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Abstract: In this paper, we firstly introduce the definition of the fuzzy metric of sets, and discuss the
properties of fuzzy metric induced by the Hausdorff metric. Then we prove the limit theorems for
set-valued random variables in fuzzy metric space; the convergence is about fuzzy metric induced
by the Hausdorff metric. The work is an extension from the classical results for set-valued random
variables to fuzzy metric space.
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1. Introduction

We all know that the research about set-valued theory has been a hot topic in recent
years. In the real world, sometimes we cannot get accurate single-valued data. For
example, if we describe the price of the stock on one day, the single-point value is limited
to characterizing the changes of the stock’s price in a day. So it is more appropriate to use
set value to describe the price of stock. Many scholars have done a lot of beautiful work
on set-valued theory. Arrow and Debreu [1] in 1954 introduced the concept of set-valued
random variables and Aumann [2] in 1965 introduced the integral. Hiai and Umegaki [3]
gave the definition of conditional expectation of set-valued random variables in 1977.
Beer [4] discussed the topologies of closed and closed convex sets in 1993.

It is well known that limit theorems are important in probability and statistics. Since
the 1970s, many scholars have studied the strong law of large numbers (SLLN, for short) for
set-valued random variables. Artstein and Vitale [5] demonstrated an SLLN for compact set-
valued random variables in Rp. Puri and Ralescu [6] obtained the SLLNs for independent
and identically distributed compact convex set-valued random variables in Banach spaces.
Taylor and Inoue discussed the convergence theorems for independent and weighted sums
of set-valued random variables, respectively, in [7,8]. Fu et al. [9] , Casting et al. [10] and
Li and Guan [11,12] also studied the limit theorems for set-valued random variables in
different kinds of conditions. All the above studies were discussed in the sense of the clear
distance between sets. However, in real life, the distance between two objects sometimes is
uncertainty, and it may not be easy to describe with explicit distance. Only words with
fuzzy language such as “very close” and “very far” can be used to describe them. So it is
necessary to study the fuzzy metric.

George and Veeramani firstly gave the definition of fuzzy metric in [13] and dis-
cussed the conditions of completeness and separability in fuzzy metric space in [14].
Later, Gregori et al. did a lot of research work on fuzzy metric space in [15–18].
Minana et al. [19] and Wu et al. [20] discussed the properties of fuzzy metric space. Moril-
las et al. [21,22] discussed the application of fuzzy metric in image filter and other practical
fields. In addition, Saadati and Vaezpour [23] defined fuzzy normed space, studied its
properties and discussed the relationship between fuzzy norm and fuzzy metric, thus
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defining fuzzy Banach space. There are also some scholars who elaborated the fuzzy metric
in different ways [24,25]. However, the elements in the above papers are still single-point
values. In [26], Ghasemi et al. extended the fuzzy metric space to the case of set-valued
and fuzzy set-valued random variables and discussed the laws of large numbers for fuzzy
set-valued random variables, but the authors did not give the complete statement and
definition of fuzzy metric and fuzzy norm for sets. In this paper we consider the definition
of fuzzy metric for sets, discuss its properties and study the SLLNs for set-valued random
variables in fuzzy metric space.

This article was organized as follows. In Section 2, we mainly introduce the concepts
and notations on set-valued random variables. In Section 3, we shall introduce the concepts
of fuzzy metric and fuzzy norm on K(X) and discuss the properties. In Section 4, we prove
the SLLN for independent and identical distributed compact set-valued random variable
and SLLN for independent, tight set valued random variables. The convergence is about
fuzzy metric MdH induced by dH .

2. Preliminaries on Set-Valued Random Variables

Throughout this paper, we assume that (Ω,A, µ) is a complete probability space (i.e.,
every µ-null set belongs to σ-field A); for the detail about complete probability space,
readers can refer to [27] (Page 55, Theorem B). (X, ‖ · ‖) is a Banach space in R , K(X)
(Kk(X), Kc(X)) is the family of all nonempty closed (compact and convex, respectively)
subsets of X. For a set A ∈ K(X), coA denotes the convex hull of A.

Let A, B ∈ K(X) and λ ∈ R. Define the Minkowski addition and scalar multiplication as

A + B = {a + b : a ∈ A, b ∈ B}

λA = {λa : a ∈ A}.

The Hausdorff metric on K(X) is defined by

dH(A, B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖}

for A, B ∈ K(X). For an A in K(X), let ‖A‖K = dH({0}, A).
The metric space (Kk(X), dH) is complete and separable, and Kkc(X) is a closed subset

of (Kk(X), dH) (cf. [28], Theorems 1.1.2 and 1.1.3).
For each A ∈ K(X), the support function is defined by

s(x∗, A) = sup
a∈A

< x∗, a >, x∗ ∈ X∗,

where X∗ is the dual space of X.
Now we recall the definition of total gHukuhara difference in [29], define

D(A, B) = {C : C ∈ Kkc(Rn), A ⊆ B + C, B ⊆ A− C}

A− B = {a− b : a ∈ A, b ∈ B}

We say that C ∈ D(A, B) is minimal with respect to set magnitude (norm-minimal for
short) if no C′ ∈ D(A, B) exists with ‖C′‖ < ‖C‖. The set of all elements of D(A, B) with
the norm-minimality property will be denoted by Dnorm(A, B).

Let A, B ∈ Kkc(Rn) be given. The following convex set always exists and is unique

A	t B = co(
⋃
{C : C ∈ Dnorm(A, B)}),

where co means closure convex hull of A; A	t B is called the total gHukuhara difference
of A and B.

The mapping F : Ω→ K(X) is called a set-valued random variable if, for each open
subset O of X, F−1(O) = {ω ∈ Ω : F(ω) ∩O 6= ∅} ∈ A.
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For each set-valued random variable F, the expectation of F is defined by

E[F] =
{ ∫

Ω
f dµ : f ∈ SF

}
,

where
∫

Ω f dµ is the usual Bochner integral in L1[Ω,X] (the family of integrable X-valued
random variables), and SF = { f ∈ L1[Ω;X] : f (ω) ∈ F(ω), a.e.(µ)}.

Let Lp[Ω,A, µ; Kk(X)] (Lp[Ω,A, µ; Kkc(X)]) denote the space of all integrably bounded
compact (compact and convex) random variables. We denote it as Lp[Ω; Kk(X)](Lp[Ω; Kkc(X)],
respectively) for simplicity.

For any F, G ∈ L1[Ω,A, µ; K(X)], F = G if and only if F(ω) = G(ω) a.e.(µ).
Let B(X) be Borel field of X. Define the sub-σ-field AF by AF = σ{F−1(U ) : U ∈

B(X)}, where F−1(U ) = {ω ∈ Ω : F(ω) ∈ U}, then AF is a sub-σ-field of A. Set-valued
random variables F1, F2, · · · Fn are said to be independent if {AFn : n ∈ N} are independent.
For more concepts and results of set-valued random variables, readers may refer to the
books [28–31].

3. Fuzzy Metric Space

In this section, we shall introduce the definition of fuzzy metric and fuzzy norm on
K(X), and discuss their properties.

Definition 1. (cf. [32]) A t-norm is a binary operator ∗ : [0, 1] × [0, 1] → [0, 1], such that
∀a, b, c, d ∈ [0, 1]; the following conditions are satisfied:

(1) a ∗ b = b ∗ a;
(2) (a ∗ b) ∗ c = a ∗ (b ∗ c);
(3) a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d;
(4) a ∗ 1 = a.

When ∗ is a continuous function on [0, 1]× [0, 1], it is said to be continuous.

Definition 2. Let X be an arbitrary non-empty set, ∗ is a continuous t-norm. The 3-tuple
(K(X), M, ∗) is said to be a fuzzy metric space for sets if M is a fuzzy set on K(X)×K(X)× (0, ∞),
satisfying the following conditions for ∀A, B, C ∈ K(X) and t, s > 0:

(1) M(A, B, t) > 0, ∀t > 0;
(2) M(A, B, t) = 1, ∀t > 0⇔ A = B;
(3) M(A, B, t) = M(B, A, t);
(4) M(A, B, t) ∗M(B, C, s) ≤ M(A, C, t + s);
(5) M(A, B, · ) : (0, ∞)→ [0, 1] is continuous.

M is called fuzzy metric on K(X).

Definition 3. Let X be a vector space and ∗ a continuous t-norm. The 3-tuple (K(X), N, ∗) is said
to be a fuzzy normed space for sets if N is a fuzzy set on K(X)× (0, ∞), satisfying the following
conditions for ∀A, B ∈ K(X) and t, s > 0:

(1) N(A, t) > 0, ∀t > 0;
(2) N(A, t) = 1, ∀t > 0⇔ A = {0};
(3) N(αA, t) = N(A, t

|α| ), ∀α 6= 0;

(4) N(A, t) ∗ N(B, s) ≤ N(A + B, t + s);
(5) N(A, · ) : (0, ∞)→ [0, 1] is continuous;
(6) lim

t→∞
N(A, t) = 1.

N was called fuzzy norm for sets on K(X).

Remark 1.

(i) M(A, B, t) can be thought of as the degree of nearness between A and B with respect to t. We
identify A = B with M(A, B, t) = 1 for t > 0. If the distance between A and B is ∞, then
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we denote M(A, B, t) = 0 for t > 0. If A, B are single point values, then M degenerates to
the fuzzy metric of single-valued elements.

(ii) It is obvious that Definition 3 (3) means N(−A, t) = N(A, t).
(iii) If A = {x}, B = {y}, ‖x‖ ≤ ‖y‖, then N(x, t) ≥ N(y, t) for t > 0.

Indeed, if ‖x‖ ≤ ‖y‖, there exists k ≥ 1, such that ‖y‖ = k‖x‖; thus y = ±kx. Then
we can have

N(y, t) = N(±kx, t) = N(x,
t
k
) ≤ N(x, t).

For example, let A, B ∈ K(X), a ∗ b = ab; define

M(A, B, t) =
ktn

ktn + mdH(A, B)
, k, m, n ∈ R+.

N(A, t) =
ktn

ktn + m‖A‖K
, k, m, n ∈ R+,

In this case, it is easy to show that (K(X), M, ∗) is a fuzzy metric space. (K(X), N, ∗)
is a fuzzy normed space. M is called fuzzy metric induced by dH . N is called the fuzzy
norm induced by dH . There are also some other kinds of fuzzy metrics and fuzzy norm
induced by dH , we denote the fuzzy metrics that were induced by dH as MdH and fuzzy
norm induced by dH as NdH .

From Definition 2, we can easily get the following property.

Theorem 1. Let M be a fuzzy metric for sets on K(X), then M(A, B, t) is nondecreasing with
respect to t.

Proof. Let A, B ∈ K(X), t, s > 0. According to Definitions 1 and 2 we can have

M(A, B, t) ∗M(B, B, s) ≤ M(A, B, t + s),

That is
M(A, B, t) ∗ 1 ≤ M(A, B, t + s).

So
M(A, B, t) ≤ M(A, B, t + s).

So it is not decreasing with respect to t.

Next is the definition of convergence for sets in fuzzy metric space.

Definition 4. Let {Ak : k ≥ 1}, A be sets in K(X). M is a fuzzy metric on K(X). If
M(Ak, A, t)→ 1, as k→ ∞, then Ak is said to be convergent to A in fuzzy metric M.

Theorem 2. Let xn ∈ X be a monotone decreasing (increasing) sequence, and lim
n→∞

xn = x0, x0 6=
0, then for t ≥ 0, we have

lim
n→∞

N(xn, t) = N(x0, t).

Furthermore if M is induced by N as M(x, y, t) = N(x− y, t), we can also have

lim
n→∞

M(xn, y, t) = M(x0, y, t).

Proof. Assume xn is a monotone decreasing sequence; then there exists a constant n0 such
that when n > n0, ‖xn‖ monotone increases (or decreases) to ‖x0‖; then by remark I (3),
there exists kn > 0 such that ‖xn‖ = kn‖x0‖, and N(xn, t) monotone is non-increasing (or
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non-decreasing) when n > n0; then lim
n→∞

N(xn, t) exists. Take xn = knx0 for n > n0, where

kn monotone increases (or decreases) to 1. Thus for n > n0,

N(xn, t) = N
(

knx0, t
)

= N
(

x0,
t

kn

)
−→ N(x0, t) as n→ ∞.

Thus
lim

n→∞
N(xn, t) = N(x0, t).

Furthermore, it is obvious that lim
n→∞

M(xn, x0, t) = 1.

The next two lemmas are the properties of fuzzy metric on K(X).

Lemma 1. Let N be a fuzzy norm on Kkc(X), t-norm T = ∗. If we define

M(A, B, t) = N(A	T B, t), A, B ∈ Kkc(X).

where t > 0 and 	T is the total gHukuhara difference [33], then M is a fuzzy metric on Kkc(X).
We call it fuzzy metric induced by N.

Proof. (1) For A, B ∈ Kkc(X), t > 0, we have M(A, B, t) = N(A	T B, t) > 0;
(2) for A, B ∈ Kkc(X), t > 0. A = B if and only if

M(A, B, t) = N(A	T B, t)

= N({0}, t)

= 1.

(3) For A, B ∈ Kkc(X), t > 0,

M(A, B, t) = N(A	T B, t)

= N(−(B	T A), t)

= N
(

B	T A,
t
| − 1|

)
= N(B	T A, t)

= M(B, A, t).

(4) For A, B, C ∈ Kkc(X), t > 0, s > 0,

M(A, B, t) ∗M(B, C, s) = N(A	T B, t) ∗ N(B	T C, s)

≤ N(A	T B + B	T C, t + s)

≤ N(A	T C, t + s)

= M(A, C, t + s).

(5) Since N(A, · ) : (0, ∞)→ [0, 1] is continuous, so is M(A, B, ·) : (0, ∞)→ [0, 1].
All the conditions of Definition 2 are satisfied, so M is a fuzzy metric on Kkc(X).

Lemma 2. Let MdH be a fuzzy metric induced by fuzzy norm NdH . Then ∀A, B, C ∈ Kkc(X) and
scalar α 6= 0:

(i) MdH (A + C, B + C, t) = MdH (A, B, t)

(ii) MdH (αA, αB, t) = MdH

(
A, B, t

|α|

)
.
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Proof. (1) For ∀A, B, C ∈ Kkc(X), t > 0,

M(A + C, B + C, t) = N((A + C)	T (B + C), t)

≤ N(A	T B, t)

= M(A, B, t)

(2) For ∀A, B ∈ Kkc(X) and scalar α 6= 0, we have

M(αA, αB, t) = N(αA	T αB, t)

= N(α(A	T B), t)

= N
(

A	T B,
t
|α|

)
= M

(
A, B,

t
|α|

)
The result was proved.

Theorem 3. Let X be a separable normed space. There exists a fuzzy normed space X and a
function j : Kkc(X)→ X with the following properties:

(1) MdH (A, B, t) = Md(j(A), j(B), t), Md is the fuzzy metric on X ;
(2) j(A + B) = j(A) + j(B);
(3) j(λA) = λj(A), λ ≥ 0.

Thus, Kkc(X) is embedded into a fuzzy normed space by j(·).

Proof. By embedding the theorem in [28], there exists an embedding function j : Kkc(X)→
X such that

‖j(An)− j(A)‖ = dH(An, A)

and j is an isometrical and isomorphic function. We can take j(A) = s(·, A), and d(j(A), j(B)) =
‖j(A)− j(B)‖. Let Md and MdH be the fuzzy metrics induced by d and dH , respectively, in
the same style. Then for t > 0,

MdH (A, B, t) = Md(j(A), j(B), t).

(2) and (3) are obvious.

Theorem 4. Let {An : n ≥ 1} ∈ Kkc(X) converge to A in the sense of dH ; MdH is a fuzzy metric
induced by dH ; then for t > 0

lim
n→∞

MdH (An, A, t) = 1.

Proof. By Theorem 3, there exists an embedding function j such that

MdH (An, A, t) = Md(j(An), j(A), t).

Since lim
n→∞

dH(An, A) = 0, lim
n→∞

‖j(An)− j(A)‖ = 0. Thus by Theorem 2, for t > 0,

lim
n→∞

Md

(
j(An), j(A), t

)
= 1.

Furthermore, by Theorem 3, for t > 0,

lim
n→∞

MdH (An, A, t) = lim
n→∞

Md

(
j(An), j(A), t

)
= 1.
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The result has been proved.

Theorem 5. Let M be a fuzzy metric induced by fuzzy norm N. Then for any A, B ∈ Kkc(X)

lim
t→∞

M(A, B, t) = 1.

Proof. By Theorem 1, Definition 3 (6), we have

lim
t→∞

M(A, B, t) = lim
t→∞

N(A	T B, t)

= 1.

The result has been proved.

The following theorem gives the separability of the fuzzy metric space for sets.

Theorem 6. (Kk(X), MdH , ∗) is a separable fuzzy metric space.

Proof. Since (Kk(X), dH) is a separable space. Let D be the countable dense subset with
respect to Hausdorff distance dH . Then by Theorem 4, D is also the countable dense subset
with respect to fuzzy metric MdH ; the result has been established.

Remark 2. From the proof of Theorems 2, 4 and 6, we can easily know that if dH(An, A) ↓ 0, then
for t > 0, MdH (An, A, t) ↑ 1.

4. Laws of Large Numbers in Fuzzy Metric

In this section, we shall give the convergence theorems for set-valued random variables
in the sense of MdH , which is induced by the Hausdorff metric dH . Firstly we introduce the
Shapley–Folkman inequality for set-valued random variables in the sense of fuzzy metric
dH , which will be used later.

Lemma 3. (cf. [34]) A1, A2 · · · An ∈ Kk(X), then

dH

(
n

∑
k=1

Ak,
n

∑
k=1

coAk

)
≤ √p max

1≤k≤n
‖Ak‖K,

where p is the dimension of X.

Then we have the Shapley–Folkman inequality for set-valued random variables in
fuzzy metric space.

Theorem 7. Let {Fk : k ∈ N} ∈ Kk(X). MdH is a fuzzy metric induced by dH in the fuzzy metric
space; then

MdH

(
n

∑
k=1

Fk,
n

∑
k=1

coFk, t

)
≥ min

1≤k≤n
MdH

(
coFk, {0}, t

√
p

)
for any t ≥ 0, where p is the dimension of X.

Proof. According to Lemma 3,

dH

(
n

∑
k=1

Fk,
n

∑
k=1

coFk

)
≤ √p max

1≤k≤n
‖Fk‖K

=
√

p max
1≤k≤n

‖coFk‖K

=
√

p max
1≤k≤n

dH(coFk, {0})
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= max
1≤k≤n

dH(
√

p coFk, {0})

Therefore, for fixed n, there exists k0(n), 1 ≤ k0(n) ≤ n, such that

max
1≤k≤n

dH(
√

p coFk, {0}) = dH(
√

p coFk0(n), {0}).

That means for fixed n,

dH

(
n

∑
k=1

Fk,
n

∑
k=1

coFk

)
≤ dH

(√
p coFk0(n), {0}

)
.

Furthermore by remark II, for t > 0,

MdH

(
n

∑
k=1

Fk,
n

∑
k=1

coFk, t

)
≥ MdH

(√
p coFk0(n), {0}, t

)
≥ min

1≤k≤n
MdH (

√
p coFk, {0}, t)

= min
1≤k≤n

MdH

(
coFk, {0}, t

√
p

)
The result has been proved.

Theorem 8. Let {Fk : k ∈ N} ⊂ L1[Ω, Kk(X)] be a sequence of independent and identically
distributed (i.i.d.) set-valued random variables. Then in the metric MdH , we have the following
convergence:

1
n

n

∑
k=1

Fk −→ E[coF1] a.e.

that is, for t > 0,

MdH

(
1
n

n

∑
k=1

Fk, E[coF1], t

)
−→ 1 a.e.

Proof. Step 1. Let Fk : Ω→ Kkc(X) be independent and identically distributed set-valued
random variables and j : Kkc(X) → X be the isometry provided by Theorem 3. Then
{j(Fk) : k ∈ N} are i.i.d. X -valued random elements and are integrable. By a standard
SLLN in Banach space (see [35]), it follows that

1
n

n

∑
k=1

j[Fk] −→ E[j(F1)] a.e.. (1)

Since

E[j(F1)] = j(E[F1]),

j

(
1
n

n

∑
k=1

Fk

)
=

1
n

n

∑
k=1

j(Fk)

Then there is

j

(
1
n

n

∑
k=1

Fk

)
−→ j(E[F1]) a.e.

It follows from the embedding theorem (j is isometric isomorphic mapping) that

MdH

(
1
n

n

∑
k=1

Fk, E[F1],
t
2

)
−→ 1 a.e..
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Step 2. Consider the general case. Let Fk : Ω → Kk(X); then {coFk : k ∈ N} is i.i.d.
compact convex set. It follows from step 1 that

MdH

(
1
n

n

∑
k=1

coFk, E[coF1],
t
2

)
−→ 1 a.e.. (2)

From Theorem 7,

MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

coFk,
t
2

)
≥ min

1≤k≤n
MdH

(
coFk

n
, {0}, t

2
√

p

)
= min

1≤k≤n
MdH

(
coFk, {0}, nt

2
√

p

)
.

By Theorem 5, for t > 0, we have

min
1≤k≤n

MdH

(
coFk, {0}, nt

2
√

p

)
−→ 1, as n→ ∞.

So

MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

coFk,
t
2

)
−→ 1 a.e. (3)

Finally, from the triangle inequality (Definition 2 (4)), it follows that

MdH

(
1
n

n

∑
k=1

Fk, E[coF1], t

)
≥MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

coFk,
t
2

)
∗

MdH

(
1
n

n

∑
k=1

coFk, E[coF1],
t
2

)

According to (2) and (3), the right values tend to 1. Then we have

MdH

(
1
n

n

∑
k=1

Fk, E[coF1], t

)
−→ 1 a.e.

The proof is complete.

The sequence {Fn : n ∈ N} ∈ L1[Ω,A, µ; Kk(X)] is said to be tight if for every ε > 0,
there is a compact subset Kε of Kk(X) such that µ{Fn /∈ Kε} < ε for all n ∈ N.

From the definition of tightness, we can have the following lemma.

Lemma 4. Let {Fn : n ∈ N} ∈ L1[Ω,A, µ; Kkc(X)] be tight and j be the embedding function in
Theorem 3; then {j(Fn) : n ∈ N} is also tight.

Proof. Since {Fn : n ∈ N} ∈ L1[Ω,A, µ; Kkc(X)] is tight, by the definition of tightness for
set-valued sequence, we know that for every ε > 0 there exists a compact subset Kε of
Kk(X) with respect to the metric dH such that µ{Fn /∈ Kε} < ε for all n ∈ N. Since j is
isometric isomorphic mapping, j(Kε) is also a compact subset of X . We have

µ
{

j(Fn) /∈ j(Kε)
}
= µ

{
Fn /∈ Kε

}
< ε, for all n.

That means {j(Fn) : n ∈ N} is tight.
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Theorem 9. Let {Fk : k ≥ 1} ∈ L1[Ω, Kk(X)] be tight and independent set-valued random
variables such that E[‖Fk‖

p
K] < ∞ for all k where p > 1. Then in the metric MdH , we have the

following convergence:
1
n

n

∑
k=1

Fk −→
1
n

n

∑
k=1

E[coFk] a.e.,

that is

MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

E[coFk], t

)
−→ 1 a.e..

Proof. Step 1. Let Fk : Ω → Kkc(X) be independent set-valued random variables and
E[‖Fk‖

p
K] < ∞ for all k, and j : Kkc(X)→ X be the isometry provided by Theorem 3. Then

{j(Fk) : k ∈ N} are independent X -valued random elements and

E[‖j(Fk)‖
p
X ] = E[‖j(Fk)− j(0)‖p

X ]

= E[dp
H(Fk, 0)]

= E[‖Fk‖
p
K]

< ∞.

By Lemma 4, we know that {j(Fk) : k ≥ 1} in X is tight. By a standard SLLN in
Banach space (cf. [36], Theorem 2), it follows that∥∥∥ 1

n

n

∑
k=1

j(Fk)−
1
n

n

∑
k=1

E[j(Fk)]
∥∥∥ −→ 0 a.e. (4)

Since

E[j(Fk)] = j(E[Fk]),

j

(
1
n

n

∑
k=1

Fk

)
=

1
n

n

∑
k=1

j(Fk)

then by (4) and Theorem 2, for t > 0,

Md

(
j
( 1

n

n

∑
k=1

Fk

)
, j
( 1

n

n

∑
k=1

E[Fk]
)

, t

)
= Md

(
1
n

n

∑
k=1

j(Fk),
1
n

n

∑
k=1

E
[

j(Fk)
]
, t

)
→ 1 a.e.

It follows from the embedding theorem (j is isometric isomorphic mapping) that

MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

E[Fk],
t
2

)
−→ 1 a.e.

Step 2. Consider the general case. Let Fk ∈ L1[Ω, Kk(X)], so {coFk : k ∈ N} is
independent and satisfies

E[‖coFk‖
p
K] ≤ E[‖Fk‖

p
K] < ∞, p > 1.

It follows from step 1 that

MdH

(
1
n

n

∑
k=1

coFk,
1
n

n

∑
k=1

E[coFk],
t
2

)
−→ 1 a.e. (5)

and by Theorem 7 we can have
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MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

coFk,
t
2

)
≥ min

1≤k≤n
MdH

(
coFk

n
, {0}, t

2
√

p

)
(6)

= min
1≤k≤n

MdH

(
coFk, {0}, nt

2
√

p

)
−→ 1 a.e., as n→ ∞.

Finally, from the triangle inequality (Definition 2 (4)), it follows that

MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

E[coFk], t

)
≥MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

coFk,
t
2

)
∗

MdH

(
1
n

n

∑
k=1

coFk,
1
n

n

∑
k=1

E[coFk],
t
2

)

According to (5) and (6), the right terms above tend to 1 when n→ ∞. Then we have

MdH

(
1
n

n

∑
k=1

Fk,
1
n

n

∑
k=1

E[coFk], t

)
−→ 1 a.e.

The proof is complete.

Next, we shall give two examples.

Example 1. In order to provide a more intuitive understanding of fuzzy metric, we give a practical
example. Compare the close degree of return rate between stock A1 and stock A2 on a certain day,
and measure it by fuzzy metric. As the stock price is changing in a day, we select three time points
to record and give their return rates as follows:

A1 = {0.11 0.09 0.13}; A2 = {0.12 0.11 0.15}

so dH(A1, A2) = 0.06. Take MdH (Ai, Aj, t) = t
t+dH(Ai ,Aj)

. For t = 0.08, MdH (A1, A2, t) =

0.57; for t = 2, MdH (A1, A2, t) = 0.97. We can say that at the scale t = 2, A1 and A2 are
extremely close. But at the scale t = 0.08, the degree of closeness is only 0.57.

Example 2. We can use an interval-valued [a, b] to describe the price of a stock in a day, where a
and b are the minimal price and maximal price, respectively. Assume we get the interval-valued
data F1, F2, · · · ; they satisfy the conditions of Theorem 8; then at different level t(t can be thought

of as a different evaluation scale), we consider the distance between the average 1
n

n
∑

i=1
Fi and the

population mean. Take

MdH (Fi, Fj, t) =
t

t + dH(Fi, Fi)
.

Then by Theorem 8, we can get the convergence.
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