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1. Introduction

Azam et al. [1] introduced the concept of complex-valued metric spaces and studied
some fixed point theorems for mappings satisfying a rational inequality.

Two years later, in [2], Rao et al. discussed for the first time the idea of complex-valued
b-metric spaces.

In 2017, Dhivya and Marudai [3] introduced the concept of complex partial metric
space and suggested a plan to expand the results, as well as proving common fixed-point
theorems under the rational expression contraction condition. This idea has been followed
by Gunaseelan [4], who introduced the concept of complex partial b-metric spaces and
discussed some results of fixed-point theory for self-mappings in these new spaces.

In [5], Prakasam and Gunaseelan proved the existence and uniqueness of a common
fixed-point (with an illustrative example) theorem using CLR and E.A. properties in
complex partial b-metric spaces. Their proved results generalize and extend some of the
well-known results in the literature.

In [6], Gunaseelan et al. proved a fixed-point theorem in complex partial b-metric
spaces under a contraction mapping. They also gave some applications of their main results.

In this paper, we prove some common fixed-point theorems on complex partial
metric space.

2. Preliminaries

Let € be the set of complex numbers and 11, T2, 73 € €. Define a partial order < on €
as follows:

() if and Ol’lly if R(Tl) < R(Tz), I(Tl) < I(Tz).

Consequently, one can infer that 71 < 1, if one of the following conditions is satisfied:
i) Rm)=R(wm),I(n) <I(n),
(i) R(m) <R(wm),Z(n)=I(n),
(iii) R(Tl) < R(Tz), I(Tl) < I(Tz),
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(iv) R(n)=R(m),Z(n1)=Z(m).

In particular, we write 7y 3 12 if Ty # T, and one of (i), (ii) and (iii) is satisfied and
we write 71 < T if only (iii) is satisfied. Notice that
(@) If0 =7 3 1, then|n| < |1,
(b) Ifn 2 mand » < 13, then g < 13,
() Ify,yeRandy <7, thenyt <Xy forall0 X 1y € C.

Here €1 (= {(X,9)|X,p € R4 }) and Ry (= {X € R|R > 0}) denote the set of non-
negative complex numbers and the set of non negative real numbers, respectively.

Now, let us recall some basic concepts and notations that will be used below.

Definition 1 ([3]). A complex partial metric on a non-void set G is a function o : G X G — CT
such that forall 9, w, ¢ € G:
(i) 0=0u(0,0) = 0,4(0, w)(small self-distances)
(i) 04(0,0) = 0u(c0, 0) (symmetry)
(iii)  0e(0,0) = 0p(0, w) = 0cp(w, w) if and only if 6 = w(equality)
(iv) (0, w) = 0ep(0,8) + 0cp (9, w) — 0cp (8, 8) (triangularity).
A complex partial metric space is a pair (G, 0o such that G is a non-void set and oy is the
complex partial metric on G.

Definition 2 ([3]). Let (G, p.p) be a complex partial metric space. Let {6, } be any sequence in

G. Then

(i) The sequence {6y} is said to converge to 0, if limy,_co cp(0n,0) = pcp(6,0).

(i)  The sequence {6y} is said to be a Cauchy sequence in (G, pp) if
limy, im—sc0 ©cb (On, Om ) exists and is finite.

(iii) (G, pep) is said to be a complete complex partial metric space if for every Cauchy sequence
{6, } in G there exists 0 € G such that
Limy,im— 00 ©ct (On, Om) = limy 00 9 (01, 0) = pcp(8,0).

(iv) A mapping I1: G — G is said to be continuous at 6y € G if for every € > 0, there exists
0 > 0 such that TI(By, , (6p,6)) C By, (I1(6, €)).

Definition 3 ([3]). Let I1 and Y be self~mappings of non-void set G. A point R € G is called a
common fixed point of ITand ¥ if X = IIX = ¥N,

Theorem 1 ([3]). Let (G, <) be a partially ordered set and suppose that there exists a complex
partial metric oy, in G such that (G, 0.p) is a complete complex partial metric space. Let I1,'¥ :
G — G be a pair of weakly increasing mappings, and suppose that for every comparable R,y € G
we have either

Och (N/ HN)QCh(U/ TU)
Ocb (Nr U)

for 05(R,n) # Owitha >0,b>0,a+b <1,or

QCb(HN/\PU) j a + bQCb(N/ U)

QCb(HN/\PU) = O lfQCb(N/ U) = 0

IfIT or ¥ is continuous, then IT and ¥ have a common fixed point <€ G and g p(x, ) = 0.

Inspired by Theorem 1, here we prove some common fixed-point theorems on complex
partial metric space with an application. For complex partial metric space, we will use the
CPMS notation.

3. Main Results

Theorem 2. Let (G, p.p) be a complete CPMS and I1,'Y: G — G be two continuous mappings
such that
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pCb(HGI Tw) = A maX{pCb(Q,w), pcb(el HQ), Ocb ((U, TCU),
1
E(@cb(erlyw) =+ pcb(wr HQ))}/ (1)

forall 6,w € G, where 0 < A < 1and (116, Yw) # 0. Then, the pair (I1,'Y) has a unique
common fixed point and o, (6*,0*) = 0.

Proof. Let 6 be arbitrary point in G and define a sequence {6, } as follows:
01 =116, and 6py4p =¥Y0p,,1,n=0,1,2,... 2)
Then by (1) and (2), we obtain
0cb(02n+1,02n42) = ©cb (1102, ¥02141)
=2 Amax{Ecp(02n, 020-+1), 9cb (020, 11020), 9c (02011, Y02 41),

%(@cb(%n,‘i’(bnﬂ) + ©cb (B2n+1,11024)) }
= Amax{pcy(02n, 020+1), Ocb (021, O2n-+1), Ocb (0201, O2n+2),

%(pcb(Qan O2n+2) + Ocb (02011, 02n41)) }
= Amax{pcy(02n, 02n+1), Ocb(02n+1,02n+2),

%(@cb(QZn/QZn—H) + 0cb (02141, 02n42) — 9cb (0241, 02n-+1)

+ @cb(92n+1/ 92n+1))}

= Amax{ (021, 02n+1), Pcb (O2n 41, 02n12),

1
E (@cb (9271/ 92n+1 ) + ©cb (92n+1/ 92n+2) ) }

Case I:

1
If max{ $cb (9211/ 92n+1 )/ £ch (92n+lr 627!—1—2)/ E (pcb (6211/ 62n+1) + ©cb (92n+1/ 92n+2) ) } = Pcb
(02111, 02142), then we have

©cb(O2n+1,02n42) = Apcp(O2n+1,020+2)-

This implies A > 1, which is a contradiction.

Case II: 1
If max{ pcp (021, 02141), et (02041, 02042), 3 (9cb (020, 02n41) + 9cb (0211, 02042) ) } = ©cb
(0211, 02,11), then we have
©cb (02041, 02n42) = A@cp (020, 02041)- 3)

From the next step, we have
©cb (02012, 02013) = Amax{pcy(02141,02012), Ocb (02012, 02043),
1
E(@cb(GZn—‘rl/ 02n42) + ©cb(02n+2,02143)) }-

The following three cases arise.
Case Ila:

©cb (02142, 02013) = Apep(02n42,02043),

which implies A > 1, which is a contradiction.
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Case IIb:
1
©cb (0212, 00n43) < A= (@cb(eznﬂ, 02n12) + ©cb (02042, 020143))-
This implies that
A
©cb(O2n12,02n13) =< W@cbw%—&-l; 02n42)- 4)

Since a :=

Y <1, we get 9 (041, 0n+2) = apcp(0n, 041). Therefore {6, },en is
a Cauchy sequence in G.
Case Ilc:

@ch(GZn-&-Z/ 92n+3) = )\pcb(GZnJrlr 62n+2)- (5)

From (3) and (5), Vn =0, 1,2, ..., we get

0cb (On1,0n+2) = APep(On, 0 1) = oo = Ao (60,01).

For m,n € N, with m > n, we have

©ct (0, 0m) = b (On, 0n11) + O (On1,0m) — ©cp(Onr1,Ons1)
= 0cb(On,0n+1) + 9cb (On+1,0m)
= 0ch(On,0n+1) + 9cb (On+1,0n12) + ©cb (On-+2, Om)
- @cb(9n+2/ 9n+2)
= 9cb (0, 0n11) + ©cb (011, 0n12) + 9cb (012, 0m)
= 0cb(On, On41) + ©cb (Ont1, On12) + ©Ocb (On-+2, 0n+3)
+ oot 0 (Om—2,0m-1) + b (Or—1,0m)-

Moreover, by using (5), we get

0cb (0, 0m) = K" 0ep(0,61) + A" o0, (00, 01) + A2 0 (60, 61)
o A 200, (00,61) + A" Lo, (60, 61)

m—n

= Y A o0 (60, 61).
i

Therefore
m—n 1 m—1 ;
|9cp (0, 0m)| < Y A" e (00,601)] = Y Af|oep(60,61)]
i=1 t=n

Y [9cb (B0, 61)]

i=n

IN

AVI
= ﬁ‘pcb(GOr 01)|-
Then, we have

n

A
[©cb (01, O )| <1-% |@cb(90,91)|—>0 as n — oo.

Hence, {6, } is a Cauchy sequence in G.
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Case III:

If max{ ey (021, 02141), 9cb (02041, 02n+2), = (9cb(020, O2n41) + ©cb (02041, 02042))} =

N

1
E (pcb (9211/ 92n+1) + ©cb (62n+1/ 9271-&-2))'
Then, we have

N >

©cb (02n+1,02n12) = = (0cb (021, 02n41) + 9cb (02141, 02n42))

Hence,

A
@cb(92n+1/ 92n+2) = mpcb((bnr 92n+1)' (6)

For the next step, we have
©cb (02042, 02013) = A max{ ey (02141, 021+2), 9cb (02042, 02043),

1
E(@cb(92n+1/92n+2) + et (02042, 602043)) }-

Then, we have the following three cases:
Case IlIa:

©cb (02042, 02n+3) = A@cp(02n42,02043),

which implies A > 1, which is a contradiction.

Case IIIb:
©cb(02n+2,02143) = A@cp (02041, 02n42)- ?)
Then by (6) and (7), we get o4 (0111, 0n+2) = Y9cp(0n, 0n11), where
¥ = max{ A, ﬁ < 1. Hence {6, } ,en is a Cauchy sequence in G.
Case Illc:

1
cb (92n+2/ 62n—|—3) = § (@cb (92n+1/ 92n+2) + Qcb (92n+2/ 92n+3))'
Hence, we obtain
A
pcb(92n+2/ 92n+3) = mpcb (92n+1/ 92n+2>- (8)
Using (6) and (8) yields
pcb(9n+1/9n+2) = chh(eﬂ/ 9n+1)/ (9)

where0§2=L < 1.
2— A
Then, Vn =0,1,2,..., and we get

0cb(0n+1,0n42) =00 (O, 041) = - 2V T4 (60,61).
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For m,n € N, with m > n, we have

©cb (0n,0m) = 9 (On, 0n+1) + 0t (On11,0m) — ©cp (On+1,0n41)
= 0ch(On,0n+1) + 0cb (On+1,0m)
= 9t (0n,0n41) + 9cb (On11, Ont2) + ©cp (On-+2, Om)
— Pcb (9n+2/ 9n+2)
= 9cb(0n, Ont1) + 9cb (On+1,0n12) + ©cp (012, 0m)
= (00, 0n11) + ©cb (On11,0n12) + 0cp (012, 0413)
+ .ot P (Om—2, 9m71>) + ©cb (Om-1, GM>-

Using (9), we get

0cb (0, 0m) = U 0cp(00,01) + " o (80,61) + V200 (B0, 61)
o U2 00(00,61) + V" o0 (60, 61)

Z U o0 (80, 61).
i=1

Therefore,
m—n 1 m—1
|9cp (0, 0m)| < Y V" e (60,61)] = Y ¥ |0 (60, 61)]
i=1 t=n

< ) Vg (8o, 61)]

i=n
Zi’l
= ﬁ\@cb(90,91)|~

Hence, we have

zfl
|©cb (O, Om)| < ﬁ|@cb(90,91)| —0 as n— oo

Hence, {Gn} is a Cauchy sequence in G. In all cases above discussed, we get the

sequence {0, },cn, which is a Cauchy sequence. Since G is complete, there exists 6* € G
such that 6,, — 6* asn — co and

e (07,67) = lim 0 (6%,61) = lim oy (6, 0) = 0
By the continuity of I1, it follows that 0,11 = 1165, — 116* as n — co.
e, pcp (1167, 116%) = lim g (T107, 1102, ) = lim oy (1162, [162,).
However,
©cp (1167, 116%) = Tim o, (1162, T102,) = lim oy (02011, 62041) = 0.
Next, we have to prove that 6* is a fixed point of I'T.

©cp(T10%,07) = 00 (T16%, T162, ) + ©cp (11024, 0%) — i (11624, T162,).
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o (0%,116%) = o, (116%,116*) = 0 and I10* = 6*. In the same way, we have 6* € G such
that 6, — 0* asn — o0 and

Asn — oo, we obtain | p, (T16%,6*)| < 0. Thus, ¢, (I16%,6*) = 0. Hence ., (6*,0%) =

e (67,07) = lim ©(0%,6,) = lim oy (65,61) =0
By the continuity of I, it follows 65,42 = ¥65,,11 — ¥0" asn — .
ie., oo (Y07, ¥07) = lim oo, (Y07, ¥02,11) = lim oy (¥02n11, ¥02011)-

However,
e (Y07, ¥607) = lim oo, (Y0241, ¥02011) = Im oy (62142, 02n42) = 0.
Next we have to prove that 6* is a fixed point of Y.

©cp(F0",0%) = 00 (Y0", ¥0241) + 9 (V02141,0") — 0cb (Y020141, 1102, 41).

Asn — oo, we obtain |p (¥6*,0%)| < 0. Thus, pc,(¥6*,0%) = 0. Hence, ., (0*,60%) =

(0, Y0%) = pp(F0*,¥0*) = 0 and ¥0* = 6*. Therefore, 6* is a common fixed point of
the pair (IL, ¥).

To prove uniqueness, let us consider w* € G is another common fixed point for the
pair (I, ¥). Then
0 (0%, w*) = o (116", Yw*)
= A max{ @Cb(e*/ w*)/ @cb(e*/ HG*)/ §cb (W*rTW*)/
1 * * * *
E(pcb(g I { )_'_pcb(w , 110 ))}
A max{ @cb(G*l C'J*)r pcb(G*l 9*)1 £cb ((‘J*/ (U*),
1 * % % *
5 (9 (6", @") + paa (", 0))}
= )\pCb(Q*IW*)‘
This implies that 6* = w*. O

In the absence of the continuity condition for the mappings IT and ¥, we get the the
following theorem.

Theorem 3. Let (G, o) be a complete CPMS and I1,'Y: G — G be two mappings such that

pcb(ngl ‘Fw) A max{@cb(gfw)r pcb(gf 1_[9), £cb (wr ‘ij)/
1
i(pcb(e,‘PCU) + oo (w, 110)) }, (10)

forall 6,w € G, where 0 < A < 1and (118, Yw) # 0. Then, the pair (I1,'Y) has a unique
common fixed point and o, (6*,0*) = 0.

Proof. Following from Theorem 2, we get that the sequence {6, } is a Cauchy sequence.
Since G is complete, there exists 6* € G such that 6, — 0* asn — cc.
Since ITand ¥ are not continuous, we have o, (6*,116%) = ¢ > 0.
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Then, we estimate

cb(9 )
b (0%, 02i12) + ©cp (02142, T10™) — ©cp (02542, 02i12)
b (0%, 02i42) + ©cp (62142, T16%)
(9*/ 921+2) + ©cb (T92i+l/ HQ*)
b (0%, 02i2) + Amax{ e (02i11,0%), 9cb(02i+1, Y02i41), 9cp (07, T16%),
(9cb (02141, T107) + 04 (87, ¥02i41)) }
= (07, 02i42) + Amax{pcy(02i11,0"), 9cp (02i+1, 02i42), pep (87, 116%),

5 (b (02041, 110%) + 9oy (07, 0211.2)) }
©cb (0%, 02i12) + Apep(0%,110%)
socp (07, 62i42) + A0

‘6?"5‘6“@
W‘W‘

A TATA TR

N~

—_

I TA

This yields
18] < lep (6%, 02i42)| + A[9].

By definition,
lim oy (67, 0si2) = e (07,6)

From the Cauchy property of (0, ), the above limit is zero, and then,
|8] < A|9).

Hence, A > 1, which is a contradiction. Then 6* = II§*. In the same way, we
obtain 6* = ¥6*. Hence 6* is a common fixed point for the pair (I1,'¥) and @, (6*,6%) =
o (0%, Y0%) = pp(F0*,¥0*) = 0. Uniqueness of the common fixed point 6* follows from
Theorem 2. O

For IT = ¥, we get the following fixed points results on CPMS.
Theorem 4. Let (G, py) be a complete CPMS and I1: G — G be a continuous mapping such that
©ep (1160, Tlw) = A max{ e (6, ), ocp (6,116), oo (w, Tw),
2 (065 (60,110) + pon(w, 116))), an

forall 6,w € G, where 0 < A < 1and p.,(116,11w) # 0. Then the pair I1 has a unique fixed
point and o, (0*,60%) = 0.

Remark 1. Similarly, we get a fixed point result in the absence of continuity condition for the
mapping I'L

Corollary 1. Let (G, pp) be a complete CPMS and ¥ : G — G be a continuous mapping such that
e (F70,¥"w) < A max{pey (0, w), 9cp (6,F"0), pep (w, ¥"'w),
1
5 (9 (8, ¥ W) + pep(w, ¥70)) },

forall0,w € G, where 0 < A <1, pp(¥"0,¥"w) # 0and n € N. Then, ¥ has a unique fixed
point and o, (0*,60%) = 0.
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Proof. By Theorem 2, we get 0* € G such that ¥"6* = 6* and p,(0*,6*) = 0. Then, we get

P (Y07, 0%) = pop(YE"07, 1707) = oo (Y7Y6", ¥767)
= Amax{p(¥0*,0%), oo (F0, ¥"H¥0"), ooy (67, F"67),
2 (0aa (Y6, 976°) + 0y (67, 9796°)) )
= A max{pe, (Y6%,07), o (Y07, ¥07), 00y (67,07),
S (00 (¥6%,6°) + 0 (6, %67))}
= Apqp(F07,0%).
Hence ¥"0* = Y6* = 0*. Then ¥ has a unique fixed point. [

Remark 2. From the above Corollary 1, similarly, we get a fixed-point result in the absence of
continuity condition for the mapping Y.

Next, we present a new generalization of a common fixed point theorem on CPMS.

Theorem 5. Let (G, p.p) be a complete CPMS and IL,'Y: G — G be two continuous mappings
such that

0 (6,T10) 9,1 (0, Fw)  903(6,T10) (116, ¥ ) } (12)

116, Yw) = A max 0,w), ’
Par{ ) {W’( ) pa(6,0) 1+ 00 (6, @)

forall 0,w € G, where 0 < A < 1and ., (116, Yw) # 0. Then, the pair (I1,'Y) has a unique
common fixed point and o, (0*,0*) = 0.

Proof. Let ) be arbitrary point in G and define a sequence {6, } as follows:
92n+1 = Hezn and 92n+2 = T92n+1, n=20,1,2,... (13)
Then, by (12) and (13), we obtain

cb (62n+1r 62n-&-2> = @cb(n62nr ‘YGZnJrl)
cb (9271/ 92n+1 ) §cb (‘Y92n+1, Han)
1+ 9cp (021, 020 41)
©cb (021, 11021, ) oo (1160201, Y 02141) }
1+ @cb(Gan 92n+1)
cb (9211/ 92n+1 ) §cb (92n+1/ 92n+2)
1+ ©cp (020, 02141)
©cb (021, 02n+1) 9cb (O2n+1, O2n42)
1+ ocp (020, 0204 1)
= A max{pcp (020, 02141), P (02041, 02n42) }-

= A max{pcb(GZn/ 92n+1)/

7

= A max{pcb(GZn/ 92n+1)/

7

If max{pcy (021, 02n41), Ocb (02011, 02n12) } = ©cb(02n11,020+2), then
©cb (02041, 02112) 2 A@cp (0241, 02n42)-
This shows that A > 1, which is a contradiction. Therefore
9cb (02011, 02n+2) = Apcp(02n, 020 41)- (14)
Similarly, we obtain

©cb (02042, 02n+3) = A@cp (02041, 02n42). (15)
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From (14) and (15), Vn =0, 1,2, ..., we get

0cb (Oni1,0n+2) = APep(On, 0n11) = oo = Ao, (60,61). (16)

For m,n € N, with m > n, we have

©ct (O, 0m) = 9o (On, 0n11) + O (On+1,0m) — ©cb(Onr1,On1)
= 9ct(0n,0n+1) + 9cb (0011, 0m)
= pcb(en/ 9n+1) + pcb(en-&-l/ 9n+2) + ©cb (9n+2/ em)
— ©cb(0n12,0n12)
= 9 (0n, 0n11) + O (Ont1,0n12) + ©cb (012, 0m)
= 0cb(On, On41) + ©cb (Oni1, On2) + et (On-+2, 0n+3)
+ ot @ (Om—2,0m-1) + 5" "0 (0-1,0m).

By using (16), we get

0t (O, 0m) = K" 0ep(80,601) + X" g (80, 01) + A" 20 (80,61)
o A 200,(00,61) + A" o060, 61)

m—n .
=Y AT o (00,61).
i=1

Therefore,

m—n m—n
[0t (O, 0m)| < Y, A" Y04 (00,01)] = Y A oep (B0, 1)
i-1 i1

<Y A pe(60,61)]

i=n
An
= ﬁmcbwo, 01)|-

Hence, we have

(69,61)| =0 as n — oo.

|@ch(9nr9m)

Hence, {6, } is a Cauchy sequence in G. Since G is complete, there exists 6* € G such
that 6, — 0* asn — oo and

e (07,67) = lim ) (6%,61) = Lim oy (0n, ) = 0.
Since Y is continuous, it yields
9" = B iz = Jig ¥y = ¥ Jim iy = W6
Similarly, by the continuity of IT, we get 0* = I16*. Then the pair (I1, ¥) has a common

fixed point. To prove uniqueness, let us consider that w* € G is another common fixed
point for the pair (I, ¥). Then
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pep (0%, ™) = pp(T16%, Yw™)
pcp (67, 116%) pep (w*, Yw™)
1+ pcb(Q*, (U*)
e (0°, 110" s (Yo, 116°)
1 + pcb(G*/ (JJ*)
= Apep (07, w”)

= A max{pe (67, w?),

4

This implies that 6* = w*. O

In the absence of the continuity condition for the mapping IT and ¥ in the Theorem 5,
we obtain the following result.

Theorem 6. Let (G, p.p) be a complete CPMS and I1,'Y: G — G be two mappings such that

P (0,110) ooy (w, Fw) @cb(B,HG)zocb(Hf’,‘Fw)}
119, Yw) < Amax{ 0,w), , , (17)
@cb( ) @cb( ) 1+ pcb(elw) 1+ @cb(glw)

forall ,w € G, where 0 < A < 1and p., (110, Yw) # 0. Then the pair (I1,'Y) has a unique
common fixed point and o, (6*,0*) = 0.

Proof. Following from Theorem 5, we get that the sequence {6, } is a Cauchy sequence.
Since G is complete, then there exists * € G such that 8, — 6* as n — oo and

pcb(e*/()*) = nh_rgo @cb(G*/ 9”) = ;111_I>Iolo pcb(gn/ 9”) =0.

Since IT and ¥ are not continuous, we have o, (0*,116%) = ¢ > 0.
Then, we estimate

¥ = pup(07,1T10%)

= 0ep (07, 02i12) + (02012, 110%) — pcy (62i 12, 02i12)

= 0cp (07, 02i12) + 9 (1107, 02i42)

= 0cp (0%, 02i12) + 9 (1107, 02, 11)

©cb (0%, 110%) ey (02i 1, ¥ 021 1)
1+ e (0%, 021 41) '

= 9cp (0%, 02i42) + A max {pcb(g*r 02i11),

@cb(e*r He*)@cb(ne*/T92i+1) }
1+ pep (0%, 62i41)

= 9cp (0%, 02i42) + A max {@cb(g*r 02i11),

©cp (0%, T10%) o (T16%, 02;4.) }
1+ ey (0%, 02i41)

= 0 (0%, 02i42) + Aoy (0%, T10%)?

= 0cp (0%, 02i42) + A%,

©cb (07, 110" ) 90y (02741, 02i12)
1+ pep (0%, 62i41)

|2

This yields
18] < | (0%, 02i2)| + A| 9|2

Hence, A > 1, which is a contradiction. Then 6* = I16*. In the same way, we obtain
6* = ¥6*. Hence, 0* is a common fixed point for the pair (I, ¥). For uniqueness of the
common fixed point, 8* follows from Theorem 5. [

For I1 = ¥, we get the following fixed-points results on CPMS.
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Theorem 7. Let (G, o) be a complete CPMS and I1: G — G be a continuous mapping such that

Pcp (8, 110) pp (w, Tw) pcb(9rn9)@cb(n9rnw)}
1+ pcb(e,CU) ’ 1+ @Cb(e,W) ’

§cb (HQ, Hw) A max{ pcb(el (U),
forall 6, w € G, where 0 < A < 1and p.,(116,1w) # 0. Then, I1 has a unique fixed point and
P (67,07) = 0.
Remark 3. Similarly, in the absence of continuity condition, we can get a fixed point result on I1.

Corollary 2. Let (G, o) be a complete CPMS and I1: G — G be a continuous mapping such that

pcb(er Hne) §ch (w, Hnw)
1+ pch(er (U)

pch(er H"@)[pcb(nne, Hw) }
1+ @ch(elw) ’

7

pep (1170, TT"w) < A max {pcb(ﬂ,w),

forall 6,w € G, where 0 < A < 1and pq,(I1"0,11"w) # 0. Then I1 has a unique fixed point
and pqp(6%,0%) = 0.

Proof. By Theorem 5, we get 0* € G such that IT"60* = 6 and g, (0*,0%) = 0. Then we get

e (1167, 6%) = o (TTTT"607, I1"60%) = o, (TT"1167, T1"6%)
pep (1107, TT'T10") o,y (67, T176%)
1+ pep (T16%,6%) !
pcb(ne*lnnne*)@cb (HHHQ*/HHG*)
1+ pep(116*,6%) }

=< A max {@cb(HG*/ %),

T10*%, TILI"0%) o, (6%, T176")
14 pep(110%,0%) ’
pcb(ne*lnnne*)@cb (HH”Q*,H”G*)
1+ e (116%,6%) }
= Apep (T10%,67).

< A max {pcb(HG*, 0%), Peb

Hence I1"0* = I160* = 6*. Then, I has a unique fixed point. [

Remark 4. From the above corollary 2, similarly, we get a fixed point result in the absence of
continuity condition for the mapping I1.

Example 1. Let G = {1,2,3,4} be endowed with the order 6 < w if and only if < w. Then, <
is a partial order in G. Define the complex partial metric space o, : G x G — C* as follows:

(9/(‘]) pcb(erw)
(1,1),(2,2) 0
(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,3) e
(1,4),(4,1),(2,4),(4,2),(3,4),(4,3),(4,4) 3et*

Obviously, (G, p¢p) is a complete CPMS for x € [0, 5]. Define IT,'Y : G — G by I16 = 1,

{3 e

Clearly 11 and Y are continuous functions. Now, for A\ = %, we consider the following cases:
(A)  FO=1landw € G— {4}, thenI1(0) = ¥ (w) = 1and the conditions of Theorem 2 are satisfied.
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(B) If0=1w=4thnlld =1 Yw =2,
0 (T10, Fw) = €™ < 3 A ¥

= A max{3eix, 0,3¢™*, 1 e 4 36”‘)}

5
= A max{pcb(glw>/ pcb(el HQ)/ cb (w, ‘Fw)/
1
E(pcb(grlyw) + pcb(UJ, HG))}’
(C) If0=2,w=4thnlld =1 Yw =2,

0 (110, Fw) = €™ < 3 A ™
= A max{3e’, e’ 3¢, %(O +3¢'%)}
= Amax{p (0, w), pcy(6,110), pop (w, Yw),

2 (90b(6, %) + (0, T10))},
(D) If0=3w=4thenlld =1, Yw =2,

0 (110, Yw) = e* <3 A e
= A max{3e”, e, 3¢, %(eiJC +3¢)}
= A max{pq (0, w), pep (0,110), ooy (w, Yw),

5 (pcb(el ‘Yw) + b (w/ HG)) },

—_

(E) If0 =4 w=4thenlld =2, Yw =2,
0 (110, Yw) = e* < 3 A e*
= A max{3eix, 3¢'*, 3¢, %(38" + 3ei")}
= A max{pe (0, w), pep(0,110), pop (w, Yw),

(pcb(er ‘Yw) + ©cb (w/ HG)) }r

N —

Moreover, for A = %, with A <1, the conditions of Theorem 2 are satisfied. Therefore, 1 is
the unique common fixed point of I1 and Y.

4. Application

Consider the following systems of nonlinear integral equations:

b
w(s) =5(5) + [ Tals pw(p)dp, (18)
and
b
2(s) =56 + [ s, pz(p))ap, 19)
where
(i) § : [a,b] — R" is a continuous mapping and §(s) is a given function in (C([a, b]), R"),
(i) w(s) and z(s) are unknown variables for each s € ] = [a,b], b > a > 0,

(iii) Ti(s, p) and Ty (s, p) are deterministic kernels defined fors,p € | = [a, b].
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In this section, we present an existence theorem for a common solution to (18) and (19)
that belongs to G = (C(J),R") (the set of continuous functions defined on J) by using
the obtained result in Theorem 2. We consider the continuous mappings ILY : G — G
given by

b
[Tw(s) = F(s) + /‘Z Ti(s,p,w(p))dp,w € G,s € ],
and

b
Yz(s) = F(s) +/a To(s,p,z(p))dp,z € G,s € ],

Then, the existence of a common solution to the nonlinear integral Equations (18)
and (19) is equivalent to the existence of a common fixed point of ITand Y. It is well known
that G, endowed with the metric g, defined by

pcp(w,z) = sup [w(s) —z(s)| +2,
s€f

forall w,z € G, is a complete CPMS. G can also be equipped with the partial order <
given by

w,z € G, w = z if and only w(s) > z(s), for alls € J.

Further, let us consider a system of nonlinear integral equation as (18) and (19) under
the following condition hold:

(A) T, Tr:]x]xR"—= R"are continuous functions satisfying

S(w, z) 2
b

Tals,p,w(p)) = Tals p 2Pl = =y ~ g >0

where
S(w,2) = max{pes(®,2), 9o (0, 1Tw), pep(z, ¥2),

1

E(@Cb(qujz) + pcb(zl Hw))}

Theorem 8. Let (C(]),R", o) be a complete CPMS; then, the system (18) and (19) under
condition (A) have a unique common solution.

Proof. Forw,z € (C(J),R")and s € ], we define the continuous mappings I, ¥ : G — G by

b
Mw(s) = §(s) + [ Tuls, p,w(p))dp,

and

b
¥2(5) = 3(5) + | Tals.p,2(p)ap.
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Then, we have
pep(ITw(s), ¥z(s)) = sup [TTw(s) — ¥z(s)| + 2
sef
b
= [T, pw(p)) = Tals, p2(p) lap + 2
b/ S(w,z) 2
=< ! - d 2
_/g <(b—a)et b—a> Pt
S(w, z)
= AS(w,z)
= A max{pcb (ZU,Z), pcb(wl HT/U), Pcb (Z/ ‘Ijz)l
1
E(pcb(wrlfz) + Pcb(Z, Hw))}
Hence, all the conditions of Theorem 2 are satisfied for 0 < A = % < 1 with
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