 0
0 0 −α


Proof. (i) Since the graph is complete, then by Theorem 13 any E-derivation of correspond-
ing enveloping algebra is trivial. The attached graph of (ii) can be represent as H1 ∪ H2,
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where H1 is K2 and H2 is a graph containing the isolated vertex e3. Then by Theorem 15
the derivation in this case has the following form

DM(E) =

0 0 0
0 0 0
0 0 d33

.

Therefore, the only case left to prove is (iii), when the enveloping algebra generated by
S-evolution algebra whose attached graph has no isolated vertex. Without lost of generality,
we may assume that the structural matrix constant has the following form:

AE =

 0 a b
f (a) 0 0
g(b) 0 0


Acting ∆ on R2

e1
, yields that d12 = d13 = 0. Doing the same job for R2

e2
and R2

e3
, one finds

d21 = d31 = d23 = d32 = 0. Next, consider

∆(Re1 ◦ Re2) = (d11 + d22)(Re1 ◦ Re2)

and
∆(Re1 ◦ Re3) = (d11 + d33)(Re1 ◦ Re3).

Therefore, applying ∆ to Re1 ◦ (Re2 ◦ Re1), we obtain

a f (a)(d11 + d22) = 0.

By the same argument, applying ∆ to Re1 ◦ (Re3 ◦ Re1), one gets

bg(b)(d11 + d33) = 0.

Finally, from ∆(Re2 ◦ (Re1 ◦ Re2)), and ∆(Re3 ◦ (Re1 ◦ Re3)), we get d11 + d22 = d11 + d33 = 0.
These imply that d22 = d33 = −d11 which completes the proof.

Remark 11. From the proved theorem and ([30], Theorem 7.5), we infer that any derivation of
Lotka–Volterra evolution algebra E can be extend to E-linear derivation of enveloping algebra for
the cases (i) and (ii), but it is not extendible for the case (iii).

Remark 12. Here, we should point out that to describe derivations when n > 3 is a tricky job, due
to many cases and sub-cases of attached graphs will appear. Hence, we have demonstrated even in
dimension 3, there are non-trivial derivations.

7. Conclusions

The main aim of this work was to introduce S-evolution algebra and discuss its
solvability, simplicity, and semisimplicity. We have proved that such kind of algebras
are not solvable, hence are not nilpotent. Moreover, we have demonstrated that if S-
evolution algebras is simple, then the attached graph is connected. If S-evolution algebra
is semisimple, then the attached graph is disconnected; this result motivates us to study
when two S-evolution algebras are isomorphic. The second main aim was to study the
enveloping algebras generated by S-evolution algebras, whose attached graph are complete.
The main result in this direction was E is simple if and only if M(E) is simple. However, in
the case of E is semisimple, then M(E) is semisimple, but the converse is not valid, and
the counter-example has been introduced. Finally, the concept of E-linear derivation has
been introduced and proved such derivations can be extended to their enveloping algebra
under certain conditions.
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