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Abstract

:

To protect the environment and achieve the Sustainable Development Goals (SDGs), reducing greenhouse gas emissions has been actively promoted by global governments. Thus, clean energy, such as wind power, has become a very important topic among global governments. However, accurately forecasting wind power output is not a straightforward task. The present study attempts to develop a fuzzy seasonal long short-term memory network (FSLSTM) that includes the fuzzy decomposition method and long short-term memory network (LSTM) to forecast a monthly wind power output dataset. LSTM technology has been successfully applied to forecasting problems, especially time series problems. This study first adopts the fuzzy seasonal index into the fuzzy LSTM model, which effectively extends the traditional LSTM technology. The FSLSTM, LSTM, autoregressive integrated moving average (ARIMA), generalized regression neural network (GRNN), back propagation neural network (BPNN), least square support vector regression (LSSVR), and seasonal autoregressive integrated moving average (SARIMA) models are then used to forecast monthly wind power output datasets in Taiwan. The empirical results indicate that FSLSTM can obtain better performance in terms of forecasting accuracy than the other methods. Therefore, FSLSTM can efficiently provide credible prediction values for Taiwan’s wind power output datasets.
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1. Introduction


Wind power generation is replacing power generation via extensive gas-flow and uses wind to drive wind turbines. In 2000, to protect the environment, the Taiwanese government actively promoted the use of clean energy to reduce the greenhouse gas emissions generated by traditional power generation methods such as thermal power generation. The Taiwanese government’s expectations for wind power generation are very high. The government has developed an offshore wind power facility, the main goal of which is to generate enough electricity so that renewable energy can replace nuclear power generation. The vision of the Taiwanese government is to build a strong support industry by manufacturing the necessary wind turbine components, towers, and underwater cables for coastal engineering; by building underwater foundation pile; and by installing generators several miles offshore. According to statistics from the International Energy Agency, offshore wind power currently accounts for only 0.3% of global power generation, but experts have noted that wind power generation is expected to rapidly grow in the next 20 years, representing a business opportunity of up to one trillion US dollars. Therefore, the accuracy of wind power forecasting is a very important issue that could help governments to engage in effective policy planning. In recent years, many studies have investigated wind speed and power forecasting and adopted various prediction models to improve wind power generation forecasting. Lu et al. [1,2] used the Takagi–Sugeno fuzzy model to predict wind speed and power. Yu et al. [3] developed hybrid models that combine the wavelet transform (WT) with the support vector machine (SVM), gated recurrent units network (GRU), standard recurrent neural network (RNN), and LSTM models for wind-speed forecasting. Using the WT can decompose the original wind time series into several subseries with better behavior and greater predictability. The results indicated that the hybrid models WT-RNN-SVM, WT-LSTM-SVM, and WT-GRU-SVM obtained the best performance. Zjavka and Mišák [4] noted that wind output power forecasting entails chaotic large-scale patterns and has a high correlation with atmospheric circulation processes. The authors adopted the polynomial decomposition of the general differential equation, which represents the elementary Laplace transformations of a searched function, to predict the daily wind power. The results showed that their method can obtain lower casual errors due to using the decomposition method. Liu et al. [5] used combined wavelet packet decomposition with a convolutional neural network and convolutional long short-term memory network to forecast one-day wind speed. In the one-day wind speed time series, the model was able to obtain robust and effective performance. Toubeau et al. [6] adopted the LSTM to efficiently capture the complex temporal dynamics needed for wind power prediction.



When the RNN is applied to long-term dependence, the processing unit will continue to add and calculate the previously memorized information, causing the neural network to explode or disappear and eventually leading the network to collapse. Recurrent neural networks are weak in terms of learning long-term dependence [7]. To improve the shortcomings of recurrent neural networks, Hochreiter and Schmidhuber [8] proposed the long short-term nemory (LSTM) network in 1997. The long short-term memory model was developed on the basis of recurrent neural networks and is of a cyclical type. LSTM is a neural network architecture that adds the forget gate, input gate, and output gate to the processing unit in the hidden layer, the purpose of which is to read more past information. The model will first determine whether the information is useful, and then decide whether to add or delete the information to increase the ability of the neural network to be reliable over a long period.



Comparing the cyclic neural network and the long short-term memory model, it can be seen that the cyclic neural network will only receive the information calculated in the previous pass, while the long short-term memory model not only receives the information calculated in the last iteration but also all past messages. The long short-term memory model not only retains the advantages of the recurrent neural network but is also able to handle short-term dependencies. Therefore, the LSTM model can solve many tasks that the recurrent neural network could not solve in the past [7]. The development of short-term memory models has thus far provided help in various processing tasks, and they are widely used in various fields such as speech recognition [9,10], handwriting recognition [11], and predictions [12,13,14]. Table 1 summarizes the long and short-term memory models used to make predictions in related literature since 2015. Tian and Pan [15] used LSTM to predict the time series of car traffic, and the prediction time interval was divided into four types; the prediction accuracy of the five models was then compared and generalized. The study indicated that the prediction accuracy rate of LSTM was the best. This showed that LSTM has a high predictive ability and high generalization ability and that LSTM is better than RNN. Liu et al. [16] explores the prediction accuracy of LSTM on neonatal brainwave maps with different numbers of neurons. To verify the feasibility of LSTM, the study also compared LSTM with RNN. The results showed that LSTM is better than RNN. Janardhanan and Barrett [17] used LSTM to predict the computer CPU usage of Google’s data center in time series. Based on the results of multiple computers, the mean absolute percentage error (MAPE) value of the LSTM model was 17–23%, and that of the ARIMA model was 37–42%. Siami-Namini et al. [18] adopted LSTM to predict six financial indexes and six economic indexes. In the financial and economic average forecast results, the error rates of LSTM forecasting were 87% and 84% lower than that of ARIMA, respectively. Phyo et al. [19] used LSTM and the Deep Confidence Network (DBN) to predict the power load in Thailand, and the prediction accuracy of the two models was compared. The results showed that LSTM offers better predictive ability. Fan et al. [20] developed an integrated method that combined the ARIMA model with the LSTM model. Shahid et al. [21] developed a novel genetic long short-term memory (GLSTM) method; this method improved wind power predictions from 6% to 30% compared to existing techniques. Zhang et al. [22] developed a convolutional neural network model based on a deep factorization machine and attention mechanism (FA-CNN). The results indicated that FA-CNN obtained better performance than the traditional LSTM.



In this study, the prediction model adopts three LSTMs with fuzzy seasonal indexes to approach the fuzzy set’s upper and lower bounds, respectively, as well as mode prediction values. This is a novel prediction model for wind power output forecasting. The rest of this paper is organized as follows. Section 2 introduces the fuzzy seasonal LSTM (FSLSTM) in detail, which include fuzzy seasonal decomposition and fuzzy LSTM technology. Section 3 presents the experimental results of the FSLSTM for wind power output prediction. Finally, we draw conclusions and make suggestions for future research in Section 4.




2. Fuzzy Seasonal LSTM for Wind Power Output


In this study, the wind power output dataset is examined. This dataset is further divided into training, validation, and testing datasets, respectively. Firstly, the fuzzy seasonal index is calculated by seasonal trend decomposition. This method can define the fuzzy seasonal membership function with time series, and then the fuzzy trend dataset can be estimated using the multiplicative model. LSTM is employed to predict the fuzzy trend datasets for the upper bound, lower bound, and mode values. Based on the fuzzy LSTM and fuzzy seasonal index, the final forecasting report can be obtained using the measure index. A flowchart of the fuzzy seasonal LSTM for wind power output is shown in Figure 1.



2.1. Fuzzy Seasonal Decomposition


Chang [21] proposed the fuzzy seasonality index    S k *   , which is defined as possessing a triangular membership function, from the seasonality index set. Chang [23] determined    S k *    as follows:


     S k *  = (  s k L  ,  s k M  ,  s k U  ) = ( min (  s  k + ( T − W + 1 ) × m   ,  s  k + ( T − W + 2 ) × m   , … ,  s  k + T × m   ) ,      s k  , max (  s  k + ( T − W + 1 ) × m   ,  s  k + ( T − W + 2 ) × m   , … ,  s  k + T × m   ) ) , k = 1 , … , m    



(1)




where    s k L  ,  s k M  ,  s k U    are the W-period lower bound, W-period smoothing-operators (1 ≤ W ≤ T), and W-period upper bound, respectively.



In a time-series problem, reducing seasonality for time series predictions is very important. The fuzzy seasonality index has been shown to effectively obtain good performance in time series predictions. Therefore, this study proposes a novel fuzzy seasonal LSTM that uses the fuzzy seasonality index and a decomposition method to solve the seasonal time series problem. The multiplicative model is employed in the time series problem. Moreover, the IFLR with a spread unrestricted model is combined with symmetrical triangular FNs for forecasting and can obtain an accurately estimated value using Equation (3). Therefore, in the proposed model, a multiplicative model is used to obtain FNs based on a fuzzy seasonality index, as follows:


     F  k + ( T + v )  I   ˜  = (  f  k + ( T + v )   L T r   ×  s k L  × ε ,  f  k + ( T + v )   M T r   ×  s k M  × ε ,  f  k + ( T + v )   U T r   ×  s k U  × ε )  



(2)




where      F  k + ( T + v )    ˜    represents the fuzzy seasonal LSTM forecast value,    f  k + ( T + v )   L T r     is the lower-bound estimated value of the trend,    f  k + ( T + v )   M T r     is the mode estimated value of the trend,    f  k + ( T + v )   U T r     is the upper-bound estimated value of the trend, and ε is the model noise. The proposed fuzzy seasonal LSTM model can effectively use fuzzy seasonal decomposition to reduce seasonal effects in time series problems.




2.2. Fuzzy Seasonal LSTM Model


In the fuzzy seasonal LSTM model, the fuzzy trend lower bound, upper bound, and mode values must be trained. Therefore, the construction of the fuzzy LSTM method with the input lower bound of {(xi,   f i  L T r    ), i = 1, 2, …, N}, mode {(xi,   f i  M T r    ), i = 1, 2, …, N}, and the upper bound of {(xi,   f i  U T r    ), i = 1, 2, …, N}, respectively, can be represented as follows:


   f  L T r   (  x i  ) =  Y i L  =  o  L i   ⊗ tan h (  c  L i   )  



(3)






   f  M T r   (  x i  ) =  Y i M  =  o  M i   ⊗ tan h (  c  M i   )  



(4)






   f  U T r   (  x i  ) =  Y i U  =  o  U i   ⊗ tan h (  c  U i   )  



(5)




where the fuzzy long-term state    c ˜    is (cLi, cMi, cUi), and the output gate    o ˜    (oLi, oMi, oUi) can be estimated.



A fully connected fuzzy LSTM unit contains four layers, as with the traditional LSTM, and the fuzzy input vector (xi) and previous fuzzy short-term memory (     h i     − 1    ˜   ) are imported into these four layers (Figure 2).      g i   ˜    is the main layer of the fuzzy LSTM and uses the tanh activation function, and the fuzzy output data are stored in fuzzy long-term memory      c ˜   i   . The other three layers use logic activation functions, and their output ranges from 0 to 1.      f ˜   i   fi is the fuzzy forget gate that controls which parts of long-term memory should be deleted.      I ˜   i    is the fuzzy input gate that determines which parts of the fuzzy input should be added.      o i   ˜    is the gate that controls which parts of the fuzzy long-term memory should be read and the fuzzy output at this time step,    f i  L T r   =  h i L   ,    f i  M T r   =  h i M   , and    f i  U T r   =  h i U   .



The operation can be written as follows:



Fuzzy input gate:


     I i   ˜  = ( σ (  W   x  L I    T   x  L i   +  W   h  L I    T   h L  ( i − 1 ) +  b  L I   ) , σ (  W   x  M I    T   x  M i   +  W   h  M I    T   h M  ( i − 1 ) +  b  M i   ) , σ (  W   x  U I    T   x  U i   +  W  h I  T   h U  ( i − 1 ) +  b  U I   ) )  



(6)







Fuzzy forget gate:


     f i   ˜  = ( σ (  W   x  L f    T   x  L i   +  W  h f  T   h L  ( i − 1 ) +  b  L f   ) , σ (  W   x  M f    T   x  M i   +  W   h  M f    T   h M  ( i − 1 ) +  b  M f   ) , σ (  W   x  U f    T   x  U i   +  W   h  U f    T   h U  ( i − 1 ) +  b  U f   ) )  



(7)







Output gate:


     o i   ˜  = ( σ (  W   x  L o    T   x  L i   +  W  h o  T   h L  ( i − 1 ) +  b  L o   ) , σ (  W   x  M o    T   x  M i   +  W   h  M o    T   h M  ( i − 1 ) +  b  M o   ) , σ (  W   x  U o    T   x  U i   +  W   h  U o    T   h U  ( i − 1 ) +  b  U o   ) )  



(8)







Neuron input and cell input:


     g i   ˜  = ( σ (  W   x  L g    T   x  L i   +  W  h g  T   h L  ( i − 1 ) +  b  L g   ) , σ (  W   x  M g    T   x  M i   +  W   h  M g    T   h M  ( i − 1 ) +  b  M g   ) , σ (  W   x  U g    T   x  U i   +  W   h  U g    T   h U  ( i − 1 ) +  b  U g   ) )  



(9)




where      W  x I   = (  ˜   W   x  L I    T  ,  W   x  M I    T  ,  W   x  U I    T  )  ,      W  x f   = (  ˜   W   x  L f    T  ,  W   x  M f    T  ,  W   x  U f    T  )  ,      W  x o   = (  ˜   W   x  L o    T  ,  W   x  M o    T  ,  W   x  U o    T  )  , and      W  x g   = (  ˜   W   x  L g    T  ,  W   x  M g    T  ,  W   x g   T  )   are the fuzzy weight matrices of each of the four layers used for their connections with the fuzzy input vector, and the fuzzy weight matrices are connected to the fuzzy short-term state      h i     − 1    ˜   .     b i  ,  b f  ,  b o  ,  b g         b I  = (  ˜   b  L I   ,  b  M I   ,  b  U I   )  ,      b f  = (  ˜   b  L f   ,  b  M f   ,  b  U f   )  ,      b o  = (  ˜   b  L o   ,  b  M o   ,  b  U o   )   and      b g  = (  ˜   b  L g   ,  b  M g   ,  b  U g   )   are the deviation terms of each of the four layers, tanh is the hyperbolic tangent function (e(x) − e(−x))/(e(x) + e(−x)), and σ is the sigmoid function 1/(1 + e(−x)).



Finally, the long-term and short-term states are calculated as follows:



Fuzzy long-term state:


     c i   ˜  =    f i   ˜  ×    c  i − 1    ˜  +    I i   ˜  ×    g i   ˜   



(10)







Fuzzy short-term state:


     Y i   ˜  =    h i   ˜  =    o i   ˜  × tanh (    c i   ˜  )  



(11)







Moreover, this FSLSTM adopts the adaptive moment estimation (Adam) optimization algorithm from Kingma and Ba [24], which employs stochastic optimization, to search for the proper parameters of the FSLSTM. The Adam optimization algorithm was demonstrated empirically to show that convergence meets the expectations of the theoretical analysis. The proposed FSLSTM can achieve robust performance based on the Adam optimization algorithm. The maximum epochs, initial parameters learning rate, gradient threshold, learn rate drop period, and learn rate drop factor of FSLSTM are 250, 0.005, 1, 125, and 0.2, respectively.





3. A Wind Power Output Example and Empirical Results


Energy conservation and decreasing carbon are very important management issues for the global power industry. To demonstrate its concern regarding the global warming issue and to comply with the government’s Sustainable Energy Guidelines, the Taiwanese government is actively promoting the use of clean energy. The Taipower company has built 17 wind energy power stations in Taiwan that record monthly data on the total power output. All experimental data can be download from the National Development Council in Taiwan (https://data.gov.tw (accessed on 21 July 2020)). In this study, we selected three wind energy power stations: the Shimen, Taichung, and Mailiao wind power plants. Figure 3 and Table 2 depict the monthly generated output power (units: kilowatt-hours) from these wind power stations during the period from January 2017 to June 2020 (the total number is 42). In this study, the monthly data were divided into three sets: firstly, a training set was employed to determine the optimum forecasting model during the period from January 2017 to December 2018 (the number of samples in the training set was 24); secondly, a validation set was employed to prevent the overfitting of the different models during the period from January 2019 to December 2019 (the number of samples in the validation set was 24); finally, a testing set was employed to investigate the performance of the different models during the period from January 2020 to June 2020 (the number of samples in the testing set was 24). The percentages of training, validation, and testing sets were 57%, 29%, and 14%, respectively.



Figure 3 clearly indicates that the measured time series feature seasonal data and three types of cycles for the different wind power plants. The Mailiao wind power plant can generate greater power because the Mailiao wind power plant features the largest number of wind-driven generators in Taiwan. Moreover, a larger power output can be obtained during winter in Taiwan as a result of the northeast monsoon. Table 3 depict the fuzzy seasonality index with k ranging from 1 to 12 from the selected wind power stations. In addition, the mean absolute percentage error MAPE(%) was used to measure the forecasting accuracy. Equation (12) illustrates the expression of MAPE(%):


  M A P E ( % ) =   100  M    ∑  i = 1  M    |     A i  −  P i     A i     |     



(12)




where M is the number of forecasting periods, Ai is the actual production value at period i, and Pi is the forecasting production value at period i. Moreover, the RMSE is employed to evaluate the training error of FSLSTM, which can be expressed as follows:


  RMSE =    1 M    ∑  i = 1  M      (   A i  −  P i   )   2       



(13)







Figure 4 shows the training error of the FSLSTM in three wind power stations, adopting the Adam algorithm. We can observe that the FSLSTM can obtain a lower RMSE training error (smaller than 0.2) in three wind power stations.



In this study, the FSLSTM, LSTM [8], ARIMA(1, 0, 0) [25], generalized regression neural network (GRNN) [26], back propagation neural network (BPNN) [27], least square support vector regression (LSSVR) [28], and seasonal autoregressive integrated moving average (SARIMA (1, 0, 0) (1, 0, 0)12) [25] models were used to forecast the monthly wind power output datasets in selected stations in Taiwan. The construction of LSTM is similar to that of the FSLSTM (see Section 2.1). The LSTM network also adopted the Adam optimization algorithm to search for optimal parameters. The ARIMA is similar to SARIMA (see Appendix A), with a difference in seasonal parameters. The construction and parameter (σ) of the GRNN is shown in Appendix B. The parameter (σ) of the GRNN was set to 1. In this study, a well-known intelligent computing machine, BPNN, is also adopted to compare prediction models. In the BPNN, the input layer has one input neuron to catch the input patterns, the hidden layer has ten neurons to propagate the intermediate signals, and the output layer has one neuron. For more training assignments in the BPNN, the hyperbolic tangent sigmoid function is employed as the activation function in the hidden layer, the pure-line transfer function is employed in the output layer as the activation function, and the gradient training is adopted as the learning algorithm for the BPNN. The LSSVR is a popular prediction model in time series problems. For the main constructs of the LSSVR, readers can be refer to [28], and the regularization parameter in the experiment was set to 1. The Radial Basis Function (RBF) Kernel Trick was employed in the LSSVR, and the parameter (σ) of the RBF was set to 0.01. Table 4 depicts the training error with various prediction models. The proposed FSLSTM, LSTM, and GRNN approaches could obtain lower training errors, which means that the training models of the three approach achieved better performance.



Table 5 illustrates the actual values and experimental results of the FSLSTM model with the mode (M) and upper (U) and lower (L) bounds from January 2020 to June 2020 for the Shimen wind power plant. Figure 5a makes a point-to-point comparison of the actual values and predicted values of FSLSTM. As shown in Figure 4, the peak power output was in April 2020, which was not easily observed in the training dataset. Figure 5b shows a comparison of the actual values and predicted values of ARIMA, SARIMA, GRNN, BPNN, LSTM, and FSLSTM-L for the Shimen wind power plant.



Table 5 shows the experimental results and MAPE(%) obtained by various models. The ranking of MAPE(%) is as follows: GRNN < FSLSTM-L < FSLSTM-M < LSTM < ARIMA < SARIMA < FSLSTM-U < BPNN < LSSVR. Table 4 indicates that the GRNN obtained the smallest MAPE(%), showing the best performance. However, Figure 5 shows that the predicted value of the GRNN could not capture the trend of power output at the Shimen wind power plant. The FSLSTM-L model was able to efficiently capture the trends of the data by using the fuzzy seasonal index, although the MAPE(%) of the FSLSTM-L was higher than that of the GRNN in the example. Thus, the proposed FSLSTM model is suggested to serve as a prediction model for power output for the Shimen wind power plant.



Table 6 illustrates the actual values and experimental results of the proposed model for the Taichung wind power plant. Figure 6a makes a point-to-point comparison between the actual values and predicted values of the FSLSTM at the Taichung wind power plant. Downward trends of power output can be observed in Figure 5. Figure 6b illustrates a comparison between the actual values and predicted values of the ARIMA, SARIMA, GRNN, BPNN, LSTM, and FSLSTM-M models for the Taichung wind power plant.



Table 6 shows the experimental results and MAPE(%) obtained by various models for the Taichung wind power plant. The ranking of MAPE(%) is FSLSTM-M < SARIMA < FSLSTM-U < GRNN < LSTM < LSSVR < FSLSTM-L < BPNN < ARIMA. Table 5 indicates that the FSLSTM-M obtained the smallest MAPE(%), which means that FSLSTM-M achieved the best performance in this example. Moreover, Figure 6 shows that the predicted value of the FSLSTM-M was able to capture the trend of power output at the Taichung wind power plant. Moreover, the two seasonal models, FSLSTM-M and SARIMA, obtained better performance than the other models, possibly because the power output at the Taichung wind power plant has a seasonal influence. Thus, the proposed FSLSTM model is also suggested to serve as a prediction model for power output at the Taichung wind power plant.



Table 7 illustrates the actual values and experimental results of the proposed model for the Mailiao wind power plant. Figure 7a also makes a point-to-point comparison of the actual values and predicted values of FSLSTM at the Mailiao wind power plant. As with the Taichung wind power plant, downward trends of power output can be observed in Figure 7 for the Mailiao wind power plant. Because the Mailiao wind power plant provides a larger quantity of wind power generation than the other power plants, Mailiao outputs more power in KWh. Figure 7b shows a comparison between the actual values and predicted values of ARIMA, SARIMA, GRNN, BPNN, LSTM, and FSLSTM-M models at the Mailiao wind power plant.



Table 7 shows the experimental results and MAPE(%) obtained using various models for the Mailiao wind power plant. The ranking of MAPE(%) is FSLSTM-M < SARIMA < FSLSTM-U < GRNN < LSTM < LSSVR < FSLSTM-L < BPNN < ARIMA. Table 6 indicates that the FSLSTM-M obtained the smallest MAPE(%), which means that the FSLSTM-M achieved the best performance in this example. Both seasonal models, FSLSTM-M and SARIMA, obtained better performance than the other models and were able to capture the trend of power output for the Mailiao wind power plant, possibly for the same reasons as those of the Taichung wind power plant. Moreover, the Mailiao region is very close to the Taichung region in Taiwan. Thus, the ranking of MAPE(%) in the Mailiao region is the same as that of the Taichung region. Again, the proposed FSLSTM model is suggested to serve as a prediction model for wind power output at the Mailiao wind power plant.



By reviewing the three forecasting examples using the FSLSTM model, some findings can be concluded, as follows: (1) the FSLSTM model can efficiently handle seasonal influence. In the Taichung and Mailiao regions, the seasonal influence of wind power output can be observed. (2) In all examples, the FSLSTM model could obtain better performance and more accurately capture the trends of wind power output. This performance was not observed for the traditional LSTM in the three examples. (3) For the three different types of wind power output, the FSLSTM-M model obtained better performance than almost all other models. The FSLSTM-M model is thus recommended as a prediction model for wind power output.




4. Managerial Implications


A wind power forecasting system is implemented for the government in this study. The government can use the forecasting results of monthly wind power output to reduce the risk of insufficient power supply. The wind power forecasting system can provide an early warning of insufficient power supply to decision-makers in the government to reduce the risk of an insufficient power supply. The government has developed an offshore wind power facility, the main goal of which is to generate enough electricity so that renewable energy can replace nuclear power generation. The mechanism of early warning by the proposed wind power forecasting system can accurately predict the wind power output. The decision-makers in the government can therefore conduct proper planning to avoid the risk of an insufficient power supply.




5. Conclusions


Due to the Sustainable Development Goals, wind power prediction has become increasingly crucial in Taiwan. Moreover, LSTM models have been successfully used in time series forecasting problems. However, they have not been widely explored in seasonal time series prediction. This study developed a novel FSLSTM model to exploit the unique strength of the fuzzy seasonal index and the LSTM technique in order to predict wind power output in Taiwan. In all examples, the FSLSTM model could obtain better performance and more accurately capture the trends of wind power output. This performance was not observed for the traditional LSTM in the three examples. The simultaneous results indicate that the FSLSTM model represents a promising alternative for analyzing wind power output in Taiwan. The superior performance of the FSLSTM model can be ascribed to two causes: first, the FSLSTM benefits from the advantages of LSTM and can effectively capture the time series dataset by the mechanism of a recurrent neural network; second, the fuzzy decomposition method enhances the ability of the FSLSTM models to capture seasonal nonlinear data patterns under an uncertain environment. The limitation of the FSLSTM model is that it is only suitable for strong monthly seasonal patterns. Forecasting other types of time series data using an LSTM-related model would be a challenging issue for future studies. Future research directions could consider using data preprocessing techniques to achieve improvements in the forecasting accuracy of the FSLSTM model for seasonal time series data. The parameters of FSLSTM also could be searched by a heuristic algorithm to improve the performance.
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Appendix A. Generalized Regression Neural Network (GRNN)


The GRNN is based on nonlinear regression theory and is a well-established statistical technique for function estimation. By definition, the regression of a dependent variable y on an independent variable x estimates the most probable value for y, given x and a training set. The training set consists of values for x, each with a corresponding value for y (x and y are, in general, vectors). However, variable y may be corrupted by additive noise. Despite this, the regression method will produce the estimated value of y which minimizes the mean-squared error. The GRNN is, in essence, a method for estimating f(x, y) given only a training set. Because the probability distribution function is derived from the data with no preconceptions about its form, the system is perfectly general. There is no problem if the functions are composed of multiple disjointed non-Gaussian regressions in any number of dimensions, as well as those of simpler distributions. The variable yi is estimated optimally as follows:


   y i  =   ∑  i = 1  n    h i   w  i j   /   ∑  i = 1  n    h i       



(A1)




where wij is the target output corresponding to input training vector xi and output j. hi is   exp  [  −  D i 2  / ( 2  σ 2  )  ]   , the output of a hidden layer neuron.    D i 2    is (x − ui)T(x − ui) (the squared distance between the input vector x and the training vector u). x is the input vector (a column vector). ui is the training vector of i, the center of neuron i (a column vector). σ is a constant controlling the size of the respective region. Equation (A1) is the radial basis function (with normalization). However, this is different to the RBN in that the target values are used as the weights of the output network.




Appendix B. Seasonal Autoregressive Integrated Moving Average Model (SARIMA)


The SARIMA model is a popular tool in time series forecasting for data with a seasonal pattern. The SARIMA (p, d, q) × (P, D, Q)S process generates a time series,    {   X  t ,   t = 1 , 2 , ,   N      }   ,with the mean μ of the Box and Jenkins time series model satisfying


  φ ( B ) ϕ (  B S  )   ( 1 − B )  d    ( 1 −  B S  )  D  (  X t  − u ) = θ ( B ) Θ (  B S  )  a t   



(A2)




where p, d, q, P, D and Q are nonnegative integers; S is the seasonal length;   φ ( B ) = ( 1 −  φ 1  B −  φ 2   B 2  − ⋯ −  φ p   B p  )   represents a regular autoregressive operator of order p,   ϕ (  B S  ) = ( 1 −  ϕ 1   B S  −  ϕ 2   B  2 S   − ⋯ −  ϕ p   B  P S   )   is a seasonal autoregressive operator of order P,   θ ( B ) = ( 1 −  θ 1  B −  θ 2   B 2  − ⋯ −  θ q   B q  )   denotes a regular moving average operator of order q, and   Θ (  B S  ) =    ( 1 −  Θ 1   B S  −     Θ 2   B  2 S   − ⋯     −  Θ Q   B  Q S   )   expresses a seasonal moving average operator of order Q. Additionally, B indicates the backward shift operator, d denotes the number of regular differences, D represents the number of seasonal differences, and    a t    is the forecasted residual at time t. When fitting a SARIMA model to data, the first task is to estimate values of d and D, which are the orders of differentiation needed to make the series stationary and to remove most of the seasonality. The suitable values of p, P, q, and Q can be evaluated by the autocorrelation function and partial autocorrelation function of the differentiated series. The parameter selection of the SARIMA model includes the following four iterative steps:




	(a)

	
Identifying a tentative SARIMA model;




	(b)

	
Estimating parameters in the tentative model;




	(c)

	
Evaluating the adequacy of the tentative model;




	(d)

	
If an appropriate model is obtained, then applying this model for forecasting; otherwise, returning to step (a).
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Figure 1. A flowchart of the fuzzy seasonal LSTM prediction model. 
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Figure 2. A construction diagram of the fuzzy LSTM prediction model. 
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Figure 3. Illustration of the actual power output of the three wind power stations. 
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Figure 4. Illustration of the training error of the FSLSTM for the three wind power stations. 






Figure 4. Illustration of the training error of the FSLSTM for the three wind power stations.



[image: Mathematics 09 01178 g004]







[image: Mathematics 09 01178 g005 550] 





Figure 5. Illustration of the actual and forecasted power outputs of various models for the Shimen wind power plant. 
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Figure 6. Illustration of the actual and forecasting power outputs of various models for the Taichung wind power plant. 
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Figure 7. Illustration of the actual and forecasting power output of various models for the Mailiao wind power plant. 
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Table 1. Long short-term memory (LSTM) applications from 2015.
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	Author
	Applied Field
	Methodology
	Compared Methodology





	Tian and Pan [15]
	Traffic
	LSTM
	SVR, Random Walker (RW), Fuzzy Neural Network (FNN), and Stacked Autoencoder (SAE)



	Liu et al. [16]
	Electroencephalography
	LSTM
	RNN



	Janardhanan and Barrett [17]
	CPU usage of Google’s data center
	LSTM
	ARIMA



	Siami-Namini et al. [18]
	Financial index and economic indexes
	LSTM
	ARIMA



	Phyo et al. [19]
	Power load
	LSTM
	Deep Confidence Network (DBN)



	Fan et al. [20]
	Production forecasting
	Integrates the ARIMA model and the LSTM model.
	ARIMA



	Shahid et al. [21]
	Wind power
	GLSTM
	LSTM



	Zhang et al. [22]
	Stock price movement prediction
	FA-CNN
	LSTM
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Table 2. The actual power output of the three wind power stations (units: kilowatt-hours).
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	Date
	Shimen
	Taichung
	Mailiao





	2017/01
	463,283
	696,640
	16,804,318



	2017/02
	407,258
	630,978
	14,938,148



	2017/03
	419,363
	440,900
	10,740,085



	2017/04
	336,234
	220,980
	6,313,574



	2017/05
	350,142
	166,390
	3,919,309



	2017/06
	195,069
	124,600
	4,899,275



	2017/07
	172,429
	78,330
	2,342,427



	2017/08
	349,341
	92,620
	2,677,669



	2017/09
	330,570
	109,600
	2,426,662



	2017/10
	1,239,911
	599,700
	13,307,824



	2017/11
	741,605
	516,784
	14,782,631



	2017/12
	987,529
	688,270
	12,469,649



	2018/01
	699,627
	578,820
	14,875,834



	2018/02
	573,615
	527,320
	12,316,626



	2018/03
	428,185
	339,634
	8,437,488



	2018/04
	267,650
	169,866
	4,483,353



	2018/05
	260,618
	127,692
	3150,546



	2018/06
	268,476
	217,353
	6,132,870



	2018/07
	461,025
	113,979
	2,889,834



	2018/08
	197,814
	81,125
	3,290,543



	2018/09
	391,113
	289,650
	8,800,633



	2018/10
	631,983
	627,877
	14,854,486



	2018/11
	498,720
	381,956
	9,282,346



	2018/12
	791,605
	722,624
	18,553,027



	2019/01
	737,047
	719,896
	18,322,239



	2019/02
	520,684
	408,360
	9,729,809



	2019/03
	651,798
	328,996
	7,658,895



	2019/04
	388,595
	207,114
	5,157,800



	2019/05
	386,277
	199,886
	4,300,127



	2019/06
	159,193
	109,585
	2,964,455



	2019/07
	211,329
	149,040
	3,339,550



	2019/08
	339,098
	178,123
	5,414,371



	2019/09
	589,619
	418,682
	9,185,376



	2019/10
	491,982
	541,496
	11,115,453



	2019/11
	845,222
	659,646
	15,558,639



	2019/12
	664,395
	340,702
	14,464,274



	2020/01
	482,289
	421,826
	12,276,955



	2020/02
	398,281
	396,284
	9,756,250



	2020/03
	345,802
	328,177
	8,338,542



	2020/04
	531,022
	347,579
	6,938,541



	2020/05
	192,987
	81,714
	2,937,135



	2020/06
	195,061
	63,884
	3,445,273
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Table 3. The fuzzy seasonality index of the three wind power stations.
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Fuzzy Seasonality Index

	
Shimen

	
Taichung

	
Mailiao




	
     s k L     

	
     s k M     

	
     s k U     

	
     s k L     

	
     s k M     

	
     s k U     

	
     s k L     

	
     s k M     

	
     s k U     






	
k = 1

	
0.6785

	
1.4709

	
1.4709

	
0.5272

	
1.9039

	
1.9039

	
0.5243

	
1.8802

	
1.8802




	
k = 2

	
0.6785

	
1.1148

	
1.1148

	
0.4536

	
1.3659

	
1.3659

	
0.4055

	
1.2493

	
1.2493




	
k = 3

	
0.4611

	
1.1029

	
1.1029

	
0.4536

	
0.9512

	
0.9512

	
0.4055

	
0.8875

	
0.8875




	
k = 4

	
0.4464

	
0.6785

	
0.6810

	
0.2734

	
0.5272

	
0.5272

	
0.3072

	
0.5243

	
0.5243




	
k = 5

	
0.4464

	
0.6810

	
0.6848

	
0.2497

	
0.4536

	
0.4667

	
0.3072

	
0.4055

	
0.4979




	
k = 6

	
0.4464

	
0.4611

	
0.8694

	
0.2497

	
0.4667

	
0.5819

	
0.3072

	
0.4979

	
0.9466




	
k = 7

	
0.4464

	
0.4464

	
1.3626

	
0.2497

	
0.2734

	
1.8128

	
0.3072

	
0.3072

	
1.5730




	
k = 8

	
0.6848

	
0.6848

	
1.4587

	
0.2497

	
0.2497

	
1.8128

	
0.3484

	
0.3484

	
1.7477




	
k = 9

	
0.8694

	
0.8694

	
1.6686

	
0.5819

	
0.5819

	
2.0790

	
0.9466

	
0.9466

	
1.7477




	
k = 10

	
1.3626

	
1.3626

	
1.6686

	
1.3342

	
1.8128

	
2.0790

	
1.5730

	
1.5730

	
1.8802




	
k = 11

	
1.1148

	
1.4587

	
1.6686

	
1.3342

	
1.3342

	
2.0790

	
1.2493

	
1.7477

	
1.8802




	
k = 12

	
1.1029

	
1.6686

	
1.6686

	
0.9512

	
2.0790

	
2.0790

	
0.8875

	
1.6318

	
1.8802
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Table 4. Comparison of the training error (RMSE) with various prediction models for different wind power plants.
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	FSLTM
	LSTM
	BPNN
	GRNN
	LSSVR
	ARIMA
	SARIMA





	Shimen
	0.0770
	0.1689
	508,0396
	0
	121,188
	1,307,183
	866,451



	Mailiao
	0.1324
	0.0592
	498,9503
	0
	2,065,173
	22,174,287
	15,002,000



	Taichung
	0.4032
	0.0129
	208,901
	0
	90,886
	980,862
	591,422
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Table 5. Comparison of the forecasting results for the Shimen wind power plant.
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Date

	
Actual Value

	
ARIMA

	
SARIMA

	
GRNN

	
BPNN

	
LSSVR

	
LSTM

	
FSLSTM




	
M

	
U

	
L






	
2020/01

	
482,289

	
265,130

	
807,339

	
463,283

	
484,678

	
538,345

	
663,547

	
644,173

	
506,533

	
458,776




	
2020/02

	
398,281

	
264,905

	
536,142

	
407,258

	
484,678

	
495,248

	
545,863

	
488,201

	
599,497

	
564,286




	
2020/03

	
345,802

	
264,996

	
447,263

	
419,363

	
484,678

	
486,974

	
390,044

	
482,980

	
472,889

	
345,594




	
2020/04

	
531,022

	
264,959

	
267,414

	
336,234

	
484,678

	
486,252

	
274,106

	
297,131

	
430,324

	
426,518




	
2020/05

	
192,987

	
264,974

	
265,935

	
350,142

	
484,678

	
486,224

	
291,349

	
298,220

	
438,839

	
297,130




	
2020/06

	
195,061

	
264,968

	
264,577

	
195,069

	
484,678

	
486,223

	
263,500

	
201,939

	
270,340

	
343,187




	
MAPE (%)

	

	
37.51

	
42.41

	
24.26

	
61.78

	
64.40

	
36.97

	
32.98

	
46.20

	
32.69




	
Ranking

	

	
(5)

	
(6)

	
(1)

	
(8)

	
(9)

	
(4)

	
(3)

	
(7)

	
(2)











[image: Table] 





Table 6. Comparison of the forecasting results for the Taichung wind power plant.
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Date

	
Actual Value

	
ARIMA

	
SARIMA

	
GRNN

	
BPNN

	
LSSVR

	
LSTM

	
FSLSTM




	
M

	
U

	
L






	
2020/01

	
421,826

	
325,087

	
901,020

	
696,640

	
355,700

	
355,520

	
366,148

	
294,629

	
678,346

	
209,460




	
2020/02

	
396,284

	
310,188

	
319,967

	
630,978

	
355,700

	
355,510

	
698,414

	
297,072

	
479,634

	
340,958




	
2020/03

	
328,177

	
295,972

	
370,365

	
440,900

	
355,700

	
355,500

	
466,354

	
247,767

	
297,040

	
799,896




	
2020/04

	
347,579

	
282,408

	
186,543

	
220,980

	
355,700

	
355,491

	
615,672

	
149,127

	
170,964

	
942,933




	
2020/05

	
81,714

	
269,465

	
209,163

	
166,390

	
355,700

	
355,481

	
462,467

	
133,024

	
502,598

	
327,882




	
2020/06

	
63,884

	
257,115

	
104,727

	
124,600

	
355,700

	
355,471

	
411,278

	
141,578

	
161,424

	
268,070




	
MAPE(%)

	

	
100.9099

	
68.6577

	
65.6349

	
138.1218

	
151.4939

	
203.0705

	
53.5326

	
134.9830

	
166.70




	
Ranking

	

	
(9)

	
(2)

	
(4)

	
(8)

	
(6)

	
(5)

	
(1)

	
(3)

	
(7)
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Table 7. Comparison of the forecasting results for the Mailiao wind power plant.
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Date

	
Actual Value

	
ARIMA

	
SARIMA

	
GRNN

	
BPNN

	
LSSVR

	
LSTM

	
FSLSTM




	
M

	
U

	
L






	
2020/01

	
12,276,955

	
14,382,852

	
19,238,928

	
16,804,318

	
8,886,115

	
10,655,725

	
11,490,891

	
15,802,902

	
17,649,361

	
2,738,426




	
2020/02

	
9,756,250

	
14,301,888

	
9,495,570

	
14,938,148

	
8,886,115

	
9,381,110

	
9,797,061

	
8,654,354

	
11,218,379

	
7,435,086




	
2020/03

	
8,338,542

	
14,221,379

	
7,698,419

	
10,740,085

	
8,886,115

	
9,060,788

	
3,481,336

	
8,168,194

	
6,652,353

	
21,668,492




	
2020/04

	
6,938,541

	
14,141,324

	
5,138,157

	
6,313,574

	
8,886,115

	
9,027,759

	
1,163,317

	
5,596,075

	
3,765,754

	
16,162,712




	
2020/05

	
2,937,135

	
14,061,720

	
4,296,410

	
3,919,309

	
8,886,115

	
9,026,361

	
5,262,665

	
3,750,842

	
2,366,479

	
2,354,684




	
2020/06

	
3,445,273

	
13,982,563

	
2,959,347

	
4,899,275

	
8,886,115

	
9,026,337

	
3,460,068

	
3,445,273

	
3,011,638

	
2,864,925




	
MAPE(%)

	

	
153.7846

	
25.5645

	
33.9068

	
71.9399

	
70.8555

	
37.9852

	
14.8515

	
26.1184

	
71.8270




	
Ranking

	

	
(9)

	
(2)

	
(4)

	
(8)

	
(6)

	
(5)

	
(1)

	
(3)

	
(7)
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