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Abstract: A Simple three-node Discrete Kirchhoff Triangular (SDKT) plate bending element is
proposed in this study to overcome some inherent difficulties and provide efficient and dependable
solutions in engineering practice for thin plate structure analyses. Different from the popular DKT
(Discrete Kirchhoff Theory) triangular element, using the compatible trial function for the transverse
displacement along the element sides, the construction of the present SDKT element is based on a
specially designed trial function for the transverse displacement over the element, which satisfies
interpolation conditions for the transverse displacements and the rotations at the three corner nodes.
Numerical investigations of thin plate structures were conducted, using the proposed SDKT element.
The results were compared with those by other prevalent plate elements, including the analytical
solutions. It was shown that the present element has the simplest explicit expression of the nine-DOF
(Degree of Freedom) triangular plate bending elements currently available that can pass the patch
test. The numerical examples indicate that the present element has a good convergence rate and
possesses high precision.

Keywords: triangular element; thin plate; patch test; Discrete Kirchhoff Theory; nine Degrees
of Freedom

1. Introduction

Plate and shell structures have played significant roles in mechanical, civil, aerospace and
naval engineering for the past several decades. Much effort has been made to study the
finite elements of plate and shell structures with high performance and simple formu-
lation [1,2]. Researchers have made great efforts to overcome the difficulty of the C1
continuity requirement for the analysis of thin plate structures. A large number of triangu-
lar plate bending elements have been proposed over the past several decades, including the
first compatible triangular element HCT [3], the non-conforming and conforming element
BCIZ [4–6], the very popular discrete Kirchhoff element DKT [7–9], the free formulation
element T3A [10], hybrid/mixed elements [11–14], generalized conforming elements [15]
and the C1-continuity triangular plate element [16]. Most of these elements possess high
accuracy and versatility and have been successfully applied to linear or nonlinear analyses
of various plate/shell structures [17,18]. In order to overcome the difficulties of the C1
continuity requirement, the Mindlin–Reissner plate theory was proposed for thin and
thick plates [19,20], which only required C0 continuity for the displacement functions of
the element. However, due to the so-called shear locking phenomenon, these Mindlin–
Reissner plate elements usually led to poor results for the analysis of thin plates [21].
Many efforts have been made to eliminate the shear locking phenomenon, such as the
assumed natural stain approach, the reduced integration approach, mixed/hybrid stress
elements and assumed stress elements. The reduced integration approach was developed
by Zienkiewicz et al. [22] and Pugh et al. [23]. The selective integration method was

Mathematics 2021, 9, 1181. https://doi.org/10.3390/math9111181 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4250-8083
https://www.mdpi.com/article/10.3390/math9111181?type=check_update&version=1
https://doi.org/10.3390/math9111181
https://doi.org/10.3390/math9111181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111181
https://www.mdpi.com/journal/mathematics


Mathematics 2021, 9, 1181 2 of 15

also employed for plate and shell analyses [24,25]. Bathe and Dvorkin [26] proposed the
MITC family, and Nguyen et al. [27] developed the MISC element. Other popular plate
elements also include the assumed stress/strain elements by Lee and Pian [28], Katili [29]
and Brasile [30]; the RDKTM by Chen and Cheung [17]; and the DST family by Batoz and
Katili [31], and Batoz and Lardeur [32]. Most of these elements for thick plates can avoid
the shear locking phenomenon, but they usually need very complicated formulations and,
thus, bring a lot of difficulties and computational cost for the programming of the elements.

Among all of the abovementioned triangular plate bending elements, the most preva-
lent elements are the BCIZ and DKT. The BCIZ element developed by Bazeley et al. [4]
is the simplest of the above-mentioned elements. However, it is well known that the
BCIZ fails to pass the patch test due to its incompatibility. Compatible BCIZ elements
were developed by Razzaque [5] and Cheung and Chen [6], but they are rarely used due
to the complex formulation. The DKT element is one of the most reliable and efficient
plate-bending elements, but the complicated implementation and the complex explicit
expression [8] hinder the widespread use of the DKT element, to a certain extent.

In this paper, a Simple, three-node, Discrete Kirchhoff Triangular (SDKT) plate bend-
ing element is proposed to overcome the abovementioned difficulties of the existing plate
elements and provide efficient and dependable solutions for the analyses with plate el-
ements. It will be shown in the following sections that the SDKT is the simplest of the
nine-DOF triangular plate bending elements currently available that can pass the patch
test, has a good convergence rate and possesses high precision.

2. Displacement Function of the SDKT Element
2.1. Transverse Displacement Function of the Element

In order to start the formulation of the SDKT element, first we consider the triangular
element as shown in Figure 1. In Figure 1a, the triangle with only three corner nodes is used
for interpolation of the transverse displacement over the element; in Figure 1b, the triangle
has six nodes, including three corner nodes and three mid-side nodes, which are used for
interpolation of the rotation over the element.
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Figure 1. Triangular SDKT element: (a) Three-node element for the transverse displacement; (b) 

six-node element for the rotation. 

The trial functions for transverse displacement w, in each element, are assumed as 
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Figure 1. Triangular SDKT element: (a) Three-node element for the transverse displacement; (b) six-
node element for the rotation.

The trial functions for transverse displacement w, in each element, are assumed
as follows:

w =
3

∑
i=1

Li

[
d1i +

1
2
(y− yi)d2i −

1
2
(x− xi)d3i

]
(1)

where Li are the area coordinates of the three-node triangular element in the common finite
element analysis, and d1i, d2i and d3i are the generalized DOFs of the nodes i, xi = (xi, yi)
which are the coordinates of the nodes i. Li can be expressed as follows:

Li =
1

2A
(ai + bix + ciy) (2)
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ai = xjym − xmyj, bi = yj − ym, ci = −xj + xm (3)

where A is the area of the triangular element, and i = 1, 2, 3; j = 2, 3, 1; m = 3, 1, 2.
By using Equation (2), Equation (1) can be rewritten as follows:

w = 1
2A

3
∑

i=1

{
(ai + bix + ciy)

[
d1i +

1
2 (y− yi)d2i − 1

2 (x− xi)d3i

]}
= β1 + β2x + β3y + β4xy + β5x2 + β6y2

(4)

where

β1 = 1
2A

3
∑

i=1

(
aid1i +

1
2 aid3ixi − 1

2 aid2iyi

)
β2 = 1

4A

3
∑

i=1
(−aid3i + bid3ixi − bid2iyi + 2bid1i)

β3 = 1
4A

3
∑

i=1
(aid2i + cid3ixi − cid2iyi + 2cid1i)

β4 = 1
4A

3
∑

i=1
(bid2i − cid3i)

β5 = − 1
4A

3
∑

i=1
(bid3i)

β6 = 1
4A

3
∑

i=1
(cid2i)

(5)

Here, we select the following:

d1i = wi = w|x=xi
, d2i = θxi =

∂w
∂y

∣∣∣∣
x=xi

, d3i = θyi = −
∂w
∂x

∣∣∣∣
x=xi

(6)

Substituting Equation (4) into Equation (6), we have the following:

d1i = β1 + β2xi + β3yi + β4xiyi + β5x2
i + β6y2

i
d2i = β3 + β4xi + 2β6yi
d3i = −β2 − β4yi − 2β5xi

(7)

Substituting Equation (7) into Equation (1) and using
3
∑

i=1
Li = 1,

3
∑

i=1
Lixi = x and

3
∑

i=1
Liyi = y, we have the following:

w =
3
∑

i=1
Li[β1 + β2xi + β3yi + β4xiyi + β5x2

i + β6y2
i

+ 1
2 (y− yi)(β3 + β4xi + 2β6yi) +

1
2 (x− xi)(β2 + β4yi + 2β5xi)]

≡ β1 + β2x + β3y + β4xy + β5x2 + β6y2

(8)

From Equations (1), (4), (6) and (8), we can conclude that the following transverse
displacements,

w =
3

∑
i=1

Li

[
wi +

1
2
(y− yi)θxi −

1
2
(x− xi)θyi

]
(9)

satisfy the condition,

wi = w|x=xi
, θxi =

∂w
∂y

∣∣∣∣
x=xi

, θyi = −
∂w
∂x

∣∣∣∣
x=xi

(10)

at the three corner nodes.
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2.2. The Kirchhoff Hypothesis

By using Equation (9), the displacements of the SDKT element are defined as follows:

w =
3
∑

i=1

(
ϕiwi + ϕxiθxi + ϕyiθyi

)
θx =

6
∑

j=1
Njθxj

θy =
6
∑

j=1
Njθyj

(11)

where Nj are the shape functions of the six-node triangular element in Figure 1b.

ϕi = Li, ϕxi =
1
2
(y− yi)Li, ϕyi = −

1
2
(x− xi)Li (12)

Nj =
(
2Lj − 1

)
Lj(j = 1, 2, 3)

N4 = 4L1L2, N5 = 4L2L3, N6 = 4L3L1
(13)

The Kirchhoff hypothesis of the present element is imposed at the following:

(a) The corner nodes in Figure 1a,

θxi =
∂w
∂y

∣∣∣∣
x=xi

, θyi = −
∂w
∂x

∣∣∣∣
x=xi

at nodes i (i = 1, 2, 3) (14)

(b) The mid-side nodes in Figure 1b,

θxk =
∂w
∂y

∣∣∣∣
x=xk

, θyk = −
∂w
∂x

∣∣∣∣
x=xk

at nodes k (k = 4, 5, 6) (15)

The Kirchhoff condition in Equation (14) at the corner nodes is naturally satisfied in
Equation (11) of the transverse displacement function w.

Substituting Equation (11) into Equation (15), we have the following:

θxk =
3
∑

i=1

(
ϕi,ywi + ϕk

xi,yθxi + ϕk
yi,yθyi

)
θyk = −

3
∑

i=1

(
ϕi,xwi + ϕk

xi,xθxi + ϕk
yi,xθyi

)
(k = 4, 5, 6)

(16)

where

ϕi,y = Li,y, ϕk
xi,y = 1

2
[
Li(xk) + (yk − yi)Li,y

]
, ϕk

yi,y = − 1
2 (xk − xi)Li,y

ϕi,x = Li,x, ϕk
xi,x = 1

2 (yk − yi)Li,x, ϕk
yi,x = − 1

2 [Li(xk) + (xk − xi)Li,x]
(17)

2.3. Displacement Function of the Element

Substituting Equation (16) into Equation (11), the surplus parameters θxk and θyk at
the mid-side nodes k (k = 4, 5, 6) in Figure 1b can be finally eliminated:

θx =
3
∑

i=1
Niθxi +

6
∑

k=4
Nkθxk =

3
∑

i=1

(
Riwi + Rxiθxi + Ryiθyi

)
θy =

3
∑

i=1
Niθyi +

6
∑

k=4
Nkθyk =

3
∑

i=1

(
Qiwi + Qxiθxi + Qyiθyi

) (18)
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where

Ri =

(
6
∑

k=4
Nk

)
ϕi,y, Rxi = Ni +

6
∑

k=4

(
Nk ϕk

xi,y

)
, Ryi =

6
∑

k=4

(
Nk ϕk

yi,y

)
Qi = −

(
6
∑

k=4
Nk

)
ϕi,x, Qxi = −

6
∑

k=4

(
Nk ϕk

xi,x

)
, Qyi = Ni −

6
∑

k=4

(
Nk ϕk

yi,x

) (19)

Finally, the displacement trial function of the SDKT element can be expressed as follows:
w
θx
θy

 =
~
Nae =

[ ~
N1

~
N2

~
N3

]
a1
a2
a3

 (20)

where
~
Ni =

 ϕi ϕxi ϕyi
Ri Rxi Ryi
Qi Qxi Qyi

, ai =


wi
θxi
θyi

(i = 1, 2, 3) (21)

where
(
φi, φxi, φyi

)
are defined in Equation (12), and

(
Ri, Rxi, Ryi

)
and

(
Qi, Qxi, Qyi

)
are

defined in Equation (19). We can see that the explicit expression and implementation of the
SDKT element in Equation (20) are much simpler than the existing nine-DOF triangular
plate elements, passing the patch test.

3. Stiffness Matrix of the SDKT Element

By using the displacement function in Equation (20), the stiffness matrix of the SDKT
element for thin plates based on Kirchhoff theory can be written as follows:

Ke =
∫

Ωe
BTDbBdxdy (22)

where
B =

[
B1 B2 B3

]
(23)

Bi =

 Qi,x Qxi,x Qyi,x
−Ri,y −Rxi,y −Ryi,y

Qi,y − Ri,x Qxi,y − Rxi,x Qyi,y − Ryi,x

 (i = 1, 2, 3) (24)

Db = D

 1 ν 0
ν 1 0
0 0 (1− ν)/2

 (25)

where D = Eh3

12(1−υ2)
. E is the elastic modulus, ν is the Poisson’s ratio and h represents the

thickness of the plate.

4. Comparison with the DKT Element
4.1. The Brief Formulation of DKT Element

The derivation and formulation of DKT element can be found in the paper by Batoz,
Bathe and Ho [8]. They are briefly listed here to compare with the above proposed SDKT
element.

As shown in Figure 2, the derivatives of the transverse displacement w of a triangular
plate element around the two independent axes are defined as follows:

θx =
∂w
∂x

, θy =
∂w
∂y

(26)
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The Kirchhoff hypotheses are presented in the following discrete way:

(a) At the corner nodes i,

θxi =
∂w
∂x

∣∣∣∣
x=xi

, θyi =
∂w
∂y

∣∣∣∣
x=xi

(i = 1, 2, 3) (27)

(b) At the mid-side nodes k,

θnk =
1
2
(
θni + θnj

)
θsk =

∂w
∂s

∣∣∣
x=xk

= 1.5
lk

(
wj − wi

)
− 1

4
(
θsi + θsj

)
(k = 4, 5, 6)

(28)

where xi = (xi, yi) are the coordinates of the nodes i; lk represents the length of the
element side ij; s and n indicate the tangent and normal direction of the element side
ij, respectively; and i = 1, 2, 3 and j = 2, 3, 1 when k = 4, 5, 6.

Along the element side ij,{
θsk
θnk

}
=

[
cos αk
− sin αk

sin αk
cos αk

]{
θxk
θyk

}
(k = 4, 5, 6) (29)

The rotations θx and θy are defined as follows:

θx =
6
∑

i=1
Niθxi

θy =
6
∑

i=1
Niθyi

(30)

where
Ni = (2Li − 1)Li(i = 1, 2, 3)
N4 = 4L1L2, N5 = 4L2L3, N6 = 4L3L1

(31)

The expressions of Li are the same as those in Equations (2) and (3).
By using Equations (27) to (30), the displacements of the DKT element are obtained

as follows:

θx =
3
∑

i=1

(
Diwi + Dxiθxi + Dyiθyi

)
θy =

3
∑

i=1

(
Hiwi + Hxiθxi + Hyiθyi

) (32)
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where
D1 = 1.5

(
m6 N6

l6
− m4 N4

l4

)
,

D2 = 1.5
(

m4 N4
l4
− m5 N5

l5

)
,

D3 = 1.5
(

m5 N5
l5
− m6 N6

l6

)
,

Dx1 = N1 + N4
(
0.5n2

4 − 0.25m2
4
)
+ N6

(
0.5n2

6 − 0.25m2
6
)
,

Dx2 = N2 + N4
(
0.5n2

4 − 0.25m2
4
)
+ N5

(
0.5n2

5 − 0.25m2
5
)
,

Dx3 = N3 + N5
(
0.5n2

5 − 0.25m2
5
)
+ N6

(
0.5n2

6 − 0.25m2
6
)
,

Dy1 = −0.75(m4n4N4 + m6n6N6),
Dy2 = −0.75(m4n4N4 + m5n5N5),
Dy3 = −0.75(m5n5N5 + m6n6N6)

(33)

H1 = 1.5
(

n6 N6
l6
− n4 N4

l4

)
,

H2 = 1.5
(

n4 N4
l4
− n5 N5

l5

)
,

H3 = 1.5
(

n5 N5
l5
− n6 N6

l6

)
,

Hx1 = −0.75(m4n4N4 + m6n6N6),
Hx2 = −0.75(m4n4N4 + m5n5N5),
Hx3 = −0.75(m5n5N5 + m6n6N6),
Hy1 = N1 + N4

(
0.5m2

4 − 0.25n2
4
)
+ N6

(
0.5m2

6 − 0.25n2
6
)
,

Hy2 = N2 + N4
(
0.5m2

4 − 0.25n2
4
)
+ N5

(
0.5m2

5 − 0.25n2
5
)
,

Hy3 = N3 + N5
(
0.5m2

5 − 0.25n2
5
)
+ N6

(
0.5m2

6 − 0.25n2
6
)

(34)

and
mk = cos αk, nk = sin αk(k = 4, 5, 6) (35)

The subsequent procedure to obtain the stiffness matrix of DKT element is similar
with that of the SDKT element, as shown in Section 3.

4.2. Some Comments on SDKT Element

In Section 4.1, the formulations of the displacement function of the popular DKT
element are listed very briefly. As compared with those of the SDKT element in Section 2.3,
we can see that the formulations for the proposed SDKT element are much simpler. More-
over, it is very easy and convenient to incorporate the SDKT element in a finite element
program. Numerical examples in the next section will also demonstrate the fine perfor-
mances of this element.

5. Numerical Examples
5.1. Patch Test

For the proposed SDKT element, its stiffness matrix should pass the patch test to
produce dependable results. Here, the patch test suggested by Katili [29], and Batoz and
Katili [31] is employed to check the performance of the current SDKT element.

A plate with an arbitrary mesh is shown in Figure 3. The thickness of the plate is
h = 0.01, and the material properties of the plate are E = 107 and ν = 0.3. The patch test is
performed by enforcing the following boundary conditions:

w = x2 + xy + y2, θx = x + 2y, θy = −(2x + y) (36)
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The numerical results are listed in Table 1, which illustrate that the present SDKT
element passed the patch test, while the BCIZ element failed to pass the patch test.

Table 1. Patch test results of the different plate elements.

Element
Displacement at Node 5 Moment in the Element

w5 θx5 θy5 Mx My Mxy

BCIZ 1.049 1.95 −1.63 No constant moment state
DKT 1.090 1.90 −1.70 −2.381 −2.381 −0.641

SDKT 1.090 1.90 −1.70 −2.381 −2.381 −0.641
Exact 1.090 1.90 −1.70 −2.381 −2.381 −0.641

5.2. Square Plate under Uniform Load

In this example, a simply supported or clamped square plate subjected to uniform
surface load q is considered. The length of the side of the square plate is l, and the thickness
of the plate is h. The assumed material properties are E = 107 and ν = 0.3. Only one quarter
of the plate is modeled due to the double symmetry of the whole problem, which is shown
in Figure 4. Figure 5 illustrates the central deflection of a simply supported and clamped
square plate under uniform load when the mesh is 4 × 4 for one quarter of the plate, using
the SDKT element.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 4. Mesh of one quarter of a square plate (4 × 4). 

  
(a) (b) 

Figure 5. Central deflection for a square plate under uniform load using SDKT element: (a) Simply supported; (b) 

clamped. 

Tables 2 and 3 list the results given by the BCIZ, DKT and SDKT, which are further 

illustrated in Figures 6 and 7 to show the convergence of these elements. It can be seen 

that when a very coarse mesh is used, i.e., 2 × 2 or 4 × 4, the residual error given by the 

SDKT is higher than other elements. However, when a dense mesh is used, such as 16 × 

16 or 32 × 32, which is of acceptable computational cost in practice, the SDKT has almost 

the same accuracy as compared with the other elements. In substantial application, the 

SDKT is more favorable than the other two types of elements since it has a much simpler 

explicit expression and can be more easily incorporated in a finite element program. 

Table 2. Central deflection for a simply supported square plate under uniform load. 

Mesh 
Element (Error) 

BCIZ DKT SDKT 

2 × 2 0.4123 (1.5%) 0.3673 (−9.6%) 0.4509 (11.0%) 

4 × 4 0.4104 (1.0%) 0.3972 (−2.2%) 0.4197 (3.3%) 

8 × 8 0.4087 (0.6%) 0.4040 (−0.5%) 0.4097 (0.9%) 

16 × 16 0.4076 (0.3%) 0.4057 (−0.1%) 0.4071 (0.2%) 

32 × 32 0.4069 (0.2%) 0.4061 (0.0%) 0.4064 (0.0%) 

Exact 0.4062 (×  𝑞𝑙4/100𝐷) 

 

  

Figure 4. Mesh of one quarter of a square plate (4 × 4).



Mathematics 2021, 9, 1181 9 of 15

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 4. Mesh of one quarter of a square plate (4 × 4). 

  
(a) (b) 

Figure 5. Central deflection for a square plate under uniform load using SDKT element: (a) Simply supported; (b) 

clamped. 

Tables 2 and 3 list the results given by the BCIZ, DKT and SDKT, which are further 

illustrated in Figures 6 and 7 to show the convergence of these elements. It can be seen 

that when a very coarse mesh is used, i.e., 2 × 2 or 4 × 4, the residual error given by the 

SDKT is higher than other elements. However, when a dense mesh is used, such as 16 × 

16 or 32 × 32, which is of acceptable computational cost in practice, the SDKT has almost 

the same accuracy as compared with the other elements. In substantial application, the 

SDKT is more favorable than the other two types of elements since it has a much simpler 

explicit expression and can be more easily incorporated in a finite element program. 

Table 2. Central deflection for a simply supported square plate under uniform load. 

Mesh 
Element (Error) 

BCIZ DKT SDKT 

2 × 2 0.4123 (1.5%) 0.3673 (−9.6%) 0.4509 (11.0%) 

4 × 4 0.4104 (1.0%) 0.3972 (−2.2%) 0.4197 (3.3%) 

8 × 8 0.4087 (0.6%) 0.4040 (−0.5%) 0.4097 (0.9%) 

16 × 16 0.4076 (0.3%) 0.4057 (−0.1%) 0.4071 (0.2%) 

32 × 32 0.4069 (0.2%) 0.4061 (0.0%) 0.4064 (0.0%) 

Exact 0.4062 (×  𝑞𝑙4/100𝐷) 

 

  

Figure 5. Central deflection for a square plate under uniform load using SDKT element: (a) Simply supported; (b) clamped.

Tables 2 and 3 list the results given by the BCIZ, DKT and SDKT, which are further
illustrated in Figures 6 and 7 to show the convergence of these elements. It can be seen that
when a very coarse mesh is used, i.e., 2 × 2 or 4 × 4, the residual error given by the SDKT
is higher than other elements. However, when a dense mesh is used, such as 16 × 16 or
32 × 32, which is of acceptable computational cost in practice, the SDKT has almost the
same accuracy as compared with the other elements. In substantial application, the SDKT
is more favorable than the other two types of elements since it has a much simpler explicit
expression and can be more easily incorporated in a finite element program.

Table 2. Central deflection for a simply supported square plate under uniform load.

Mesh
Element (Error)

BCIZ DKT SDKT

2 × 2 0.4123 (1.5%) 0.3673 (−9.6%) 0.4509 (11.0%)
4 × 4 0.4104 (1.0%) 0.3972 (−2.2%) 0.4197 (3.3%)
8 × 8 0.4087 (0.6%) 0.4040 (−0.5%) 0.4097 (0.9%)

16 × 16 0.4076 (0.3%) 0.4057 (−0.1%) 0.4071 (0.2%)
32 × 32 0.4069 (0.2%) 0.4061 (0.0%) 0.4064 (0.0%)
Exact 0.4062

(
×ql4/100D

)
Table 3. Central deflection for a clamped square plate under uniform load.

Mesh
Element (Error)

BCIZ DKT SDKT

2 × 2 0.1270 (0.4%) 0.1212 (−4.2%) 0.1810 (43.1%)
4 × 4 0.1298 (2.6%) 0.1257 (−0.6%) 0.1463 (15.7%)
8 × 8 0.1280 (1.2%) 0.1263 (−0.2%) 0.1324 (4.7%)

16 × 16 0.1272 (0.6%) 0.1265 (0.0%) 0.1281 (1.3%)
32 × 32 0.1268 (0.2%) 0.1265 (0.0%) 0.1269 (0.3%)
Exact 0.1265

(
×ql4/100D

)
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Figure 7. Error of the central deflection for a clamped square plate under uniform load.

5.3. Square Plate under Point Load

In this example, the same plate is used for the analysis, while the plate is loaded by a
point load p at its center. The length of the side of the square plate is l, and the thickness of
the plate is h. The assumed material properties of the plate are E = 107 and ν = 0.3. Only
one quarter of the plate is modeled in the same way as shown in Figure 4 due to its double
symmetry. Figure 8 shows the central deflection of a simply supported and clamped square
plate under center point load when the mesh is 16 × 16 for one quarter of the plate, using
the SDKT element.
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Figure 8. Central deflection for a square plate under center point load using SDKT element: (a) Simply supported;
(b) clamped.

Tables 4 and 5 list the results given by the BCIZ, DKT and SDKT, which are further
illustrated by Figures 9 and 10 to show the convergence of these elements. It can be seen that
when a very coarse mesh is used, the residual error given by the SDKT is higher than other
elements. However, when a dense mesh is used, which is of acceptable computational cost
in practice, the SDKT has almost the same accuracy as compared with the other elements.
All these results indicate the good accuracy and convergence rate of the present SDKT.

Table 4. Central deflection for a simply supported square plate under center point load.

Mesh
Element (Error)

BCIZ DKT SDKT

2 × 2 1.3715 (18.2%) 1.2820 (10.5%) 1.5929 (37.3%)
4 × 4 1.2418 (7.1%) 1.1993 (3.4%) 1.3010 (12.2%)
8 × 8 1.1927 (2.8%) 1.1719 (1.0%) 1.2031 (3.7%)

16 × 16 1.1734 (1.2%) 1.1635 (0.3%) 1.1728 (1.1%)
32 × 32 1.1657 (0.5%) 1.1611 (0.1%) 1.1637 (0.3%)
Exact 1.160

(
×pl2/100D

)
Table 5. Central deflection for a clamped square plate under center point load.

Mesh
Element (Error)

BCIZ DKT SDKT

2 × 2 0.6531 (16.4%) 0.6342 (13.0%) 0.9275 (65.3%)
4 × 4 0.6118 (9.0%) 0.5905 (5.2%) 0.6939 (23.6%)
8 × 8 0.5829 (3.9%) 0.5706 (1.7%) 0.6038 (7.6%)

16 × 16 0.5703 (1.6%) 0.5640 (0.5%) 0.5740 (2.3%)
32 × 32 0.5650 (0.7%) 0.5620 (0.1%) 0.5649 (0.7%)
Exact 0.5612

(
×pl2/100D

)
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5.4. Circular Plate under Uniform Load

In this example, a clamped circular plate subjected to uniformly distributed load q is
studied. The thickness of the plate is h = 1, and radius of the plate is r = 100. The material
properties of the plate are E = 107 and ν = 0.3. Only one quarter of the plate is discretized
as shown in Figure 11 due to the double symmetry property. Overall, dependable results
are obtained for this problem with the SDKT element, as listed in Table 6 and shown in
Figure 12.
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Table 6. Central deflection for a clamped circular plate under uniform load.

Number of Nodes
Element (Error)

BCIZ DKT SDKT

25 0.01619 (3.6%) 0.01613 (3.2%) 0.01933 (23.7%)
81 0.01581 (1.2%) 0.01576 (0.8%) 0.01655 (5.9%)

289 0.01570 (0.4%) 0.01566 (0.2%) 0.01586 (1.5%)
1089 0.01566 (0.2%) 0.01563 (0.0%) 0.01568 (0.3%)
Exact 0.01563

(
×qR4/100D

)
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6. Conclusions

In this paper, a new SDKT element is proposed for the analysis of thin plate structures,
based on a specially designed trial function for the transverse displacement and the Discrete
Kirchhoff Theory. The present SDKT element is a nine-DOF triangular plate bending
element with very simple explicit expression, which can be easily incorporated in a finite
element program. It is believed to be the simplest nine-DOF triangular plate bending
element currently available that can pass the patch test. The formulations of the present
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SDKT element are compared with those of the DKT element to show its simplicity in
formulation. In the numerical examples, the results by the SDKT element are also compared
with the analytical solutions and results by other popular plate elements, demonstrating
the overall good performance of the SDKT element.

The SDKT element proposed in this paper is a nine-DOF triangular plate bending
element, which does not take the influence of the transverse shear deformation into account,
so the present element can only be applied to thin plate structures, currently. To consider
the influence of the transverse shear deformation, the displacement function of the plate
element should be further studied and improved; shear-deformable plate elements are
needed for thick to very thin plates, which will be our research topic in the future.
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