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Abstract: Processes are everywhere, covering disparate fields such as business, industry, telecom-
munications, and healthcare. They have previously been analyzed and modelled with the aim of
improving understanding and efficiency as well as predicting future events and outcomes. In recent
years, process mining has appeared with the aim of uncovering, observing, and improving processes,
often based on data obtained from logs. This typically requires task identification, predicting future
pathways, or identifying anomalies. We here concentrate on using Markov processes to assess com-
pliance with completion targets or, inversely, we can determine appropriate targets for satisfactory
performance. Previous work is extended to processes where there are a number of possible exit
options, with potentially different target completion times. In particular, we look at distributions of
the number of patients failing to meet targets, through time. The formulae are illustrated using data
from a stroke patient unit, where there are multiple discharge destinations for patients, namely death,
private nursing home, or the patient’s own home, where different discharge destinations may require
disparate targets. Key performance indicators (KPIs) of this sort are commonplace in healthcare,
business, and industrial processes. Markov models, or their extensions, have an important role to
play in this work where the approach can be extended to include more expressive assumptions, with
the aim of assessing compliance in complex scenarios.

Keywords: process mining; process modelling; phase-type models; process target compliance

1. Introduction

Processes are widespread, encompassing disparate areas such as business, production,
telecommunications, and healthcare. They have previously been analyzed and modelled
with the aim of improving understanding and efficiency as well as predicting future events
and outcomes. With the burgeoning capability of IT systems to collect, process, store, and
exchange data, and the upsurge of suitable technologies for Big Data, recently, process
mining has appeared, providing a bridge between data mining and process modelling [1].
Process mining provides an opportunity and framework for service design and improve-
ment, as well as a scientific rationale for decision-making. In general, we consider processes
comprising several tasks each with start and end times and associated durations. A process
instance completes these tasks according to the logic and rules prevailing in the real-world
setting. The process data features mainly consist of data such as duration, customer id, etc.,
and are held in log files. Hence, such log files provide an automated time-stamped record
of tasks performed during the execution of a given process.

Consequently, process mining may include discovering the tasks and trajectories that
comprise the process, predicting trajectories, or identifying anomalies. Such activities can
employ traditional methods for data mining such as classification, clustering, regression, as-
sociation rules, sequence mining, or deep learning. However, model-based approaches can
also provide opportunities for incorporating structural process knowledge into the analysis,
thereby facilitating improved understanding and prediction. As such, process mining can
be employed in diverse areas, such as manufacturing [2], telecommunications [3], financial
processing, and healthcare [4].
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A mathematical model is often used as a simplified version of a process, where
simulation uses the model to imitate the behaviour of the process, without interfering
with the actual process [5]. Correctness, conformance, and performance are some of the
most important problems for complex processes, where models have often been used to
resolve such issues. Performance analysis typically focuses on the dynamic behaviour of
the process, based on metrics such as response time, uptime, or output. Our emphasis here
is on measuring if a process meets its targets. For example, a business process might have
order completion targets to meet, and an accident and emergency department could have
discharge targets, while service-level agreements (SLAs) are commonly used to characterize
cloud performance targets.

(Stochastic) process algebras have been implemented in formal languages to describe
a system model. For example, Petri nets [6] were introduced by Carl Adam Petri in 1962 to
characterize and analyze concurrent systems. They are based on mathematical specification
alongside a mathematical theory for interpretation and analysis. For example, Petri nets
have been used for workflow modelling [7]. In addition, stochastic Petri nets [8], including
queueing Petri nets, have been developed.

A Markov model is a type of probabilistic process model that can describe such systems
where it is assumed that the Markov property is followed, i.e., future states only depend
on present states, and not additionally on previous ones. This enables both individual
probabilistic predictive modelling [9] and group forecasting for individuals moving through
a process [10]. Higher-order Markov models may alternatively be employed if the Markov
assumption is not appropriate. In addition, continuous-time Markov chains (CTMCs)
are commonly used where the Markov property translates into exponentially distributed
durations. Such models can be used to find “interesting” (in)frequent pathways [11].

In this paper, we extend our previous initial work on using Markov models to predict
process target compliance [12]. Several formulae are obtained and used for a process
concerning stroke patient pathways achieving targets for the duration of hospitalization
and subsequent discharge to different types of community care. In what follows, we
formulate the problem for a general phase-type Markov model, where previously we
focus on Coxian models. We also extend the work to situations where there are multiple
absorbing (discharge) states and also for groups of individuals (e.g., patients) moving
through the system towards discharge targets.

2. Background

Markov models have been used to represent various types of process applications,
including call centres [13], sensor networks [14], telecommunications [15], production
modelling [16] and healthcare [10]. Phase-type models are a special case of a Markov
model where there are transient states (or phases) and, typically, a single absorbing state
where generally the interest is in duration of stay in the set of transient states. In healthcare,
we typically have some hospital states followed by one, or more, absorbing states in the
community. These models can be used to predict individual patient movements or to
predict future resource requirements or costs for groups of patients [17]. They facilitate
conceptualization of flows, e.g., for hospital patients, through testing, diagnosis, treatment,
and rehabilitation. Such phase-type distributions (PHDs) can be utilized to describe
duration in a group of states where the PHD represents the time from admission to the
transient states until absorption into the absorbing state. In particular, Coxian phase-type
distributions (C-PHDs) are a useful special case where a process always starts in the first
transient state and can never return to a state once it has left it. Transition from a transient
state to the absorbing state is also allowed (Figure 1). Such PHDs provide a simple model
for a key performance indicator (KPI) such as length of stay in the transient states, e.g.,
duration of a particular activity, or from order placement to delivery. Parameter estimation
for PHDs is also typically straightforward [9]. In general, phase-type models (PHDs) are
well suited to a range of situations, including healthcare [18–21], community care [22],
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accident and emergency [23], and activity recognition [24]. They are also understandable
as we can conceptualize a patient or customer as moving through the phases.
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In addition, PHDs have the following advantages: (i) their mathematical simplicity;
(ii) parsimonious parameterization; (iii) flexibility in terms of fitting different shapes of dis-
tribution; and (iv) ease of migration to more complex settings, either using a mathematical
or simulation approach.

In the current paper, as in our previous work, e.g., [25,26], we include covariates,
or additional features, into the model by allowing the initial and transition probabilities
to depend explicitly on these covariates. The specific functional form of these covariate
models will be described in the next section.

3. Phase-Type Models
3.1. The Basic Phase-Type Model

As in [5,12], we use here a phase-type Markov process model. This representation of a
process by a Markov, or more specifically, a phase-type model allows us to incorporate vari-
ability into process tasks, thus facilitating implementation and adaptation. As discussed,
the phase-type model provides a useful way of describing process duration and also has
other advantages, such as computational efficiency.

We begin by defining k transient phases S1, . . . , Sk, with phase Sk+1 being the only
absorbing state. Writing the initial vector as: α = (α1, . . . αk), where αi is the probability of
entry to phase Si for i = 1, . . . , k, we obtain the probability density function (p.d.f.) of the
distribution of duration until transition to the absorbing state as:

f (x) = α exp (Tx)tA, (1)

where T = {tij} is the k × k generator matrix for the transition rates between the transient
states and i = 1, . . . , k, j = 1, . . . , k. Here, tA is the column vector of transition rates from
the transient states to the absorbing state and tA = −T1 where 1 is a column vector of 1’s,
pointing to the fact that the row sums of the generator matrix are zero.

Integrating the p.d.f., we obtain the cumulative distribution function (c.d.f.) as

FX(y; α, T) = 1− α exp (Ty)1; y ≥ 0. (2)

which describes the probability of meeting a given duration target y for length of stay in
the transient states. Similarly, the probability of missing a duration target y is given by

Fx(y; α, T) = α exp (Ty)1; y ≥ 0. (3)

We note that the inverse problem of ascertaining an appropriate duration target, given
a required percentage compliance, can be obtained from Equation (3) by solving to find
y for a given F. Here F can be a service-level agreement in a management or industrial
context. So, for example, we may require that 95% of tasks are completed within a given
target duration in the transient states. Although we cannot solve Equation (3) explicitly for
y, we can a use a numerical solution, such as Newton–Raphson, where the estimate of y is
given at the (n + 1)th iteration by

yn+1 = yn − F(yn)/F′(yn), (4)
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where F′(yn) = α exp(Tyn)T1.
In this way, we can not only characterize the relative likelihoods of compliance and

non-compliance with a target but also consider the most likely state trajectories. Using
the approach of [26], we determine the conditional probability of meeting (or otherwise) a
target of duration y given that an amount of time d has already passed. This probability is
given by

FX|X>d(y; α, T) = 1− α exp (Ty)1
α exp (Td)1

; y ≥ d, (5)

which represents the probability of meeting a given target y. Also, the probability of
missing a target y is given by

FX|X>d(y; α, T) =
α exp (Ty)1
α exp (Td)1

; y ≥ d. (6)

In a similar manner, conditional means can be calculated by integrating the conditional
densities, as previously discussed in McClean et al. [12].

3.2. Multiple Absorbing States with Different Targets

To date, we have assumed that the target for absorption will be the same, irrespective
of the initial state. While this may be the case in many situations, it is clearly not always
the case. For example, for stroke patients, as we will discuss in our case study, the three
initial states are (1) haemorrhagic stroke, (2) cerebral infarction stroke, and (3) transitory
ischaemic attack (TIA). However, in this example, the anticipated length of stay in hospital
depends on the type of stroke, with haemorrhagic stroke being more severe than cerebral
infarction and cerebral infarction being more severe than TIA. In addition, the expected
length of stay will vary with the discharge destination, with more severe strokes leading to
destinations which require community settings which provide more support for the patient.
This observation underpins our model, where we assume that the patients progress from
one transient state (phase) to another less severe one. It is therefore likely that, for such
situations, the individual targets will differ across initial phases. So, for the stroke patient
example, we might expect the target for haemorrhagic patients to be greater than that of
cerebral infarction patients and the target for cerebral infarction patients should be larger
than that for TIA patients, corresponding to greater stroke severity generally requiring
longer hospitalization.

Previously, we extended this model to incorporate the occurrence of multiple absorb-
ing states into the phase-type model [26], as follows.

The infinitesimal generator matrix Q is given by

Q(x) =
(

T(x) tA(x)
0AT 0AA

)
. (7)

Here T = {tij} is a k × k matrix of transition rates between the k transient states, given by

T(x) =

 −Λ1(x) · · · λ1k(x)
...

. . .
...

0 · · · −Λk(x)

, (8)

where Λi(x) = ∑k
j=2 λij(x) + ∑m

j=1 µij(x).
Here we allow the transition rates to depend on covariates x = {xi}; for example, for

stroke patients these could be age and gender, where the µij(x) terms represent transition
rates from transient state Si to absorbing state Sj for i = 1, . . . , k and j = 1, . . . , m, and
m represents the number of absorbing states. The k × m matrix tA is then given by
tA = {µij(x)}.
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Finally, 0AT and 0AA are zero matrices of suitable dimensions and 0 is a zero column
vector. These elements satisfy the conditions tii < 0 for I = 1, . . . , k and tij ≥ 0 for i = 1,
. . . , k; for j = 1, . . . m. Also, T and tA satisfy tA1m = −T1k where 1m is an m-dimensional
column vector of ones.

In a similar way to Equation (1) we obtain f (t) = {fi(t)} where fi(t) is the unconditional
(degenerate) p.d.f. of the time spent in the transient states prior to discharge to absorbing
state Sk+i for i = 1, . . . , m, and

f(t) = α exp (Tt)tA (9)

The probability of meeting target τi for absorbing state Sk+i is therefore given by

Mi(τi; α, T) =
∫ τi

0
α exp(Ty)tA Iidy; y ≥ 0, i = 1, . . . , m, (10)

where Ii is an m-dimensional column vector with 1 in the ith position and zeros elsewhere;
tA Ii is therefore the ith column of tA.

Integrating this expression, we obtain

Mi(τi; α, T) =
{

α exp(Tτi)T−1tA Ii − α T−1tA Ii
}

= α (I− exp(Tτi))
(
−T−1)tA Ii i = 1, . . . , m.

(11)

Here, when the targets are equal across all absorbing states, i.e., τi = τ ∀ i, the total
probability of meeting the target is ∑m

i=1 Mi(τ; α, T) = α exp (Tτ)1, as for Equation (3).
We note that these formulae, for the probability of meeting targets when there are

multiple “risks”, are related to those used in epidemiology for cumulative incidence,
e.g., [27].

We can also obtain the conditional probability of meeting the target τi for the absorbing
state Sk+i, given eventual absorption is to this state, which is given by

Li(τi; α, T) =
{

α (I− exp(Tτi))
(
−T−1

)
tA Ii

}
/
{

α
(
−T−1

)
tA Ii

}
i = 1, . . . , m. (12)

This expression is useful in terms of allowing us to determine the profile of different
groups of patients characterized by their final destination and quantifying how likely
they are to meet the given possible targets with regard to duration in the transient states.
While our previous expressions are more geared towards making and meeting targets for
individuals, Equation (12) allows us to move towards thinking about cohorts of individuals
meeting overall targets for the system of transient states. For example, in the stroke patient
situation we explore below, the performance of a stroke unit in terms of meeting hospital
targets can be measured in terms of the different discharge destinations (absorbing states),
namely death, private nursing home and own homes. Mathematically, this is achieved
through the entry vector α, which here represents an overall probability distribution
across the different types of stroke. We now focus further on such population models for
setting targets.

3.3. Poisson Arrivals

So far, we have considered individual movements through the transient states, with
eventual absorption into one of a number of possible exit states. Our focus here has thus
been on providing expressions for target achievement. However, for such processes, there
is often an interest in characterizing the movements of a number of individuals moving
through the system in parallel where, for example, we may want to characterize and/or
predict the numbers of individuals attaining a target in a given time interval. As such, our
focus now shifts to a Markov system; for further details of such systems and a discussion
of various possible extensions, see, for example, [28].

We consider a situation where new arrivals to the Markov process occur according
to a Poisson process, rate ω where we have an initial probability vector α, k transient
states, and one absorbing state, as before. We are interested in determining the probability
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distribution of the number of individuals arriving in time interval (0, ∞) who fail to meet a
fixed target d.

Let M(t) be the number of individuals who arrive in (0, t) according to a Poisson
process, rate ω, and fail to comply. Each of these individuals fails to comply with probability
Φ where Φ = α exp{Td} 1k, using Equation (3). Then, the distribution of N(t), the total
number of arrivals in (0, d), is Poisson (ωd) and the distribution of M(d) is a compound
distribution, consisting of a binomial choice from a Poisson number of failures.

The probability generating function (p.g.f.) of a r.v. N~Poisson(ωt) is given by EN[zN]
= G(z) = exp(ωd (z − 1)), and the p.g.f. of a random variable (r.v.) M~Binomial (N, p)
is EM[zM] = G(z) = (q + pz)M, where q = 1 − p. The p.g.f. of the required compound
distribution is therefore

HM(z) = EN

[
EM

[
zM
∣∣∣N]] = G(F(z)) = exp{ ω d ((1−Φ) + Φz)− 1)} = exp{ ω d Φ(z− 1)}. (13)

So, the number of failures who comply with target d from individuals arriving in (0, t)
is a Poisson with mean (and variance):

ωt α exp{Td} 1k. (14)

Similarly to the situation considered previously, where we have m absorbing states, we
again have a compound distribution of a Poisson (arrival) rate ω and a binomial (transition
to absorbing state i after duration di). Then, integrating Equation (12) we obtain the result
that the number of individuals arriving in (0, t) who meet target di for absorbing state Sk+i
is a Poisson with mean (and variance):

ωt
{

α (I− exp(Tτi))
(
−T−1

)
tA Ii

}
, (15)

where Ii is an m-dimensional column vector with 1 in the ith position, as before.
Based on this result, we can understand and predict the variability of numbers of

individuals moving through the transient states in terms of their likelihood of meeting
targets. The mathematical development in this section suggests that such variability is
likely to be high and increase with time. This further highlights the importance of setting
achievable targets.

4. Results
4.1. The Stroke Care Case Study

In practice, it is often the case that a number of absorbing states are possible, with
possibly different targets. Previously, we have discussed phase-type models which contain
multiple absorbing states [5,26]. We now apply our model to such a situation involving
stroke patients using data spreading over 5 years. Here, we have described a phase-type
model with four transient states corresponding to different types of stroke with contrasting
severity and related admission probabilities for differing stroke severity. The data contain
three types of stroke: haemorrhagic (the most severe, caused by bleeding in the brain),
cerebral infarction (less severe, due to blood clots), and transient ischaemic attack or TIA
(the least severe, a minor stroke caused by a small clot). Following hospitalization, there are
three possible discharge destinations: (1) following the patient’s death, (2) with a discharge
to a private nursing home, and (3) with a discharge to the patient’s own home. These
different situations can be described by defining the exit matrix tA as

tA =


µ1 ν1 ρ1
µ2 ν2 ρ2
µ3 ν3 ρ3
µ4 ν4 ρ4

 (16)
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For this special case of tA, each column relates to a different hospital discharge event,
while the rows correspond to the transient phases of hospitalization [26].

In this study, data were collected over a 5-year period, on admission date, discharge
date, diagnosis on admission, and discharge destination, alongside other covariates, such
as age on admission and gender. The transition rates of the model may depend upon the
age and stroke type of the patient, or may not depend on age [5]. We note in passing that the
Poisson admission assumption was previously tested using chi-square and Kolmogorov–
Smirnov tests and shown to be acceptable for our Belfast City Hospital stroke patient
data [5].

So far, we have not discussed the possibility of covariates playing a significant role
in the Markov model. However, as is often the case, for the stroke patient case we have
additional covariates, namely age and gender. In our previous work, we determined that
while gender does not have a significant effect, age does and has therefore been included
in the model, as follows. Other covariates were not available for this dataset but, in general,
the results of tests or diagnostics might be relevant covariates.

For i = 1, 2, let λi(x) be the transition intensity from phase Si to phase Si+1 for a patient
of age x, where λi(x) = exp(γi + βi x). Also, p(x) is the probability that a TIA patient aged
x enters phase S4 upon admission to hospital, representing the least severe type of stroke.
Consequently, a more severe TIA patient starts in phase S3 with probability 1 − p(x). We
assume that p(x) = exp{−exp(θ0 + θ1 x)}. The exponential functions here used in modelling
λi(x) and (x) are standard representations, which constrain the probability values to the
required ranges. Such functions are found in the literature for log link and complementary
log–log link functions for generalized linear models, e.g., [29]. As seen in Figure 2, it is
assumed that µ4 = ν4 = 0, representing the fact that patients with a minor TIA (S4) are
always discharged to their own home. Similarly, for the other transitions from the transient
phases (S1, S2, and S3) to each absorbing state, we assume that ν1 = p1 = 0. We note that
transitions absent in Figure 2, and corresponding zero parameters, have been found by
statistical testing based on likelihood ratio tests; for further details, see [26].
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4.2. Findings

The following findings are based on model parameter values as described in [26].
These were estimated using a 5-year retrospective dataset consisting of 1985 patients.
Figure 3 presents the cumulative probability of discharge from hospital by age for (a) haem-
orrhagic stroke, (b) cerebral infarction, and (c) TIA. The 95% compliance is also presented
in these plots to make it easier to evaluate the compliance target, in days, for a commonly
used compliance probability. In all three plots, we can see that the older the patient, the
longer the stay in hospital and the less likely patients are to comply with a given target, as
expected. Here, we see that, for a given compliance probability, the haemorrhagic patients
typically spend much longer in hospital and, similarly, TIA patients spend much shorter
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periods in hospitals, so a lower target would be appropriate for them. This is as we would
anticipate, with more serious, or more infirm, patients staying longer in hospital. Patients
with cerebral infarction are intermediate, in this regard, as we would expect.
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Figure 3. Cumulative probability of discharge from hospital by age for (a) haemorrhagic stroke, (b) cerebral infarction, and
(c) TIA.

In Figure 4 we present the duration of stay in hospital by age for compliance with
different targets for (a) haemorrhagic stroke, (b) cerebral infarction, and (c) TIA. We see
from the plots that, as before, the more serious the stroke, the longer the patients need
to be allocated to reach a given target, as prolonged rehabilitation is needed for such
patients to move through the different treatment and recovery phases before discharge.
Moreover, as the targets become more severe, they become increasingly harder to achieve,
for all patients.
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infarction, and (c) TIA.

In Figure 4 we present the duration of stay in hospital by age for compliance with
different targets for (a) haemorrhagic stroke, (b) cerebral infarction, and (c) TIA. We see
from the plots that, as before, the more serious the stroke, the longer the patients need to
be given to reach a given target, as a longer period of rehabilitation is required for these
patients to move through the treatment and recovery phases prior to discharge. Also, as the
targets become more severe, they become increasingly harder to achieve, for all patients.

Figure 5 presents cumulative conditional probability of discharge from hospital by
age conditional on eventual discharge to (a) death, (b) private nursing home, and (c) own
home. We note that the admission vector here is across the population of stroke patients
from all types of stroke, as we are thinking in terms of setting targets for the stroke unit
rather than individual patients, as before. As we can see, these profiles are quite different
across discharge distributions, highlighting the importance of different targets for private
nursing homes and own homes. We have presented the graph for deaths in hospital as
well for interest, although a target would be inappropriate here. Looking at the plots, we
see that the longest durations are for patients who are discharged to their own home. The
shortest are those who die in hospital, while those discharged to private nursing home
are intermediate. This is reasonable as the patients who die in hospital are mainly very
ill when they are admitted, while patients who are discharged to private nursing home
are also quite ill and need a lot of rehabilitation before discharge. The patients who die
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do not display much variation between age groups, while older patients discharged to
their home require longer periods in hospital than younger such patients, as they probably
require more rehabilitation than younger patients. It is interesting that this age effect is
reversed in patients discharged to private nursing homes, possibly because more time is
spent trying unsuccessfully to rehabilitate them to a stage when they might manage at
home, with a package.
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5. Discussion

In our stroke patient example, Markov models can be used to describe the stroke
patient care system using well-known clinical pathways, which integrate hospital and
community services to provide ways of characterizing services, evaluating planned trans-
formations, and predicting resourcing needs for future situations. Our previous paper [26]
developed approaches to utilize routinely available discharge data to characterize patient
admission patterns, movements through care, and release to suitable destinations. Such an
approach can assist performance modelling, bed occupancy analysis, capacity planning,
and patient destination prediction across different sectors of the patient care system. By
using such an approach, we can compare different options and identify optimal policies.
We note that stroke patient care provides an important paradigm example for healthcare
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processes generally, as there are numerous other specialties that encompass hospital and
community services. Overall consumption of hospital resources and compliance with
related targets are KPIs for healthcare services, and tools are thus needed to assess the
effect of policies and their impact on patient hospitalization targets.

6. Conclusions

This paper described how process mining can provide suitable data from suitable
datasets to populate phase-type models, which can then be used to quantify compliance
with process targets or identify suitable targets given a required compliance percentage We
described an example that uses phase-type models to describe stroke patient hospitalization
and discharge, where there are multiple discharge destinations. Based on this use-case,
various options have been investigated, with an emphasis on measuring target compliance;
such performance indicators are frequently used in healthcare settings as well as in business
and industrial environments. Multiple absorbing states quite commonly occur in such
application domains. For example, there is an extensive literature on using Markov
models for breast cancer patients where multiple absorbing states may come from different
outcomes or using stratification to represent different characteristics of the patients [30].

Our current approach is part of initial efforts towards developing integrated process
models, with the aim of supporting integrated management, planning, and resourcing. An
important aspect of extending our framework, as described, is that it allows us to find the
probability distribution of target compliance for multiple absorbing states and use Poisson
processes to model arrivals; costs can also be associated with various parts of the system.

The approach is likely to be pertinent to business processes generally where phase-type
models should have an important role to play.
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