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1. Introduction

Azam et al. [1] introduced the concept of complex-valued metric spaces and studied
some fixed point theorems for mappings satisfying a rational inequality.

Two years later, in [2], Rao et al. discussed for the first time the idea of complex-valued
b-metric spaces.

In 2017, Dhivya and Marudai [3] introduced the concept of complex partial metric
space and suggested a plan to expand the results, as well as proving common fixed-point
theorems under the rational expression contraction condition. This idea has been followed
by Gunaseelan [4], who introduced the concept of complex partial b-metric spaces and
discussed some results of fixed-point theory for self-mappings in these new spaces.

In [5], Prakasam and Gunaseelan proved the existence and uniqueness of a common
fixed-point (with an illustrative example) theorem using CLR and E.A. properties in
complex partial b-metric spaces. Their proved results generalize and extend some of the
well-known results in the literature.

In [6], Gunaseelan et al. proved a fixed-point theorem in complex partial b-metric
spaces under a contraction mapping. They also gave some applications of their main results.

In this paper, we prove some common fixed-point theorems on complex partial
metric space.

2. Preliminaries

Let C be the set of complex numbers and τ1, τ2, τ3 ∈ C. Define a partial order � on C

as follows:
τ1 � τ2 if and only ifR(τ1) ≤ R(τ2), I(τ1) ≤ I(τ2).
Consequently, one can infer that τ1 � τ2 if one of the following conditions is satisfied:

(i) R(τ1) = R(τ2), I(τ1) < I(τ2),
(ii) R(τ1) < R(τ2), I(τ1) = I(τ2),
(iii) R(τ1) < R(τ2), I(τ1) < I(τ2),
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(iv) R(τ1) = R(τ2), I(τ1) = I(τ2).

In particular, we write τ1 � τ2 if τ1 6= τ2, and one of (i), (ii) and (iii) is satisfied and
we write τ1 ≺ τ2 if only (iii) is satisfied. Notice that

(a) If 0 � τ1 � τ2, then |τ1| < |τ2|,
(b) If τ1 � τ2 and τ2 ≺ τ3, then τ1 ≺ τ3,
(c) If η, γ ∈ R and η ≤ γ, then ητ1 � γτ1 for all 0 � τ1 ∈ C.

Here C+(= {(ℵ, y)|ℵ, y ∈ R+}) and R+(= {ℵ ∈ R|ℵ ≥ 0}) denote the set of non-
negative complex numbers and the set of non negative real numbers, respectively.

Now, let us recall some basic concepts and notations that will be used below.

Definition 1 ([3]). A complex partial metric on a non-void set G is a function $cb : G× G → C+

such that for all θ, ω, ϑ ∈ G:

(i) 0 � $cb(θ, θ) � $cb(θ, ω)(small self-distances)
(ii) $cb(θ, ω) = $cb(ω, θ)(symmetry)
(iii) $cb(θ, θ) = $cb(θ, ω) = $cb(ω, ω) if and only if θ = ω(equality)
(iv) $cb(θ, ω) � $cb(θ, ϑ) + $cb(ϑ, ω)− $cb(ϑ, ϑ)(triangularity).

A complex partial metric space is a pair (G, $cb) such that G is a non-void set and $cb is the
complex partial metric on G.

Definition 2 ([3]). Let (G,℘cb) be a complex partial metric space. Let {θn} be any sequence in
G. Then

(i) The sequence {θn} is said to converge to θ, if limn→∞ ℘cb(θn, θ) = ℘cb(θ, θ).
(ii) The sequence {θn} is said to be a Cauchy sequence in (G,℘cb) if

limn,m→∞ ℘cb(θn, θm) exists and is finite.
(iii) (G,℘cb) is said to be a complete complex partial metric space if for every Cauchy sequence

{θn} in G there exists θ ∈ G such that
limn,m→∞ ℘cb(θn, θm) = limn→∞ ℘cb(θn, θ) = ℘cb(θ, θ).

(iv) A mapping Π : G → G is said to be continuous at θ0 ∈ G if for every ε > 0, there exists
δ > 0 such that Π(B℘cb(θ0, δ)) ⊂ B℘cb(Π(θ0, ε)).

Definition 3 ([3]). Let Π and Ψ be self-mappings of non-void set G. A point ℵ ∈ G is called a
common fixed point of Π and Ψ if ℵ = Πℵ = Ψℵ.

Theorem 1 ([3]). Let (G,�) be a partially ordered set and suppose that there exists a complex
partial metric $cb in G such that (G, $cb) is a complete complex partial metric space. Let Π, Ψ :
G → G be a pair of weakly increasing mappings, and suppose that for every comparable ℵ, y ∈ G
we have either

$cb(Πℵ, Ψy) � a
$cb(ℵ, Πℵ)$cb(y, Ψy)

$cb(ℵ, y)
+ b$cb(ℵ, y)

for $cb(ℵ, y) 6= 0 with a ≥ 0, b ≥ 0, a + b < 1, or

$cb(Πℵ, Ψy) = 0 if $cb(ℵ, y) = 0.

If Π or Ψ is continuous, then Π and Ψ have a common fixed point ∝∈ G and $cb(∝, ∝) = 0.

Inspired by Theorem 1, here we prove some common fixed-point theorems on complex
partial metric space with an application. For complex partial metric space, we will use the
CPMS notation.

3. Main Results

Theorem 2. Let (G,℘cb) be a complete CPMS and Π, Ψ : G → G be two continuous mappings
such that
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℘cb(Πθ, Ψω) � fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Ψω),
1
2
(℘cb(θ, Ψω) + ℘cb(ω, Πθ))}, (1)

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πθ, Ψω) 6= 0. Then, the pair (Π, Ψ) has a unique
common fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Let θ0 be arbitrary point in G and define a sequence {θn} as follows:

θ2n+1 = Πθ2n and θ2n+2 = Ψθ2n+1, n = 0, 1, 2, . . . (2)

Then by (1) and (2), we obtain

℘cb(θ2n+1, θ2n+2) = ℘cb(Πθ2n, Ψθ2n+1)

� fmax{℘cb(θ2n, θ2n+1),℘cb(θ2n, Πθ2n),℘cb(θ2n+1, Ψθ2n+1),
1
2
(℘cb(θ2n, Ψθ2n+1) + ℘cb(θ2n+1, Πθ2n))}

� fmax{℘cb(θ2n, θ2n+1),℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2),
1
2
(℘cb(θ2n, θ2n+2) + ℘cb(θ2n+1, θ2n+1))}

� fmax{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2),
1
2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2)− ℘cb(θ2n+1, θ2n+1)

+ ℘cb(θ2n+1, θ2n+1))}
= fmax{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2),

1
2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))}

Case I:
If max{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2),

1
2
(℘cb(θ2n, θ2n+1)+℘cb(θ2n+1, θ2n+2))}= ℘cb

(θ2n+1, θ2n+2), then we have

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n+1, θ2n+2).

This implies f ≥ 1, which is a contradiction.
Case II:
If max{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2),

1
2
(℘cb(θ2n, θ2n+1)+℘cb(θ2n+1, θ2n+2))}= ℘cb

(θ2n, θ2n+1), then we have

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n, θ2n+1). (3)

From the next step, we have

℘cb(θ2n+2, θ2n+3) � fmax{℘cb(θ2n+1, θ2n+2),℘cb(θ2n+2, θ2n+3),
1
2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3))}.

The following three cases arise.
Case IIa:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+2, θ2n+3),

which implies f ≥ 1, which is a contradiction.
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Case IIb:

℘cb(θ2n+2, θ2n+3) � f
1
2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3)).

This implies that

℘cb(θ2n+2, θ2n+3) �
f

(2−f)
℘cb(θ2n+1, θ2n+2). (4)

Since a :=
f

2−f
< 1, we get ℘cb(θn+1, θn+2) � a℘cb(θn, θn+1). Therefore {θn}n∈N is

a Cauchy sequence in G.
Case IIc:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+1, θ2n+2). (5)

From (3) and (5), ∀n = 0, 1, 2, . . ., we get

℘cb(θn+1, θn+2) � f℘cb(θn, θn+1) � . . . � fn+1℘cb(θ0, θ1).

For m, n ∈ N, with m > n, we have

℘cb(θn, θm) � ℘cb(θn, θn+1) + ℘cb(θn+1, θm)− ℘cb(θn+1, θn+1)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

− ℘cb(θn+2, θn+2)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θn+3)

+ . . . + ℘cb(θm−2, θm−1) + ℘cb(θm−1, θm).

Moreover, by using (5), we get

℘cb(θn, θm) � fn℘cb(θ0, θ1) +fn+1℘cb(θ0, θ1) +fn+2℘cb(θ0, θ1)

+ . . . +fm−2℘cb(θ0, θ1) +fm−1℘cb(θ0, θ1)

=
m−n

∑
i=1

fi+n−1℘cb(θ0, θ1).

Therefore

|℘cb(θn, θm)| ≤
m−n

∑
i=1

fi+n−1|℘cb(θ0, θ1)| =
m−1

∑
t=n

ft|℘cb(θ0, θ1)|

≤
∞

∑
i=n
|℘cb(θ0, θ1)|

=
fn

1−f
|℘cb(θ0, θ1)|.

Then, we have

|℘cb(θn, θm)| ≤
fn

1−f
|℘cb(θ0, θ1)| → 0 as n→ ∞.

Hence, {θn} is a Cauchy sequence in G.
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Case III:
If max{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2),

1
2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))} =

1
2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2)).

Then, we have

℘cb(θ2n+1, θ2n+2) �
f
2
(℘cb(θ2n, θ2n+1) + ℘cb(θ2n+1, θ2n+2))

Hence,

℘cb(θ2n+1, θ2n+2) �
f

2−f
℘cb(θ2n, θ2n+1). (6)

For the next step, we have

℘cb(θ2n+2, θ2n+3) � fmax{℘cb(θ2n+1, θ2n+2),℘cb(θ2n+2, θ2n+3),
1
2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3))}.

Then, we have the following three cases:
Case IIIa:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+2, θ2n+3),

which implies f ≥ 1, which is a contradiction.
Case IIIb:

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+1, θ2n+2). (7)

Then by (6) and (7), we get ℘cb(θn+1, θn+2) � γ℘cb(θn, θn+1), where

γ = max
{
f,

f
2−f

}
< 1. Hence {θn}n∈N is a Cauchy sequence in G.

Case IIIc:

℘cb(θ2n+2, θ2n+3) �
1
2
(℘cb(θ2n+1, θ2n+2) + ℘cb(θ2n+2, θ2n+3)).

Hence, we obtain

℘cb(θ2n+2, θ2n+3) �
f

(2−f)
℘cb(θ2n+1, θ2n+2). (8)

Using (6) and (8) yields

℘cb(θn+1, θn+2) � o℘cb(θn, θn+1), (9)

where 0 ≤ o = f
2−f

< 1.

Then, ∀n = 0, 1, 2, . . . , and we get

℘cb(θn+1, θn+2) � o℘cb(θn, θn+1) � . . . � on+1℘cb(θ0, θ1).
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For m, n ∈ N, with m > n, we have

℘cb(θn, θm) � ℘cb(θn, θn+1) + ℘cb(θn+1, θm)− ℘cb(θn+1, θn+1)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

− ℘cb(θn+2, θn+2)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θn+3)

+ . . . + ℘cb(θm−2, θm−1)) + ℘cb(θm−1, θm).

Using (9), we get

℘cb(θn, θm) � on℘cb(θ0, θ1) + on+1℘cb(θ0, θ1) + on+2℘cb(θ0, θ1)

+ . . . + om−2℘cb(θ0, θ1) + om−1℘cb(θ0, θ1)

=
m−n

∑
i=1
oi+n−1℘cb(θ0, θ1).

Therefore,

|℘cb(θn, θm)| ≤
m−n

∑
i=1
oi+n−1|℘cb(θ0, θ1)| =

m−1

∑
t=n
ot|℘cb(θ0, θ1)|

≤
∞

∑
i=n
ot|℘cb(θ0, θ1)|

=
on

1− o |℘cb(θ0, θ1)|.

Hence, we have

|℘cb(θn, θm)| ≤
on

1− o |℘cb(θ0, θ1)| → 0 as n→ ∞.

Hence, {θn} is a Cauchy sequence in G. In all cases above discussed, we get the
sequence {θn}n∈N, which is a Cauchy sequence. Since G is complete, there exists θ∗ ∈ G
such that θn → θ∗ as n→ ∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0

By the continuity of Π, it follows that θ2n+1 = Πθ2n → Πθ∗ as n→ ∞.

i.e., ℘cb(Πθ∗, Πθ∗) = lim
n→∞

℘cb(Πθ∗, Πθ2n) = lim
n→∞

℘cb(Πθ2n, Πθ2n).

However,

℘cb(Πθ∗, Πθ∗) = lim
n→∞

℘cb(Πθ2n, Πθ2n) = lim
n→∞

℘cb(θ2n+1, θ2n+1) = 0.

Next, we have to prove that θ∗ is a fixed point of Π.

℘cb(Πθ∗, θ∗) � ℘cb(Πθ∗, Πθ2n) + ℘cb(Πθ2n, θ∗)− ℘cb(Πθ2n, Πθ2n).
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As n→ ∞, we obtain |℘cb(Πθ∗, θ∗)| ≤ 0. Thus, ℘cp(Πθ∗, θ∗) = 0. Hence ℘cb(θ
∗, θ∗) =

℘cb(θ
∗, Πθ∗) = ℘cb(Πθ∗, Πθ∗) = 0 and Πθ∗ = θ∗. In the same way, we have θ∗ ∈ G such

that θn → θ∗ as n→ ∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0

By the continuity of Π, it follows θ2n+2 = Ψθ2n+1 → Ψθ∗ as n→ ∞.

i.e., ℘cb(Ψθ∗, Ψθ∗) = lim
n→∞

℘cb(Ψθ∗, Ψθ2n+1) = lim
n→∞

℘cb(Ψθ2n+1, Ψθ2n+1).

However,

℘cb(Ψθ∗, Ψθ∗) = lim
n→∞

℘cb(Ψθ2n+1, Ψθ2n+1) = lim
n→∞

℘cb(θ2n+2, θ2n+2) = 0.

Next we have to prove that θ∗ is a fixed point of Ψ.

℘cb(Ψθ∗, θ∗) � ℘cb(Ψθ∗, Ψθ2n+1) + ℘cb(Ψθ2n+1, θ∗)− ℘cb(Ψθ2n+1, Πθ2n+1).

As n→ ∞, we obtain |℘cb(Ψθ∗, θ∗)| ≤ 0. Thus, ℘cp(Ψθ∗, θ∗) = 0. Hence, ℘cb(θ
∗, θ∗) =

℘cb(θ
∗, Ψθ∗) = ℘cb(Ψθ∗, Ψθ∗) = 0 and Ψθ∗ = θ∗. Therefore, θ∗ is a common fixed point of

the pair (Π, Ψ).
To prove uniqueness, let us consider ω∗ ∈ G is another common fixed point for the

pair (Π, Ψ). Then

℘cb(θ
∗, ω∗) = ℘cb(Πθ∗, Ψω∗)

� fmax{℘cb(θ
∗, ω∗),℘cb(θ

∗, Πθ∗),℘cb(ω
∗, Ψω∗),

1
2
(℘cb(θ

∗, Ψω∗) + ℘cb(ω
∗, Πθ∗))}

� fmax{℘cb(θ
∗, ω∗),℘cb(θ

∗, θ∗),℘cb(ω
∗, ω∗),

1
2
(℘cb(θ

∗, ω∗) + ℘cb(ω
∗, θ∗))}

� f℘cb(θ
∗, ω∗).

This implies that θ∗ = ω∗.

In the absence of the continuity condition for the mappings Π and Ψ, we get the the
following theorem.

Theorem 3. Let (G,℘cb) be a complete CPMS and Π, Ψ : G → G be two mappings such that

℘cb(Πθ, Ψω) � fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Ψω),
1
2
(℘cb(θ, Ψω) + ℘cb(ω, Πθ))}, (10)

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πθ, Ψω) 6= 0. Then, the pair (Π, Ψ) has a unique
common fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Following from Theorem 2, we get that the sequence {θn} is a Cauchy sequence.
Since G is complete, there exists θ∗ ∈ G such that θn → θ∗ as n→ ∞.
Since Π and Ψ are not continuous, we have ℘cb(θ

∗, Πθ∗) = ϑ > 0.
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Then, we estimate

ϑ = ℘cb(θ
∗, Πθ∗)

� ℘cb(θ
∗, θ2i+2) + ℘cb(θ2i+2, Πθ∗)− ℘cb(θ2i+2, θ2i+2)

� ℘cb(θ
∗, θ2i+2) + ℘cb(θ2i+2, Πθ∗)

� ℘cb(θ
∗, θ2i+2) + ℘cb(Ψθ2i+1, Πθ∗)

� ℘cb(θ
∗, θ2i+2) +fmax{℘cb(θ2i+1, θ∗),℘cb(θ2i+1, Ψθ2i+1),℘cb(θ

∗, Πθ∗),
1
2
(℘cb(θ2i+1, Πθ∗) + ℘cb(θ

∗, Ψθ2i+1))}

� ℘cb(θ
∗, θ2i+2) +fmax{℘cb(θ2i+1, θ∗),℘cb(θ2i+1, θ2i+2),℘cb(θ

∗, Πθ∗),
1
2
(℘cb(θ2i+1, Πθ∗) + ℘cb(θ

∗, θ2i+2))}

� ℘cb(θ
∗, θ2i+2) +f℘cb(θ

∗, Πθ∗)

� s℘cb(θ
∗, θ2i+2) +fϑ.

This yields

|ϑ| ≤ |℘cb(θ
∗, θ2i+2)|+f|ϑ|.

By definition,
lim

i
℘cb(θ

∗, θ2i+2) = ℘cb(θ
∗, θ∗)

From the Cauchy property of (θn), the above limit is zero, and then,

|ϑ| ≤ f|ϑ|.

Hence, f ≥ 1, which is a contradiction. Then θ∗ = Πθ∗. In the same way, we
obtain θ∗ = Ψθ∗. Hence θ∗ is a common fixed point for the pair (Π, Ψ) and ℘cb(θ

∗, θ∗) =
℘cb(θ

∗, Ψθ∗) = ℘cb(Ψθ∗, Ψθ∗) = 0. Uniqueness of the common fixed point θ∗ follows from
Theorem 2.

For Π = Ψ, we get the following fixed points results on CPMS.

Theorem 4. Let (G,℘cb) be a complete CPMS and Π : G → G be a continuous mapping such that

℘cb(Πθ, Πω) � fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Πω),
1
2
(℘cb(θ, Πω) + ℘cb(ω, Πθ))}, (11)

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πθ, Πω) 6= 0. Then the pair Π has a unique fixed
point and ℘cb(θ

∗, θ∗) = 0.

Remark 1. Similarly, we get a fixed point result in the absence of continuity condition for the
mapping Π.

Corollary 1. Let (G,℘cb) be a complete CPMS and Ψ : G → G be a continuous mapping such that

℘cb(Ψ
nθ, Ψnω) � fmax{℘cb(θ, ω),℘cb(θ, Ψnθ),℘cb(ω, Ψnω),

1
2
(℘cb(θ, Ψnω) + ℘cb(ω, Ψnθ))},

for all θ, ω ∈ G, where 0 ≤ f < 1, ℘cb(Ψnθ, Ψnω) 6= 0 and n ∈ N. Then, Ψ has a unique fixed
point and ℘cb(θ

∗, θ∗) = 0.
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Proof. By Theorem 2, we get θ∗ ∈ G such that Ψnθ∗ = θ∗ and ℘cb(θ
∗, θ∗) = 0. Then, we get

℘cb(Ψθ∗, θ∗) = ℘cb(ΨΨnθ∗, Ψnθ∗) = ℘cb(Ψ
nΨθ∗, Ψnθ∗)

� fmax{℘cb(Ψθ∗, θ∗),℘cb(Ψθ∗, ΨnΨθ∗),℘cb(θ
∗, Ψnθ∗),

1
2
(℘cb(Ψθ∗, Ψnθ∗) + ℘cb(θ

∗, ΨnΨθ∗))}

� fmax{℘cb(Ψθ∗, θ∗),℘cb(Ψθ∗, Ψθ∗),℘cb(θ
∗, θ∗),

1
2
(℘cb(Ψθ∗, θ∗) + ℘cb(θ

∗, Ψθ∗))}

= f℘cb(Ψθ∗, θ∗).

Hence Ψnθ∗ = Ψθ∗ = θ∗. Then Ψ has a unique fixed point.

Remark 2. From the above Corollary 1, similarly, we get a fixed-point result in the absence of
continuity condition for the mapping Ψ.

Next, we present a new generalization of a common fixed point theorem on CPMS.

Theorem 5. Let (G,℘cb) be a complete CPMS and Π, Ψ : G → G be two continuous mappings
such that

℘cb(Πθ, Ψω) � fmax
{
℘cb(θ, ω),

℘cb(θ, Πθ)℘cb(ω, Ψω)

1 + ℘cb(θ, ω)
,
℘cb(θ, Πθ)℘cb(Πθ, Ψω)

1 + ℘cb(θ, ω)

}
, (12)

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πθ, Ψω) 6= 0. Then, the pair (Π, Ψ) has a unique
common fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Let θ0 be arbitrary point in G and define a sequence {θn} as follows:

θ2n+1 = Πθ2n and θ2n+2 = Ψθ2n+1, n = 0, 1, 2, . . . (13)

Then, by (12) and (13), we obtain

℘cb(θ2n+1, θ2n+2) = ℘cb(Πθ2n, Ψθ2n+1)

� fmax{℘cb(θ2n, θ2n+1),
℘cb(θ2n, θ2n+1)℘cb(Ψθ2n+1, Πθ2n)

1 + ℘cb(θ2n, θ2n+1)
,

℘cb(θ2n, Πθ2n, )℘cb(Πθ2n, Ψθ2n+1)

1 + ℘cb(θ2n, θ2n+1)
}

� fmax{℘cb(θ2n, θ2n+1),
℘cb(θ2n, θ2n+1)℘cb(θ2n+1, θ2n+2)

1 + ℘cb(θ2n, θ2n+1)
,

℘cb(θ2n, θ2n+1)℘cb(θ2n+1, θ2n+2)

1 + ℘cb(θ2n, θ2n+1)
}

� fmax{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2)}.

If max{℘cb(θ2n, θ2n+1),℘cb(θ2n+1, θ2n+2)} = ℘cb(θ2n+1, θ2n+2), then

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n+1, θ2n+2).

This shows that f ≥ 1, which is a contradiction. Therefore

℘cb(θ2n+1, θ2n+2) � f℘cb(θ2n, θ2n+1). (14)

Similarly, we obtain

℘cb(θ2n+2, θ2n+3) � f℘cb(θ2n+1, θ2n+2). (15)
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From (14) and (15), ∀n = 0, 1, 2, . . ., we get

℘cb(θn+1, θn+2) � f℘cb(θn, θn+1) � . . . � fn+1℘cb(θ0, θ1). (16)

For m, n ∈ N, with m > n, we have

℘cb(θn, θm) � ℘cb(θn, θn+1) + ℘cb(θn+1, θm)− ℘cb(θn+1, θn+1)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

− ℘cb(θn+2, θn+2)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θm)

� ℘cb(θn, θn+1) + ℘cb(θn+1, θn+2) + ℘cb(θn+2, θn+3)

+ . . . + ℘cb(θm−2, θm−1) + sm−n℘cb(θm−1, θm).

By using (16), we get

℘cb(θn, θm) � fn℘cb(θ0, θ1) +fn+1℘cb(θ0, θ1) +fn+2℘cb(θ0, θ1)

+ . . . +fm−2℘cb(θ0, θ1) +fm−1℘cb(θ0, θ1)

=
m−n

∑
i=1

fi+n−1℘cb(θ0, θ1).

Therefore,

|℘cb(θn, θm)| ≤
m−n

∑
i=1

fi+n−1|℘cb(θ0, θ1)| =
m−n

∑
i=1

ft|℘cb(θ0, θ1)|

≤
∞

∑
i=n

ft|℘cb(θ0, θ1)|

=
fn

1−f
|℘cb(θ0, θ1)|.

Hence, we have

|℘cb(θn, θm)| ≤
fn

1−f
|℘cb(θ0, θ1)| → 0 as n→ ∞.

Hence, {θn} is a Cauchy sequence in G. Since G is complete, there exists θ∗ ∈ G such
that θn → θ∗ as n→ ∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0.

Since Ψ is continuous, it yields

θ∗ = lim
n→∞

θ2n+2 = lim
n→∞

Ψθ2n+1 = Ψ lim
n→∞

θ2n+1 = Ψθ∗.

Similarly, by the continuity of Π, we get θ∗ = Πθ∗. Then the pair (Π, Ψ) has a common
fixed point. To prove uniqueness, let us consider that ω∗ ∈ G is another common fixed
point for the pair (Π, Ψ). Then



Mathematics 2021, 9, 1179 11 of 15

℘cb(θ
∗, ω∗) = ℘cb(Πθ∗, Ψω∗)

� fmax{℘cb(θ
∗, ω∗),

℘cb(θ
∗, Πθ∗)℘cb(ω

∗, Ψω∗)

1 + ℘cb(θ∗, ω∗)
,

℘cb(θ
∗, Πθ∗)℘cb(Ψω∗, Πθ∗)

1 + ℘cb(θ∗, ω∗)
}

� f℘cb(θ
∗, ω∗)

This implies that θ∗ = ω∗.

In the absence of the continuity condition for the mapping Π and Ψ in the Theorem 5,
we obtain the following result.

Theorem 6. Let (G,℘cb) be a complete CPMS and Π, Ψ : G → G be two mappings such that

℘cb(Πθ, Ψω) � fmax
{
℘cb(θ, ω),

℘cb(θ, Πθ)℘cb(ω, Ψω)

1 + ℘cb(θ, ω)
,
℘cb(θ, Πθ)℘cb(Πθ, Ψω)

1 + ℘cb(θ, ω)

}
, (17)

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πθ, Ψω) 6= 0. Then the pair (Π, Ψ) has a unique
common fixed point and ℘cb(θ

∗, θ∗) = 0.

Proof. Following from Theorem 5, we get that the sequence {θn} is a Cauchy sequence.
Since G is complete, then there exists θ∗ ∈ G such that θn → θ∗ as n→ ∞ and

℘cb(θ
∗, θ∗) = lim

n→∞
℘cb(θ

∗, θn) = lim
n→∞

℘cb(θn, θn) = 0.

Since Π and Ψ are not continuous, we have ℘cb(θ
∗, Πθ∗) = ϑ > 0.

Then, we estimate

ϑ = ℘cb(θ
∗, Πθ∗)

� ℘cb(θ
∗, θ2i+2) + ℘cb(θ2i+2, Πθ∗)− ℘cb(θ2i+2, θ2i+2)

� ℘cb(θ
∗, θ2i+2) + ℘cb(Πθ∗, θ2i+2)

� ℘cb(θ
∗, θ2i+2) + ℘cb(Πθ∗, Ψθ2i+1)

� ℘cb(θ
∗, θ2i+2) +fmax

{
℘cb(θ

∗, θ2i+1),
℘cb(θ

∗, Πθ∗)℘cb(θ2i+1, Ψθ2i+1)

1 + ℘cb(θ∗, θ2i+1)
,

℘cb(θ
∗, Πθ∗)℘cb(Πθ∗, Ψθ2i+1)

1 + ℘cb(θ∗, θ2i+1)

}
� ℘cb(θ

∗, θ2i+2) +fmax
{
℘cb(θ

∗, θ2i+1),
℘cb(θ

∗, Πθ∗)℘cb(θ2i+1, θ2i+2)

1 + ℘cb(θ∗, θ2i+1)
},

℘cb(θ
∗, Πθ∗)℘cb(Πθ∗, θ2i+2)

1 + ℘cb(θ∗, θ2i+1)

}
� ℘cb(θ

∗, θ2i+2) +f℘cb(θ
∗, Πθ∗)2

� ℘cb(θ
∗, θ2i+2) +fϑ2.

This yields

|ϑ| ≤ |℘cb(θ
∗, θ2i+2)|+f|ϑ|2.

Hence, f ≥ 1, which is a contradiction. Then θ∗ = Πθ∗. In the same way, we obtain
θ∗ = Ψθ∗. Hence, θ∗ is a common fixed point for the pair (Π, Ψ). For uniqueness of the
common fixed point, θ∗ follows from Theorem 5.

For Π = Ψ, we get the following fixed-points results on CPMS.
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Theorem 7. Let (G,℘cb) be a complete CPMS and Π : G → G be a continuous mapping such that

℘cb(Πθ, Πω) � fmax
{
℘cb(θ, ω),

℘cb(θ, Πθ)℘cb(ω, Πω)

1 + ℘cb(θ, ω)
,
℘cb(θ, Πθ)℘cb(Πθ, Πω)

1 + ℘cb(θ, ω)

}
,

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πθ, Πω) 6= 0. Then, Π has a unique fixed point and
℘cb(θ

∗, θ∗) = 0.

Remark 3. Similarly, in the absence of continuity condition, we can get a fixed point result on Π.

Corollary 2. Let (G,℘cb) be a complete CPMS and Π : G → G be a continuous mapping such that

℘cb(Π
nθ, Πnω) � fmax

{
℘cb(θ, ω),

℘cb(θ, Πnθ)℘cb(ω, Πnω)

1 + ℘cb(θ, ω)
,

℘cb(θ, Πnθ)℘cb(Πnθ, Πω)

1 + ℘cb(θ, ω)

}
,

for all θ, ω ∈ G, where 0 ≤ f < 1 and ℘cb(Πnθ, Πnω) 6= 0. Then Π has a unique fixed point
and ℘cb(θ

∗, θ∗) = 0.

Proof. By Theorem 5, we get θ∗ ∈ G such that Πnθ∗ = θ∗ and ℘cb(θ
∗, θ∗) = 0. Then we get

℘cb(Πθ∗, θ∗) = ℘cb(ΠΠnθ∗, Πnθ∗) = ℘cb(Π
nΠθ∗, Πnθ∗)

� fmax
{
℘cb(Πθ∗, θ∗),

℘cb(Πθ∗, ΠnΠθ∗)℘cb(θ
∗, Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)
,

℘cb(Πθ∗, ΠnΠθ∗)℘cb(ΠnΠθ∗, Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)

}
� fmax

{
℘cb(Πθ∗, θ∗),

℘cb(Πθ∗, ΠΠnθ∗)℘cb(θ
∗, Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)
,

℘cb(Πθ∗, ΠΠnθ∗)℘cb(ΠΠnθ∗, Πnθ∗)

1 + ℘cb(Πθ∗, θ∗)

}
= f℘cb(Πθ∗, θ∗).

Hence Πnθ∗ = Πθ∗ = θ∗. Then, Π has a unique fixed point.

Remark 4. From the above corollary 2, similarly, we get a fixed point result in the absence of
continuity condition for the mapping Π.

Example 1. Let G = {1, 2, 3, 4} be endowed with the order θ � ω if and only if θ ≤ ω. Then, �
is a partial order in G. Define the complex partial metric space ℘cb : G× G → C+ as follows:

(θ, ω) ℘cb(θ, ω)
(1,1), (2,2) 0
(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,3) eix

(1,4),(4,1),(2,4),(4,2),(3,4),(4,3),(4,4) 3eix

Obviously, (G,℘cb) is a complete CPMS for x ∈ [0, π
2 ]. Define Π, Ψ : G → G by Πθ = 1,

Ψ(θ) =

{
1 if θ ∈ {1, 2, 3}
2 if θ = 4.

Clearly Π and Ψ are continuous functions. Now, for f = 1
3 , we consider the following cases:

(A) If θ = 1 and ω ∈ G−{4}, then Π(θ) = Ψ(ω) = 1 and the conditions of Theorem 2 are satisfied.
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(B) If θ = 1, ω = 4, then Πθ = 1, Ψω = 2,

℘cb(Πθ, Ψω) = eix � 3 f eix

= fmax{3eix, 0, 3eix,
1
2
(eix + 3eix)}

= fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Ψω),
1
2
(℘cb(θ, Ψω) + ℘cb(ω, Πθ))},

(C) If θ = 2, ω = 4, then Πθ = 1, Ψω = 2,

℘cb(Πθ, Ψω) = eix � 3 f eix

= fmax{3eix, eix, 3eix,
1
2
(0 + 3eix)}

= fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Ψω),
1
2
(℘cb(θ, Ψω) + ℘cb(ω, Πθ))},

(D) If θ = 3, ω = 4, then Πθ = 1, Ψω = 2,

℘cb(Πθ, Ψω) = eix � 3 f eix

= fmax{3eix, eix, 3eix,
1
2
(eix + 3eix)}

= fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Ψω),
1
2
(℘cb(θ, Ψω) + ℘cb(ω, Πθ))},

(E) If θ = 4, ω = 4, then Πθ = 2, Ψω = 2,

℘cb(Πθ, Ψω) = eix � 3 f eix

= fmax{3eix, 3eix, 3eix,
1
2
(3eix + 3eix)}

= fmax{℘cb(θ, ω),℘cb(θ, Πθ),℘cb(ω, Ψω),
1
2
(℘cb(θ, Ψω) + ℘cb(ω, Πθ))},

Moreover, for f = 1
3 , with f < 1, the conditions of Theorem 2 are satisfied. Therefore, 1 is

the unique common fixed point of Π and Ψ.

4. Application

Consider the following systems of nonlinear integral equations:

w(s) = F(s) +
∫ b

a
T1(s, p, w(p))dp, (18)

and

z(s) = F(s) +
∫ b

a
T2(s, p, z(p))dp, (19)

where

(i) F : [a, b]→ Rn is a continuous mapping and F(s) is a given function in (C([a, b]),Rn),
(ii) w(s) and z(s) are unknown variables for each s ∈ J = [a, b], b > a ≥ 0,
(iii) T1(s, p) and T2(s, p) are deterministic kernels defined for s, p ∈ J = [a, b].
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In this section, we present an existence theorem for a common solution to (18) and (19)
that belongs to G = (C(J),Rn) (the set of continuous functions defined on J) by using
the obtained result in Theorem 2. We consider the continuous mappings Π, Ψ : G → G
given by

Πw(s) = F(s) +
∫ b

a
T1(s, p, w(p))dp, w ∈ G, s ∈ J,

and

Ψz(s) = F(s) +
∫ b

a
T2(s, p, z(p))dp, z ∈ G, s ∈ J,

Then, the existence of a common solution to the nonlinear integral Equations (18)
and (19) is equivalent to the existence of a common fixed point of Π and Ψ. It is well known
that G, endowed with the metric ℘cb, defined by

℘cb(w, z) = sup
s∈J
|w(s)− z(s)|+ 2,

for all w, z ∈ G, is a complete CPMS. G can also be equipped with the partial order �
given by

w, z ∈ G, w � z if and only w(s) ≥ z(s), for all s ∈ J.

Further, let us consider a system of nonlinear integral equation as (18) and (19) under
the following condition hold:

(A) T1, T2 : J × J ×Rn → Rn are continuous functions satisfying

|T1(s, p, w(p))− T2(s, p, z(p))| � S(w, z)
(b− a)et −

2
b− a

, ∀t > 0,

where

S(w, z) = max{℘cb(w, z),℘cb(w, Πw),℘cb(z, Ψz),
1
2
(℘cb(w, Ψz) + ℘cb(z, Πw))}.

Theorem 8. Let (C(J),Rn,℘cb) be a complete CPMS; then, the system (18) and (19) under
condition (A) have a unique common solution.

Proof. For w, z ∈ (C(J),Rn) and s ∈ J, we define the continuous mappings Π, Ψ : G → G by

Πw(s) = F(s) +
∫ b

a
T1(s, p, w(p))dp,

and

Ψz(s) = F(s) +
∫ b

a
T2(s, p, z(p))dp.
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Then, we have

℘cb(Πw(s), Ψz(s)) = sup
s∈J
|Πw(s)−Ψz(s)|+ 2

�
∫ b

a
|T1(s, p, w(p))− T2(s, p, z(p))|dp + 2

�
∫ b

a

(
S(w, z)
(b− a)et −

2
b− a

)
dp + 2

=
S(w, z)

et

= fS(w, z)

= fmax{℘cb(w, z),℘cb(w, Πw),℘cb(z, Ψz),
1
2
(℘cb(w, Ψz) + ℘cb(z, Πw))}.

Hence, all the conditions of Theorem 2 are satisfied for 0 < f = 1
et < 1 with

t > 0. Therefore the system of nonlinear integral Equations (18) and (19) have a unique
common solution.

5. Conclusions

In this paper, we proved some common fixed-point theorems on complex partial
metric space. An illustrative example and application on complex partial metric space
is given.
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