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Abstract: To protect the environment and achieve the Sustainable Development Goals (SDGs), re-
ducing greenhouse gas emissions has been actively promoted by global governments. Thus, clean 
energy, such as wind power, has become a very important topic among global governments. How-
ever, accurately forecasting wind power output is not a straightforward task. The present study 
attempts to develop a fuzzy seasonal long short-term memory network (FSLSTM) that includes the 
fuzzy decomposition method and long short-term memory network (LSTM) to forecast a monthly 
wind power output dataset. LSTM technology has been successfully applied to forecasting prob-
lems, especially time series problems. This study first adopts the fuzzy seasonal index into the fuzzy 
LSTM model, which effectively extends the traditional LSTM technology. The FSLSTM, LSTM, au-
toregressive integrated moving average (ARIMA), generalized regression neural network (GRNN), 
back propagation neural network (BPNN), least square support vector regression (LSSVR), and sea-
sonal autoregressive integrated moving average (SARIMA) models are then used to forecast 
monthly wind power output datasets in Taiwan. The empirical results indicate that FSLSTM can 
obtain better performance in terms of forecasting accuracy than the other methods. Therefore, 
FSLSTM can efficiently provide credible prediction values for Taiwan’s wind power output da-
tasets. 
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1. Introduction 
Wind power generation is replacing power generation via extensive gas-flow and 

uses wind to drive wind turbines. In 2000, to protect the environment, the Taiwanese gov-
ernment actively promoted the use of clean energy to reduce the greenhouse gas emis-
sions generated by traditional power generation methods such as thermal power genera-
tion. The Taiwanese government’s expectations for wind power generation are very high. 
The government has developed an offshore wind power facility, the main goal of which 
is to generate enough electricity so that renewable energy can replace nuclear power gen-
eration. The vision of the Taiwanese government is to build a strong support industry by 
manufacturing the necessary wind turbine components, towers, and underwater cables 
for coastal engineering; by building underwater foundation pile; and by installing gener-
ators several miles offshore. According to statistics from the International Energy Agency, 
offshore wind power currently accounts for only 0.3% of global power generation, but 
experts have noted that wind power generation is expected to rapidly grow in the next 20 
years, representing a business opportunity of up to one trillion US dollars. Therefore, the 
accuracy of wind power forecasting is a very important issue that could help governments 
to engage in effective policy planning. In recent years, many studies have investigated 
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wind speed and power forecasting and adopted various prediction models to improve 
wind power generation forecasting. Lu et al. [1,2] used the Takagi–Sugeno fuzzy model 
to predict wind speed and power. Yu et al. [3] developed hybrid models that combine the 
wavelet transform (WT) with the support vector machine (SVM), gated recurrent units 
network (GRU), standard recurrent neural network (RNN), and LSTM models for wind-
speed forecasting. Using the WT can decompose the original wind time series into several 
subseries with better behavior and greater predictability. The results indicated that the 
hybrid models WT-RNN-SVM, WT-LSTM-SVM, and WT-GRU-SVM obtained the best 
performance. Zjavka and Mišák [4] noted that wind output power forecasting entails cha-
otic large-scale patterns and has a high correlation with atmospheric circulation processes. 
The authors adopted the polynomial decomposition of the general differential equation, 
which represents the elementary Laplace transformations of a searched function, to pre-
dict the daily wind power. The results showed that their method can obtain lower casual 
errors due to using the decomposition method. Liu et al. [5] used combined wavelet 
packet decomposition with a convolutional neural network and convolutional long short-
term memory network to forecast one-day wind speed. In the one-day wind speed time 
series, the model was able to obtain robust and effective performance. Toubeau et al. [6] 
adopted the LSTM to efficiently capture the complex temporal dynamics needed for wind 
power prediction.  

When the RNN is applied to long-term dependence, the processing unit will continue 
to add and calculate the previously memorized information, causing the neural network 
to explode or disappear and eventually leading the network to collapse. Recurrent neural 
networks are weak in terms of learning long-term dependence [7]. To improve the short-
comings of recurrent neural networks, Hochreiter and Schmidhuber [8] proposed the long 
short-term nemory (LSTM) network in 1997. The long short-term memory model was de-
veloped on the basis of recurrent neural networks and is of a cyclical type. LSTM is a 
neural network architecture that adds the forget gate, input gate, and output gate to the 
processing unit in the hidden layer, the purpose of which is to read more past information. 
The model will first determine whether the information is useful, and then decide whether 
to add or delete the information to increase the ability of the neural network to be reliable 
over a long period. 

Comparing the cyclic neural network and the long short-term memory model, it can 
be seen that the cyclic neural network will only receive the information calculated in the 
previous pass, while the long short-term memory model not only receives the information 
calculated in the last iteration but also all past messages. The long short-term memory 
model not only retains the advantages of the recurrent neural network but is also able to 
handle short-term dependencies. Therefore, the LSTM model can solve many tasks that 
the recurrent neural network could not solve in the past [7]. The development of short-
term memory models has thus far provided help in various processing tasks, and they are 
widely used in various fields such as speech recognition [9,10], handwriting recognition 
[11], and predictions [12–14]. Table 1 summarizes the long and short-term memory mod-
els used to make predictions in related literature since 2015. Tian and Pan [15] used LSTM 
to predict the time series of car traffic, and the prediction time interval was divided into 
four types; the prediction accuracy of the five models was then compared and generalized. 
The study indicated that the prediction accuracy rate of LSTM was the best. This showed 
that LSTM has a high predictive ability and high generalization ability and that LSTM is 
better than RNN. Liu et al. [16] explores the prediction accuracy of LSTM on neonatal 
brainwave maps with different numbers of neurons. To verify the feasibility of LSTM, the 
study also compared LSTM with RNN. The results showed that LSTM is better than RNN. 
Janardhanan and Barrett [17] used LSTM to predict the computer CPU usage of Google’s 
data center in time series. Based on the results of multiple computers, the mean absolute 
percentage error (MAPE) value of the LSTM model was 17–23%, and that of the ARIMA 
model was 37–42%. Siami-Namini et al. [18] adopted LSTM to predict six financial indexes 
and six economic indexes. In the financial and economic average forecast results, the error 
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rates of LSTM forecasting were 87% and 84% lower than that of ARIMA, respectively. 
Phyo et al. [19] used LSTM and the Deep Confidence Network (DBN) to predict the power 
load in Thailand, and the prediction accuracy of the two models was compared. The re-
sults showed that LSTM offers better predictive ability. Fan et al. [20] developed an inte-
grated method that combined the ARIMA model with the LSTM model. Shahid et al. [21] 
developed a novel genetic long short-term memory (GLSTM) method; this method im-
proved wind power predictions from 6% to 30% compared to existing techniques. Zhang 
et al. [22] developed a convolutional neural network model based on a deep factorization 
machine and attention mechanism (FA-CNN). The results indicated that FA-CNN ob-
tained better performance than the traditional LSTM. 

Table 1. Long short-term memory (LSTM) applications from 2015. 

Author Applied Field Methodology Compared Methodology 

Tian and Pan [15] Traffic LSTM  

SVR, Random Walker (RW), 
Fuzzy Neural Network 

(FNN), and Stacked Autoen-
coder (SAE) 

Liu et al. [16] Electroencephalography LSTM RNN 
Janardhanan and 

Barrett [17] 
CPU usage of Google’s data 

center 
LSTM ARIMA 

Siami-Namini et 
al. [18] 

Financial index and eco-
nomic indexes 

LSTM  ARIMA 

Phyo et al. [19] Power load LSTM  
Deep Confidence Network 

(DBN) 

Fan et al. [20] Production forecasting 
Integrates the ARIMA model and the 

LSTM model.   ARIMA  

Shahid et al. [21] Wind power GLSTM LSTM 

Zhang et al. [22] Stock price movement pre-
diction 

FA-CNN LSTM 

In this study, the prediction model adopts three LSTMs with fuzzy seasonal indexes 
to approach the fuzzy set’s upper and lower bounds, respectively, as well as mode pre-
diction values. This is a novel prediction model for wind power output forecasting. The 
rest of this paper is organized as follows. Section 2 introduces the fuzzy seasonal LSTM 
(FSLSTM) in detail, which include fuzzy seasonal decomposition and fuzzy LSTM tech-
nology. Section 3 presents the experimental results of the FSLSTM for wind power output 
prediction. Finally, we draw conclusions and make suggestions for future research in  
Section 4. 

2. Fuzzy Seasonal LSTM for Wind Power Output 
In this study, the wind power output dataset is examined. This dataset is further di-

vided into training, validation, and testing datasets, respectively. Firstly, the fuzzy sea-
sonal index is calculated by seasonal trend decomposition. This method can define the 
fuzzy seasonal membership function with time series, and then the fuzzy trend dataset 
can be estimated using the multiplicative model. LSTM is employed to predict the fuzzy 
trend datasets for the upper bound, lower bound, and mode values. Based on the fuzzy 
LSTM and fuzzy seasonal index, the final forecasting report can be obtained using the 
measure index. A flowchart of the fuzzy seasonal LSTM for wind power output is shown 
in Figure 1. 
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Figure 1. A flowchart of the fuzzy seasonal LSTM prediction model. 

2.1. Fuzzy Seasonal Decomposition  
Chang [21] proposed the fuzzy seasonality index *

kS , which is defined as possessing 
a triangular membership function, from the seasonality index set. Chang [23] determined 

*
kS  as follows: 

* U
( 1) ( 2)

( 1) ( 2)

( , , ) (min( , ,..., ),
, max( , ,..., )), 1,...,

+ − + × + − + × + ×

+ − + × + − + × + ×

= =

=

L M
k k k k k T W m k T W m k T m

k k T W m k T W m k T m

S s s s s s s
s s s s k m

 (1)

where U, ,L M
k k ks s s  are the W-period lower bound, W-period smoothing-operators (1 ≤ W ≤ 

T), and W-period upper bound, respectively.  
In a time-series problem, reducing seasonality for time series predictions is very im-

portant. The fuzzy seasonality index has been shown to effectively obtain good perfor-
mance in time series predictions. Therefore, this study proposes a novel fuzzy seasonal 
LSTM that uses the fuzzy seasonality index and a decomposition method to solve the sea-
sonal time series problem. The multiplicative model is employed in the time series prob-
lem. Moreover, the IFLR with a spread unrestricted model is combined with symmetrical 
triangular FNs for forecasting and can obtain an accurately estimated value using Equa-
tion (3). Therefore, in the proposed model, a multiplicative model is used to obtain FNs 
based on a fuzzy seasonality index, as follows: 


( ) ( ) ( ) ( )( , , )ε ε ε+ + + + + + + += × × × × × ×I LTr L MTr M UTr U

k T v k T v k k T v k k T v kF f s f s f s  (2)
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where ( )+ +k T vF  represents the fuzzy seasonal LSTM forecast value, ( )+ +
LTr
k T vf  is the lower-

bound estimated value of the trend, MTr
( )+ +k T vf  is the mode estimated value of the trend, 

UTr
( )+ +k T vf  is the upper-bound estimated value of the trend, and ε is the model noise. The 

proposed fuzzy seasonal LSTM model can effectively use fuzzy seasonal decomposition 
to reduce seasonal effects in time series problems. 

2.2. Fuzzy Seasonal LSTM Model 
In the fuzzy seasonal LSTM model, the fuzzy trend lower bound, upper bound, and 

mode values must be trained. Therefore, the construction of the fuzzy LSTM method with 
the input lower bound of {(xi, LTr

if ), i = 1, 2, …, N}, mode {(xi, MTr
if ), i = 1, 2, …, N}, and the 

upper bound of {(xi, UTr
if ), i = 1, 2, …, N}, respectively, can be represented as follows:  

( ) tan ( )= = ⊗L
LTr i i Li Lif x Y o h c  (3)

( ) tan ( )= = ⊗M
MTr i i Mi Mif x Y o h c  (4)

( ) tan ( )= = ⊗U
UTr i i Ui Uif x Y o h c  (5)

where the fuzzy long-term state c  is (cLi, cMi, cUi), and the output gate o  (oLi, oMi, oUi) can 
be estimated.  

A fully connected fuzzy LSTM unit contains four layers, as with the traditional 
LSTM, and the fuzzy input vector (xi) and previous fuzzy short-term memory (1−ih ) are 
imported into these four layers (Figure 2). ig  is the main layer of the fuzzy LSTM and 
uses the tanh activation function, and the fuzzy output data are stored in fuzzy long-term 
memory  ic . The other three layers use logic activation functions, and their output ranges 
from 0 to 1.  if fi is the fuzzy forget gate that controls which parts of long-term memory 
should be deleted.  iI  is the fuzzy input gate that determines which parts of the fuzzy 
input should be added. io  is the gate that controls which parts of the fuzzy long-term 
memory should be read and the fuzzy output at this time step, =LTr L

i if h , =MTr M
i if h , and 

=UTr U
i if h . 

 
Figure 2. A construction diagram of the fuzzy LSTM prediction model. 

The operation can be written as follows:  
Fuzzy input gate: 

 ( ( ( 1) ), ( ( 1) ), ( ( 1) ))σ σ σ= + − + + − + + − +
LI LI MI MI UI

T T T T T T
i x Li h L LI x Mi h M Mi x Ui hI U UII W x W h i b W x W h i b W x W h i b  (6)

Fuzzy forget gate: 
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 ( ( ( 1) ), ( ( 1) ), ( ( 1) ))σ σ σ= + − + + − + + − +
Lf Mf Mf Uf Uf

T T T T T T
i x Li hf L Lf x Mi h M Mf x Ui h U Uff W x W h i b W x W h i b W x W h i b  (7)

Output gate: 

 ( ( ( 1) ), ( ( 1) ), ( ( 1) ))σ σ σ= + − + + − + + − +
Lo Mo Mo Uo Uo

T T T T T T
i x Li ho L Lo x Mi h M Mo x Ui h U Uoo W x W h i b W x W h i b W x W h i b  (8)

Neuron input and cell input: 

 ( ( ( 1) ), ( ( 1) ), ( ( 1) ))σ σ σ= + − + + − + + − +
Lg Mg Mg Ug Ug

T T T T T T
i x Li hg L Lg x Mi h M Mg x Ui h U Ugg W x W h i b W x W h i b W x W h i b  (9)

where ( , , )=
LI MI UI

T T T
xI x x xW W W W , ( , , )=

Lf Mf Uf

T T T
xf x x xW W W W , ( , , )=

Lo Mo Uo

T T T
xo x x xW W W W , and 

( , , )=
Lg Mg g

T T T
xg x x xW W W W  are the fuzzy weight matrices of each of the four layers used for their 

connections with the fuzzy input vector, and the fuzzy weight matrices are connected to 
the fuzzy short-term state 1−ih .  𝑏 , 𝑏 , 𝑏 , 𝑏  ( , , )=I LI MI UIb b b b , ( , , )=f Lf Mf Ufb b b b , 
( , , )=o Lo Mo Uob b b b  and ( , , )=g Lg Mg Ugb b b b  are the deviation terms of each of the four layers, 
tanh is the hyperbolic tangent function (e(x) − e(-x))/(e(x) + e(-x)), and 𝜎 is the sigmoid function 
1/(1 + e(−x)). 

Finally, the long-term and short-term states are calculated as follows: 
Fuzzy long-term state: 

    
1−= × + ×i i i i ic f c I g  (10)

Fuzzy short-term state: 

   tanh( )= = ×i i i iY h o c  (11)

Moreover, this FSLSTM adopts the adaptive moment estimation (Adam) optimiza-
tion algorithm from Kingma and Ba [24], which employs stochastic optimization, to search 
for the proper parameters of the FSLSTM. The Adam optimization algorithm was demon-
strated empirically to show that convergence meets the expectations of the theoretical 
analysis. The proposed FSLSTM can achieve robust performance based on the Adam op-
timization algorithm. The maximum epochs, initial parameters learning rate, gradient 
threshold, learn rate drop period, and learn rate drop factor of FSLSTM are 250, 0.005, 1, 
125, and 0.2, respectively.  

3. A Wind Power Output Example and Empirical Results 
Energy conservation and decreasing carbon are very important management issues 

for the global power industry. To demonstrate its concern regarding the global warming 
issue and to comply with the government’s Sustainable Energy Guidelines, the Taiwanese 
government is actively promoting the use of clean energy. The Taipower company has 
built 17 wind energy power stations in Taiwan that record monthly data on the total 
power output. All experimental data can be download from the National Development 
Council in Taiwan (https://data.gov.tw (accessed on 21 July 2020)). In this study, we se-
lected three wind energy power stations: the Shimen, Taichung, and Mailiao wind power 
plants. Figure 3 and Table 2 depict the monthly generated output power (units: kilowatt-
hours) from these wind power stations during the period from January 2017 to June 2020 
(the total number is 42). In this study, the monthly data were divided into three sets: 
firstly, a training set was employed to determine the optimum forecasting model during 
the period from January 2017 to December 2018 (the number of samples in the training set 
was 24); secondly, a validation set was employed to prevent the overfitting of the different 
models during the period from January 2019 to December 2019 (the number of samples in 
the validation set was 24); finally, a testing set was employed to investigate the perfor-
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mance of the different models during the period from January 2020 to June 2020 (the num-
ber of samples in the testing set was 24). The percentages of training, validation, and test-
ing sets were 57%, 29%, and 14%, respectively.  

 
Figure 3. Illustration of the actual power output of the three wind power stations. 

Table 2. The actual power output of the three wind power stations (units: kilowatt-hours). 

Date Shimen Taichung Mailiao 
2017/01 463,283 696,640 16,804,318 
2017/02 407,258 630,978 14,938,148 
2017/03 419,363 440,900 10,740,085 
2017/04 336,234 220,980 6,313,574 
2017/05 350,142 166,390 3,919,309 
2017/06 195,069 124,600 4,899,275 
2017/07 172,429 78,330 2,342,427 
2017/08 349,341 92,620 2,677,669 
2017/09 330,570 109,600 2,426,662 
2017/10 1,239,911 599,700 13,307,824 
2017/11 741,605 516,784 14,782,631 
2017/12 987,529 688,270 12,469,649 
2018/01 699,627 578,820 14,875,834 
2018/02 573,615 527,320 12,316,626 
2018/03 428,185 339,634 8,437,488 
2018/04 267,650 169,866 4,483,353 
2018/05 260,618 127,692 3150,546 
2018/06 268,476 217,353 6,132,870 
2018/07 461,025 113,979 2,889,834 
2018/08 197,814 81,125 3,290,543 
2018/09 391,113 289,650 8,800,633 
2018/10 631,983 627,877 14,854,486 
2018/11 498,720 381,956 9,282,346 
2018/12 791,605 722,624 18,553,027 
2019/01 737,047 719,896 18,322,239 
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2019/02 520,684 408,360 9,729,809 
2019/03 651,798 328,996 7,658,895 
2019/04 388,595 207,114 5,157,800 
2019/05 386,277 199,886 4,300,127 
2019/06 159,193 109,585 2,964,455 
2019/07 211,329 149,040 3,339,550 
2019/08 339,098 178,123 5,414,371 
2019/09 589,619 418,682 9,185,376 
2019/10 491,982 541,496 11,115,453 
2019/11 845,222 659,646 15,558,639 
2019/12 664,395 340,702 14,464,274 
2020/01 482,289 421,826 12,276,955 
2020/02 398,281 396,284 9,756,250 
2020/03 345,802 328,177 8,338,542 
2020/04 531,022 347,579 6,938,541 
2020/05 192,987 81,714 2,937,135 
2020/06 195,061 63,884 3,445,273 

Figure 3 clearly indicates that the measured time series feature seasonal data and 
three types of cycles for the different wind power plants. The Mailiao wind power plant 
can generate greater power because the Mailiao wind power plant features the largest 
number of wind-driven generators in Taiwan. Moreover, a larger power output can be 
obtained during winter in Taiwan as a result of the northeast monsoon. Table 3 depict the 
fuzzy seasonality index with k ranging from 1 to 12 from the selected wind power stations. 
In addition, the mean absolute percentage error MAPE(%) was used to measure the fore-
casting accuracy. Equation (12) illustrates the expression of MAPE(%): 

Table 3. The fuzzy seasonality index of the three wind power stations. 

Fuzzy Seasonality Index 
Shimen Taichung Mailiao 

L
ks  M

ks  U
ks  L

ks  M
ks  U

ks  L
ks  M

ks  U
ks  

k = 1 0.6785 1.4709 1.4709 0.5272 1.9039 1.9039 0.5243 1.8802 1.8802 
k =2 0.6785 1.1148 1.1148 0.4536 1.3659 1.3659 0.4055 1.2493 1.2493 
k =3 0.4611 1.1029 1.1029 0.4536 0.9512 0.9512 0.4055 0.8875 0.8875 
k =4 0.4464 0.6785 0.6810 0.2734 0.5272 0.5272 0.3072 0.5243 0.5243 
k =5 0.4464 0.6810 0.6848 0.2497 0.4536 0.4667 0.3072 0.4055 0.4979 
k =6 0.4464 0.4611 0.8694 0.2497 0.4667 0.5819 0.3072 0.4979 0.9466 
k =7 0.4464 0.4464 1.3626 0.2497 0.2734 1.8128 0.3072 0.3072 1.5730 
k =8 0.6848 0.6848 1.4587 0.2497 0.2497 1.8128 0.3484 0.3484 1.7477 
k =9 0.8694 0.8694 1.6686 0.5819 0.5819 2.0790 0.9466 0.9466 1.7477 

k =10 1.3626 1.3626 1.6686 1.3342 1.8128 2.0790 1.5730 1.5730 1.8802 
k =11 1.1148 1.4587 1.6686 1.3342 1.3342 2.0790 1.2493 1.7477 1.8802 
k =12 1.1029 1.6686 1.6686 0.9512 2.0790 2.0790 0.8875 1.6318 1.8802 

 

1

100(%)
=

−
= 

M
i i

i i

A P
MAPE

M A
 (12)

where M is the number of forecasting periods, Ai is the actual production value at period 
i, and Pi is the forecasting production value at period i. Moreover, the RMSE is employed 
to evaluate the training error of FSLSTM, which can be expressed as follows: 
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( )2

1

1RMSE A
=

= −
M

i i
i

P
M

 (13)

Figure 4 shows the training error of the FSLSTM in three wind power stations, adopt-
ing the Adam algorithm. We can observe that the FSLSTM can obtain a lower RMSE train-
ing error (smaller than 0.2) in three wind power stations. 

 
(a) Shimen wind power plant 

 
(b) Taichung wind power plant 

 
(c) Mailiao wind power plant 

Figure 4. Illustration of the training error of the FSLSTM for the three wind power stations. 
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In this study, the FSLSTM, LSTM [8], ARIMA(1, 0, 0) [25], generalized regression 
neural network (GRNN) [26], back propagation neural network (BPNN) [27], least square 
support vector regression (LSSVR) [28], and seasonal autoregressive integrated moving 
average (SARIMA (1, 0, 0) (1, 0, 0)12) [25] models were used to forecast the monthly wind 
power output datasets in selected stations in Taiwan. The construction of LSTM is similar 
to that of the FSLSTM (see Section 2.1). The LSTM network also adopted the Adam opti-
mization algorithm to search for optimal parameters. The ARIMA is similar to SARIMA 
(see Appendix A), with a difference in seasonal parameters. The construction and param-
eter (σ) of the GRNN is shown in Appendix B. The parameter (σ) of the GRNN was set to 
1. In this study, a well-known intelligent computing machine, BPNN, is also adopted to 
compare prediction models. In the BPNN, the input layer has one input neuron to catch 
the input patterns, the hidden layer has ten neurons to propagate the intermediate signals, 
and the output layer has one neuron. For more training assignments in the BPNN, the 
hyperbolic tangent sigmoid function is employed as the activation function in the hidden 
layer, the pure-line transfer function is employed in the output layer as the activation 
function, and the gradient training is adopted as the learning algorithm for the BPNN. 
The LSSVR is a popular prediction model in time series problems. For the main constructs 
of the LSSVR, readers can be refer to [28], and the regularization parameter in the experi-
ment was set to 1. The Radial Basis Function (RBF) Kernel Trick was employed in the 
LSSVR, and the parameter (σ) of the RBF was set to 0.01. Table 4 depicts the training error 
with various prediction models. The proposed FSLSTM, LSTM, and GRNN approaches 
could obtain lower training errors, which means that the training models of the three ap-
proach achieved better performance.  

Table 4. Comparison of the training error (RMSE) with various prediction models for different wind power plants. 

 FSLTM LSTM BPNN GRNN LSSVR ARIMA SARIMA 
Shimen 0.0770 0.1689 508,0396 0 121,188 1,307,183 866,451 
Mailiao 0.1324 0.0592 498,9503 0 2,065,173 22,174,287 15,002,000 

Taichung 0.4032 0.0129 208,901 0 90,886 980,862 591,422 

Table 5 illustrates the actual values and experimental results of the FSLSTM model 
with the mode (M) and upper (U) and lower (L) bounds from January 2020 to June 2020 
for the Shimen wind power plant. Figure 5a makes a point-to-point comparison of the 
actual values and predicted values of FSLSTM. As shown in Figure 4, the peak power 
output was in April 2020, which was not easily observed in the training dataset. Figure 5b 
shows a comparison of the actual values and predicted values of ARIMA, SARIMA, 
GRNN, BPNN, LSTM, and FSLSTM-L for the Shimen wind power plant.  

Table 5. Comparison of the forecasting results for the Shimen wind power plant. 

Date 

Actu
al 

Valu
e 

ARIMA SARIMA GRNN BPNN LSSVR LSTM 

FSLSTM 

M U L 

2020/01 482,2
89 

265,130 807,339 463,283 484,678 538,345 663,547 644,17
3 

506,53
3 

458,77
6 

2020/02 398,2
81 264,905 536,142 407,258 484,678 495,248 545,863 488,20

1 
599,49

7 
564,28

6 

2020/03 
345,8

02 264,996 447,263 419,363 484,678 486,974 390,044 
482,98

0 
472,88

9 
345,59

4 

2020/04 531,0
22 

264,959 267,414 336,234 484,678 486,252 274,106 297,13
1 

430,32
4 

426,51
8 
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2020/05 192,9
87 264,974 265,935 350,142 484,678 486,224 291,349 298,22

0 
438,83

9 
297,13

0 

2020/06 
195,0

61 264,968 264,577 195,069 484,678 486,223 263,500 
201,93

9 
270,34

0 
343,18

7 
MAPE 

(%) 
 37.51 42.41 24.26 61.78 64.40 36.97 32.98 46.20 32.69 

Ranking  (5) (6) (1) (8) (9) (4) (3) (7) (2) 
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(a) FSLSTM 

 
(b) Various models 

Figure 5. Illustration of the actual and forecasted power outputs of various models for the Shimen wind power plant. 

Table 5 shows the experimental results and MAPE(%) obtained by various models. 
The ranking of MAPE(%) is as follows: GRNN < FSLSTM-L < FSLSTM-M < LSTM < 
ARIMA < SARIMA < FSLSTM-U < BPNN < LSSVR. Table 4 indicates that the GRNN ob-
tained the smallest MAPE(%), showing the best performance. However, Figure 5 shows 
that the predicted value of the GRNN could not capture the trend of power output at the 
Shimen wind power plant. The FSLSTM-L model was able to efficiently capture the trends 
of the data by using the fuzzy seasonal index, although the MAPE(%) of the FSLSTM-L 
was higher than that of the GRNN in the example. Thus, the proposed FSLSTM model is 
suggested to serve as a prediction model for power output for the Shimen wind power 
plant.  

Table 6 illustrates the actual values and experimental results of the proposed model 
for the Taichung wind power plant. Figure 6a makes a point-to-point comparison between 
the actual values and predicted values of the FSLSTM at the Taichung wind power plant. 
Downward trends of power output can be observed in Figure 5. Figure 6b illustrates a 
comparison between the actual values and predicted values of the ARIMA, SARIMA, 
GRNN, BPNN, LSTM, and FSLSTM-M models for the Taichung wind power plant.  

Table 6. Comparison of the forecasting results for the Taichung wind power plant. 

Date 
Actual 
Value 

ARIM
A 

SARIM
A 

GRN
N 

BPNN LSSVR LSTM 
FSLSTM 

M U L 

2020/01 421,826 325,087 901,020 696,64
0 355,700 355,520 366,148 294,62

9 678,346 209,46
0 

2020/02 396,284 310,188 319,967 
630,97

8 355,700 355,510 698,414 
297,07

2 479,634 
340,95

8 

2020/03 328,177 295,972 370,365 440,90
0 

355,700 355,500 466,354 247,76
7 

297,040 799,89
6 

2020/04 347,579 282,408 186,543 220,98
0 

355,700 355,491 615,672 149,12
7 

170,964 942,93
3 

2020/05 81,714 269,465 209,163 
166,39

0 355,700 355,481 462,467 
133,02

4 502,598 
327,88

2 

2020/06 63,884 257,115 104,727 
124,60

0 355,700 355,471 411,278 
141,57

8 161,424 
268,07

0 
MAPE(%

) 
 100.909

9 
68.6577 65.634

9 
138.121

8 
151.493

9 
203.070

5 
53.532

6 
134.983

0 
166.70 

Ranking  (9) (2) (4) (8) (6) (5) (1) (3) (7) 
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(a) FSLSTM (b) Various models 

Figure 6. Illustration of the actual and forecasting power outputs of various models for the Taichung wind power plant. 

Table 6 shows the experimental results and MAPE(%) obtained by various models 
for the Taichung wind power plant. The ranking of MAPE(%) is FSLSTM-M < SARIMA < 
FSLSTM-U < GRNN < LSTM < LSSVR < FSLSTM-L < BPNN < ARIMA. Table 5 indicates 
that the FSLSTM-M obtained the smallest MAPE(%), which means that FSLSTM-M 
achieved the best performance in this example. Moreover, Figure 6 shows that the pre-
dicted value of the FSLSTM-M was able to capture the trend of power output at the Tai-
chung wind power plant. Moreover, the two seasonal models, FSLSTM-M and SARIMA, 
obtained better performance than the other models, possibly because the power output at 
the Taichung wind power plant has a seasonal influence. Thus, the proposed FSLSTM 
model is also suggested to serve as a prediction model for power output at the Taichung 
wind power plant.  

Table 7 illustrates the actual values and experimental results of the proposed model 
for the Mailiao wind power plant. Figure 7a also makes a point-to-point comparison of 
the actual values and predicted values of FSLSTM at the Mailiao wind power plant. As 
with the Taichung wind power plant, downward trends of power output can be observed 
in Figure 7 for the Mailiao wind power plant. Because the Mailiao wind power plant pro-
vides a larger quantity of wind power generation than the other power plants, Mailiao 
outputs more power in KWh. Figure 7b shows a comparison between the actual values 
and predicted values of ARIMA, SARIMA, GRNN, BPNN, LSTM, and FSLSTM-M models 
at the Mailiao wind power plant.  

Table 7. Comparison of the forecasting results for the Mailiao wind power plant. 

Date 
Actual 
Value 

ARIM
A 

SARIM
A 

GRNN BPNN LSSVR LSTM 
FSLSTM 

M U L 

2020/01 12,276,9
55 

14,382,8
52 

19,238,92
8 

16,804,3
18 

8,886,1
15 

10,655,7
25 

11,490,8
91 

15,802,9
02 

17,649,3
61 

2,738,42
6 

2020/02 9,756,25
0 

14,301,8
88 

9,495,570 14,938,1
48 

8,886,1
15 

9,381,11
0 

9,797,06
1 

8,654,35
4 

11,218,3
79 

7,435,08
6 

2020/03 
8,338,54

2 
14,221,3

79 7,698,419 
10,740,0

85 
8,886,1

15 
9,060,78

8 
3,481,33

6 
8,168,19

4 
6,652,35

3 
21,668,4

92 

2020/04 
6,938,54

1 
14,141,3

24 5,138,157 
6,313,57

4 
8,886,1

15 
9,027,75

9 
1,163,31

7 
5,596,07

5 
3,765,75

4 
16,162,7

12 

2020/05 2,937,13
5 

14,061,7
20 

4,296,410 3,919,30
9 

8,886,1
15 

9,026,36
1 

5,262,66
5 

3,750,84
2 

2,366,47
9 

2,354,68
4 

2020/06 3,445,27
3 

13,982,5
63 2,959,347 4,899,27

5 
8,886,1

15 
9,026,33

7 
3,460,06

8 
3,445,27

3 
3,011,63

8 
2,864,92

5 
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MAPE(
%)  153.784

6 25.5645 33.9068 71.939
9 70.8555 37.9852 14.8515 26.1184 71.8270 

Ranking  (9) (2) (4) (8) (6) (5) (1) (3) (7) 
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(a) FSLSTM 

 
(b) Various models 

Figure 7. Illustration of the actual and forecasting power output of various models for the Mailiao wind power plant. 

Table 7 shows the experimental results and MAPE(%) obtained using various models 
for the Mailiao wind power plant. The ranking of MAPE(%) is FSLSTM-M < SARIMA < 
FSLSTM-U < GRNN < LSTM < LSSVR < FSLSTM-L < BPNN < ARIMA. Table 6 indicates 
that the FSLSTM-M obtained the smallest MAPE(%), which means that the FSLSTM-M 
achieved the best performance in this example. Both seasonal models, FSLSTM-M and 
SARIMA, obtained better performance than the other models and were able to capture the 
trend of power output for the Mailiao wind power plant, possibly for the same reasons as 
those of the Taichung wind power plant. Moreover, the Mailiao region is very close to the 
Taichung region in Taiwan. Thus, the ranking of MAPE(%) in the Mailiao region is the 
same as that of the Taichung region. Again, the proposed FSLSTM model is suggested to 
serve as a prediction model for wind power output at the Mailiao wind power plant.  

By reviewing the three forecasting examples using the FSLSTM model, some findings 
can be concluded, as follows: (1) the FSLSTM model can efficiently handle seasonal influ-
ence. In the Taichung and Mailiao regions, the seasonal influence of wind power output 
can be observed. (2) In all examples, the FSLSTM model could obtain better performance 
and more accurately capture the trends of wind power output. This performance was not 
observed for the traditional LSTM in the three examples. (3) For the three different types 
of wind power output, the FSLSTM-M model obtained better performance than almost all 
other models. The FSLSTM-M model is thus recommended as a prediction model for wind 
power output. 

4. Managerial Implications 
A wind power forecasting system is implemented for the government in this study. 

The government can use the forecasting results of monthly wind power output to reduce 
the risk of insufficient power supply. The wind power forecasting system can provide an 
early warning of insufficient power supply to decision-makers in the government to re-
duce the risk of an insufficient power supply. The government has developed an offshore 
wind power facility, the main goal of which is to generate enough electricity so that re-
newable energy can replace nuclear power generation. The mechanism of early warning 
by the proposed wind power forecasting system can accurately predict the wind power 
output. The decision-makers in the government can therefore conduct proper planning to 
avoid the risk of an insufficient power supply. 

5. Conclusions 
Due to the Sustainable Development Goals, wind power prediction has become in-

creasingly crucial in Taiwan. Moreover, LSTM models have been successfully used in time 
series forecasting problems. However, they have not been widely explored in seasonal 
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time series prediction. This study developed a novel FSLSTM model to exploit the unique 
strength of the fuzzy seasonal index and the LSTM technique in order to predict wind 
power output in Taiwan. In all examples, the FSLSTM model could obtain better perfor-
mance and more accurately capture the trends of wind power output. This performance 
was not observed for the traditional LSTM in the three examples. The simultaneous results 
indicate that the FSLSTM model represents a promising alternative for analyzing wind 
power output in Taiwan. The superior performance of the FSLSTM model can be ascribed 
to two causes: first, the FSLSTM benefits from the advantages of LSTM and can effectively 
capture the time series dataset by the mechanism of a recurrent neural network; second, 
the fuzzy decomposition method enhances the ability of the FSLSTM models to capture 
seasonal nonlinear data patterns under an uncertain environment. The limitation of the 
FSLSTM model is that it is only suitable for strong monthly seasonal patterns. Forecasting 
other types of time series data using an LSTM-related model would be a challenging issue 
for future studies. Future research directions could consider using data preprocessing 
techniques to achieve improvements in the forecasting accuracy of the FSLSTM model for 
seasonal time series data. The parameters of FSLSTM also could be searched by a heuristic 
algorithm to improve the performance.  

Appendix A. Generalized Regression Neural Network (GRNN) 
The GRNN is based on nonlinear regression theory and is a well-established statisti-

cal technique for function estimation. By definition, the regression of a dependent variable 
y on an independent variable x estimates the most probable value for y, given x and a 
training set. The training set consists of values for x, each with a corresponding value for 
y (x and y are, in general, vectors). However, variable y may be corrupted by additive 
noise. Despite this, the regression method will produce the estimated value of y which 
minimizes the mean-squared error. The GRNN is, in essence, a method for estimating f(x, 
y) given only a training set. Because the probability distribution function is derived from 
the data with no preconceptions about its form, the system is perfectly general. There is 
no problem if the functions are composed of multiple disjointed non-Gaussian regressions 
in any number of dimensions, as well as those of simpler distributions. The variable yi is 
estimated optimally as follows: 

1 1
/

= =

= 
n n

i i ij i
i i

y h w h  (A1)

where wij is the target output corresponding to input training vector xi and output j. hi is 
2 2exp / (2 )σ − iD , the output of a hidden layer neuron. 2

iD  is (x − ui)T(x − ui) (the squared 
distance between the input vector x and the training vector u). x is the input vector (a 
column vector). ui is the training vector of i, the center of neuron i (a column vector). σ is 
a constant controlling the size of the respective region. Equation (A1) is the radial basis 
function (with normalization). However, this is different to the RBN in that the target val-
ues are used as the weights of the output network.  

Appendix B. Seasonal Autoregressive Integrated Moving Average Model (SARIMA) 
The SARIMA model is a popular tool in time series forecasting for data with a sea-

sonal pattern. The SARIMA (p, d, q) × (P, D, Q)S process generates a time series, 
{ },  1,2,    ,   =t t NX ,with the mean μ of the Box and Jenkins time series model satisfying  

( ) ( )(1 ) (1 ) ( ) ( ) ( )ϕ φ θ− − − = ΘS d S D S
t tB B B B X u B B a  (A2)

where p, d, q, P, D and Q are nonnegative integers; S is the seasonal length; 
2

1 2( ) (1 )ϕ ϕ ϕ ϕ= − − − − p
pB B B B  represents a regular autoregressive operator of order p, 

2
1 2( ) (1 )φ φ φ φ= − − − −S S S PS

pB B B B  is a seasonal autoregressive operator of order P, 
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2
1 2( ) (1 )θ θ θ θ= − − − − q

qB B B B  denotes a regular moving average operator of order q, 
and ( )Θ =SB 1(1− Θ −SB 2

2Θ −SB  )−Θ QS
QB  expresses a seasonal moving average oper-

ator of order Q. Additionally, B indicates the backward shift operator, d denotes the num-
ber of regular differences, D represents the number of seasonal differences, and ta  is the 
forecasted residual at time t. When fitting a SARIMA model to data, the first task is to 
estimate values of d and D, which are the orders of differentiation needed to make the 
series stationary and to remove most of the seasonality. The suitable values of p, P, q, and 
Q can be evaluated by the autocorrelation function and partial autocorrelation function of 
the differentiated series. The parameter selection of the SARIMA model includes the fol-
lowing four iterative steps: 
(a) Identifying a tentative SARIMA model;  
(b) Estimating parameters in the tentative model; 
(c) Evaluating the adequacy of the tentative model; 
(d) If an appropriate model is obtained, then applying this model for forecasting; other-

wise, returning to step (a). 
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