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Abstract: We investigate the 3D Navier–Stokes Cauchy problem. We assume the initial datum v0 is

weakly divergence free, sup
R3

∫
R3

|v0(y)|2
|x−y| dy < ∞ and |v0(y)|2 ∈ K3, where K3 denotes the Kato class. The

existence is local for arbitrary data and global if sup
R3

∫
R3

|v0(y)|2
|x−y| dy is small. Regularity and uniqueness

also hold.
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1. Introduction

We consider the Navier–Stokes Cauchy problem:

vt + v · ∇v +∇πv = ∆v, ∇ · v = 0, in (0, T)×R3,
v = v0 on {0} ×R3.

(1)

In System (1) v is the fluid velocity field,πv is the pressure field of an incompressible
viscous fluid, vt := ∂

∂t v and v · ∇v := vk
∂

∂xk
v.

We set

L2
wt := {u : sup

x

∫
R3

|u(y)|2
|x− y| dy < ∞ } ,

K3 := {U(y) : lim
ρ→0

sup
x

∫
B(x,ρ)

|U(y)|
|x− y| dy = 0 } .

In a different context, the set K3 was introduced by Kato in [1]. In [2], Simon studies
and develops properties related to the elements of K3 (see also [3]). For ρ > 0, we set

||u||2Kρ := sup
x

∫
B(x,ρ)

|u(y)|2
|x− y| dy, and ||u||2wt := sup

x

∫
R3

|u(y)|2
|x− y| dy ,

|||u|||(t,ρ) := sup
(0,t)

τ
1
2 ||u(τ)||∞ + sup

(0,t)
||u(τ)||Kρ +

t
1
2

ρ
sup
(0,t)
||u(τ)||wt .

(2)

By the symbol K we mean the set

K := {u ∈ L2
wt, weakly divergence free and |u|2 ∈ K3}.

For all ρ > 0 and t > 0, we put

h(t, ρ) := e−
ρ2
4t
[
ρ2t−1 + 2

] 1
2 /4π . (3)
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We set T(v0) := sup
ρ>0

t(ρ), where t(ρ) is such that

1− 4c
[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) +

t
1
2

ρ
)||v0||wt

]
> 0 , (4)

where c is an absolute constant. The definition of T(v0) is well posed for all v0 ∈ K. Indeed,
observing that |v0|2 ∈ K3 and taking into account that, for fixed ρ, h(t, ρ)→ 0 as t→ 0 (see
Remark 1), one can choose ρ and subsequently t in such a way that (4) is satisfied.

We are interested in the following result.

Theorem 1. For all v0 ∈ K there exists a solution (v, πv) to problem (1) on (0, T(v0)) × R3

enjoying the properties

for all η > 0, t ∈ (η, T(v0)), θ ∈ [0, 1),

v ∈ C2,θ(R3) ∩ K and vt, D2v ∈ C0, θ
2 ((η, T(v0))×R3),

|||v|||(t,ρ) ≤
2
[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt
]

1 +
(
1− 4c

[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt
]) 1

2

,

(5)

for all t ∈ (0, T(v0)), with

t
1
2 ||πv(t)||wt ≤ c|||v|||2(t,ρ) , πv ∈ C1,θ(R3) for all t ∈ (0, T(v0)) ,

lim
t→0

t
1
2 ||v(t)||∞ = 0 and, for all x ∈ R3, lim

t→0

∫
R3

|v(t, y)− v0(y)|2
|x− y| dy = 0 ,

(6)

where c is an absolute constant. If the norm ||v0||wt is suitably small, then the result holds for all
t > 0.

Proposition 1 (Weighted energy relation). Let v be a solution to (1) enjoying properties (5)
and (6). Then the following weighted energy relation holds:

∫
R3

|v(t, y)|2
|x− y| dy + 2

t∫
s

∫
R3

|∇v(t, y)|2
|x− y| dydτ + 4π

t∫
s

|v(τ, x)|2dτ

=
∫
R3

|v(s, y)|2
|x− y| dy +

t∫
s

∫
R3

(v2 + 2πv) v · ∇y
1

|x− y|dydτ ,

(7)

for all s < t in (0, T(v0)).

Proposition 2 (Uniqueness). For all v0 ∈K a solution of Theorem 1 is unique.

To better explain the aim of the previous theorem, we recall a result by Caffarelli,
Kohn, and Nirenberg in [4] and another, based on [4], achieved in [5,6]. In [4], Proposition 1
is a criterion of regularity for a suitable weak solution. As a consequence, one understands
that if a suitable weak solution v(t, x), corresponding to an initial datum v0 ∈ L2(R3),
admits a possible singularity in (t0, x0), then in a neighborhood of the point (t0, x0) there is
the behavior (see (1.18) in [4])

|v(t, x)| ≥ c(|x− x0|2 + |t− t0|)−
1
2 . (8)
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Instead, in [5,6], recognizing that, via the Hardy–Littlewood–Sobolev inequality,

v(t, y) ∈ L2(R3) ensures that the Newtonian potential ψ(t, x) :=
∫
R3

|v(t,y)|2
|x−y| dy is finite

almost everywhere in x ∈ R3, by means of the quoted criterion of regularity the authors
prove that such points (t, x) are the center of suitable parabolic cylinders of regularity
Q(t, x) for a suitable weak solution v (we stress that in [7], under a suitable assump-
tion of smallness, the parabolic cylinder Q(t, x) of the partial regularity is of the kind
(0, ∞)×R3 − B(0, R), see also [4]). Therefore, the Kato class K3 appears of some interest
since, in connection with (8), the class K3 has the potential to preserve the solution from
the singularity of the kind (8), and in connection with results of [5,6], the properties of K3
make the potential ψ(t, x) a continuous function of x ∈ R3.

We point out that, from (4), the existence interval (0, T(v0)) in Theorem 1is determined
by means of properties of the elements of K. We can iterate the arguments, achieving a
sequence {(T(vm−1

0 ), T(vm
0 ))} of existence intervals that by the construction collapse to

the empty set. The collapse is due to the fact that ρm → 0. Hence, in the limit on m one
loses the opportunity to take advantage of the smallness related to ||vm

0 ||Kρ . Concerning
estimate (6)1for the pressure field, it is actually stronger, in the sense that one obtains
||πv(t)||wt ≤ c||v(t)||∞||v(t)||wt for all t ∈ (0, T(v0)).

We point out that in the case of small data in L2
wt the existence can be given relaxing

the assumptions on the initial datum to v0 divergence free and belonging to L2
wt. The result

is weaker. In fact, the properties (6)3,4 do not hold.The initial datum is assumed in weak
form, the uniqueness can be discussed following the duality approach furnished in [8], but,
as made in [6], with v ∈ L2

w(0, T; L∞) ∩ L2(η, L∞), for all η > 0.
We remark that in the hypothesis v0 ∈ K∩ L2, the results of existence and regularity

of Theorem 1, coupled with the uniqueness theorems proved in [6], can be employed to
deduce a structure theorem for suitable weak solutions.

The set L2
wt is enclosed in BMO−1, space detected in [9] as the widest scale-invariant

space where problem (1) is well posed (Ḣ
1
2 ↪→ L3 ↪→ Ḃ

−1+ 3
p

p,∞ ↪→ BMO−1 holds, p < ∞). We
also have K⊂ BMO−1

R , cf. [9], or BMO−1
0 (for this space see [10]). In fact, w0 ∈ BMO−1

0
means w0 ∈ BMO−1 and

lim
T→0

[
sup
(0,T)

t
1
2 ||w(t)||∞ + sup

x
sup
(0,T)

t−
3
4

[ t∫
0

∫
B(x,
√

t)

|w(τ, y)|2dydτ
] 1

2
]
= 0 ,

where w is the heat solution corresponding to the distribution w0. For w0 ∈ K, by virtue of
Lemmas 4 and 6 in Section 3, we get

t
1
2 ||w(t)||∞ ≤ c||w0||Kρ + h(t, ρ)||w0||wt and ||w(t)||Kρ≤ c||w0||Kρ ,

where for all ρ > 0, we have h(t, ρ)→ 0 letting t→ 0. Hence, we easily get

lim
ρ→0

lim
T→0

sup
(0,T)

t
1
2 ||w(t)||∞ = 0 ,

and
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lim
T→0

sup
x

sup
(0,T)

t−
3
2

t∫
0

∫
B(x,
√

t)

|w(τ, y)|2dydτ

≤ lim
T→0

sup
x

sup
(0,T)

t−1
t∫

0

∫
B(x,
√

t)

|w(τ, y)|2
|x− y| dydτ

≤ c lim
T→0

sup
x

sup
(0,T)
||w0||2K

√
t ≤ c lim

T→0
sup

x
||w0||2K

√
T = 0 .

Hence, in connection with these spaces our result does not add a new statement. On
the other hand, in the case of scale-invariant norms, to date, a functional dependence
between the dimensionless size of the initial datum and the dimensionless size of the
existence interval (0, T) is not known and, to the best of our knowledge, the one exhibited
in (4) is the first. Actually, in the setting of the scaling of the Navier–Stokes equations,
one can consider the dimensionless ratio t

1
2 /ρ, as we make in (4). In (4) this ratio a priori

cannot be constant. The ratio changes by means of the size of the other quantities, which
are all dimensionless, and they realize the size of the existence interval. In the proof of
global existence for small data, being possible a constant ratio t

1
2 /ρ (which follows from the

smallness of ||v0||wt), we achieve t
1
2 → ∞ choosing proportionally ρ . So, a priori, one cannot

compare the interval of existence given in [9] and the one given in Theorem 1. However, as
remarked by the authors of [9], one of the interesting aspects of these results is the strict
connection between the metrics employed in the existence theorems and the regularity
criteria, such as the ones given in [4], which could be useful for an improvement of the
partial regularity.

It is natural to inquire about the connection between K and the scale-invariant spaces

L3, Ḃ
−1+ 3

p
p,∞ . In fact, no comparison is possible. This is a consequence of the fact that L3 is

not included in K and K is not included in Ḃ
−1+ 3

p
p,∞ (in this connection see Remark 5 in [6]).

The Lorentz space L(3, 2) is enclosed in Lwt.
We conclude claiming that an existence theorem of weak solutions corresponding to a

datum v0 ∈ K holds. Roughly speaking, for this goal it is enough to follow the argument
lines given in [11,12]. That is, to look for a weak solution v to problem (1) as the sum of
two fields u and w. The field w is a smooth solution to a linear problem. Instead, in the
ordinary L2 setting, u is a weak solution to a suitable perturbed Navier–Stokes system. If
the goal is the well posedness for the Navier–Stokes Cauchy problem, such an existence
result of weak solutions appears of little interest since, by introducing the field u, one loses
the advantage of v0 ∈K. This is why we do not give the proof. The question is different
in the context of stability of motions, such as in [13], where thanks to the result in [11] it is
possible to show a transition from a stationary regime in Finn’s class to a non-stationary
one in L(3, ∞) a.e. in t, or to show the converse transition.

This paper is organized as follows. In Section 2 we recall some preliminary results.
In Section 3 we furnish a priori estimates in the functionals that define ||| · |||(t,ρ) in (2). In
Section 4 we achieve the proof of Theorem 1, Propositions 1 and 2.

2. Preliminaries

We set
H ∗ a(t, x) :=

∫
R3

H(t, x− y)a(y)dy,
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and, i = 1, 2, 3,

∇xEi ∗ (a⊗ b)(t, x) :=
t∫

0

∫
R3

Dxj Eih(t− τ, x− y)(ahbj)(y, τ)dydτ.

We look for a solution to the integral equation

v(t, x) = H ∗ v0(t, x)−∇xE ∗ (v⊗ v)(t, x) , for all (t, x) ∈ (0, T)×R3 , (9)

where H(t, z) := (4πt)−
3
2 exp[−|z|2/4t] is the fundamental solution of the heat equation

and E(s, z) is the Oseen tensor, fundamental solution of the Stokes system, with components

Eij(s, z) := −H(s, z)δij + Dzizj φ(s, z) ,

φ(s, z) := E(z)s−
3
2

|z|∫
0

exp[−a2/4s
3
2 ]da ,

where E is the fundamental solution of the Laplace equation. For the Oseen tensor the
following estimates hold (cf. [14], estimates (VI) on page 215 and (VIII) on page 216, or [15]):

|Dk
s Dh

z E(s, z)| ≤ c(|z|+ s
1
2 )−3−h−k, for all s > 0 and z ∈ R3 , (10)

for all θ ∈ (0, 1), uniformly in (s, z)∣∣Dh
z E(s, z)− Dh

z E(s, z)| ≤ c|z− z|θ
[
(|z|+ s

1
2 )−(3+h+1)θ + (|z|+s

1
2 )−(3+h+1)θ]

×
[
(|z|+ s

1
2 )−(3+h)(1−θ) + (|z|+s

1
2 )−(3+h)(1−θ)

]
,∣∣Dk

t E(s, z)− Dk
s E(s, z)

∣∣ ≤ c|s− s|
θ
2
[
(|z|+ s

1
2 )−(3+h+1)θ + (|z|+ s

1
2 )−(3+k+1)θ]

×
[
(|z|+ s

1
2 )−(3+k)(1−θ) + (|z|+s

1
2 )−(3+h)(1−θ)

]
,

(11)

where Dh
z is the symbol of the partial derivatives with respect to zi-variable αi times,

i = 1, 2, 3, and h = α1 + α2 + α3.
We use the method of successive approximations. The lemmas of this and the fol-

lowing section ensure boundedness and convergence of the approximating sequence of
velocity fields {vm}. Finally the pressure with the corresponding estimates are recovered
by solving a suitable Poisson equation and applying Lemma 3.

Following [16] we state:

Lemma 1. Let ξ0 > 0 and c > 0. Assume 1− 4cξ0 > 0. Let {ξm} be a non-negative sequence of
real numbers such that

ξm ≤ ξ0 + cξ2
m−1 .

Then ξm−1 ≤ ξ for all m ∈ N, where ξ is the minimum solution of the algebraic equation
cξ2 − ξ + ξ0 = 0.

Proof. The proof is immediate.

Lemma 2. There exist constants c independent of u such that

i. If u ∈ L∞(R3) ∩ L2
wt(R3), then the following holds:

∫
R3

|u(y)|3
|x− y|2 dy ≤ c||u||2∞

[ ∫
R3

|u(y)|2
|x− y| dy

] 1
2

, for all x ∈ R3 . (12)
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ii. If |x− y|− 1
2 u, |x− y|− 1

2∇u ∈ L2(R3), then the following holds:

∫
R3

|u(y)|2
|x− y|2 dy ≤ c

[ ∫
R3

|u(y)|2
|x− y| dy

] 1
2
[ ∫
R3

|∇u(y)|2
|x− y|

] 1
2

, for all x ∈ R3 . (13)

iii. If u ∈ L∞(R3) and |x− y|− 1
2 u, |x− y|− 1

2∇u ∈ L2(R3), then the following holds:

∫
R3

|u(y)|3
|x− y|2 dy ≤ c||u||∞

[ ∫
R3

|u(y)|2
|x− y| dy

] 1
2
[ ∫
R3

|∇u(y)|2
|x− y|

] 1
2

, for all x ∈ R3 . (14)

Proof. For all R > R > 0, applying Hölder’s inequality, we get

∫
B(x,R)

|u(y)|3
|x− y|2 dy =

∫
B(x,R)−B(x,R)

|u(y)|3
|x− y|2 dy +

∫
B(x,R)

|u(y)|3
|x− y|2 dy

≤ ||u||∞
R

∫
R3

|u(y)|2
|x− y| dy + c||u||3∞R .

Setting

R =
[ ∫
R3

|u(y)|2
|x− y| dy

] 1
2
/
||u||∞ ,

by virtue of the Beppo-Levi monotone convergence theorem, we arrive at (12). Inequality
(13) is a particular case of a general weighted inequality proved in Lemma 7.1 of [4].
Inequality (14) is an immediate consequence of Hölder’s inequality and (13).

Let us consider the equation

∆π̃ = −∇a · ∇uT in R3 . (15)

For problem (15) we recall the following result:

Lemma 3. Let a and u be divergence free in (15). For a solution π̃ to problem (15) there exist
constants c independent of u such that

i. If |x− y|− 2
3 a, |x− y|− 2

3 u ∈ L3(R3), then the following holds:

|||x− y|−
4
3 |π̃||| 3

2
≤ c|||x− y|−

2
3 |a(y)|||3|||x− y|−

2
3 |u(y)|||3 . (16)

ii. If a ∈ L∞(R3) and |x− y|− 1
2∇u ∈ L2(R3), then the following holds:

|||x− y|−
1
2 |∇π̃|||2 ≤ c||a||∞|||x− y|−

1
2 |∇u(y)|||2 . (17)

iii. If, for θ ∈ (0, 1), a, u ∈ C1,θ(R3), then we get π ∈ C1,θ(R3).

Proof. We note that under our assumptions the following identity holds: ∇a · ∇uT =
∇ · ∇ · (a⊗ u). Hence, from the representation formula for solutions of (15) and the theory
of singular integrals (in particular [17] with weight), one deduces the result.
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3. Lemmas Related to the Functionals Defined on L∞, K3, L2
wt

Lemma 4. Let a ∈ L2
wt. Then for the convolution product H ∗ a we get

t
1
2 ||H ∗ a(t)||∞ ≤ h0(t, ρ)||a||Kρ + h(t, ρ)||a||wt , for all ρ > 0 and t > 0 ,

with h0(t, ρ) =
[
2− e−

ρ2
2t (ρ2t−1 + 2)

]1
2/4π and h(t, ρ) = e−

ρ2
4t
[
ρ2t−1 + 2

]1
2/4π.

(18)

Proof. By the definition of the heat kernel and applying Hölder’s inequality, we get

|H ∗ a(t, x)| ≤
∫

B(x,ρ)

|x−y|
1
2 H(t, x−y)

|a(y)|
|x−y| 12

dy +
∫

|x−y|>ρ

|x−y|
1
2 H(t, x−y)

|a(y)|
|x−y| 12

dy

≤
[ ∫
B(0,ρ)

|z|H2(t, z)dz
] 1

2 ||a||Kρ +
[ ∫
|z|>ρ

|z|H2(t, z)dz
] 1

2 ||a||wt

= t−
1
2
[
h0(t, ρ)||a||Kρ + h(t, ρ)||a||wt

]
,

where for functions h0 and h one easily proves the values claimed in (18).

Remark 1. Function h0(t, ρ) belongs to (0, 1/(2
3
2 π)] for all (t, ρ) ∈ (0, ∞)× (0, ∞). Instead,

for all ρ > 0, function h(t, ρ) is monotonically increasing in t > 0, with lim
t→0

h(t, ρ) = 0.

Lemma 5. Let sup(0,T)
[
t

1
2 ||a(t)||∞ + t

1
2 ||b(t)||∞

]
< ∞ and sup(0,T)

[
||a(t)||wt + ||b(t)||wt

]
< ∞.

Then there exists a constant c independent of a and b such that

t
1
2 ||∇E ∗(a⊗ b)(t)||∞≤ c

[
sup
(0,t)

τ|||a(τ)||b(τ)|||∞

+ sup
(0,t)
|||a(τ)|

1
2 |b(τ)|

1
2 ||Kρ+ tρ−2sup

(0,t)
|||a(τ)|

1
2 |b(τ)|

1
2 ||wt

]
,

for all ρ > 0 for all t ∈ (0, T) .

(19)

Proof. Via formulae (10) we get

|∇E ∗ (a⊗ b)(t, x)| ≤
t∫

t
2

∫
R3

|a(τ, y)||b(τ, y)|
(|x− y|2 + t− τ)2 dy +

t
2∫

0

∫
R3

|a(τ, y)||b(τ, y)|
(|x− y|2 + t− τ)2 dy

=: I1(t) + I2(t) .

By our hypotheses we get

I1(t) ≤ c
t∫

t
2

1
τ

sup τ|||a(τ)||b(τ)|||∞
∫
R3

(|z|2 + t− τ)−2dzdτ ≤ ct−
1
2 sup
( t

2 ,t)
τ|||a(τ)||b(τ)|||∞ ,
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and

I2(t) ≤ c

t
2∫

0

∫
B(x,ρ)

|a(τ, y)||b(τ, y)|
(|x− y|2 + t− τ)2 dzdτ +

t
2∫

0

∫
|x−y|>ρ

|a(τ, y)||b(τ, y)|
(|x− y|2 + t− τ)2 dzdτ

≤ c

t
2∫

0

(t− τ)−
3
2 |||a(τ)|

1
2 |b(τ)|

1
2 ||Kρ + cρ−2

t
2∫

0

(t− τ)−
1
2 |||a(τ)|

1
2 |b(τ)|

1
2 ||wt

≤ ct−
1
2 sup
(0,t)
|||a(τ)|

1
2 |b(τ)|

1
2 ||Kρ + ct

1
2 ρ−2 sup

(0,t)
|||a(τ)|

1
2 |b(τ)|

1
2 ||wt.

Via estimates for I1 and I2 we arrive at (19).

Lemma 6. Let ||a||Kρ < ∞. Then we get

||H ∗ a(t)||Kρ ≤ ||a||Kρ , for all t > 0 . (20)

Proof. Employing Minkowski’s inequality, we get∫
B(x,ρ)

|x− y|−1
[ ∫
R3

H(t, y− z)a(z)dz
]2

dy =
∫

B(x,ρ)

[ ∫
R3

H(t, ξ)
a(y− ξ)

|x− y| 12
dξ
]2

dy

≤
[ ∫
R3

H(t, ξ)
[ ∫

B(x,ρ)

|a(y− ξ)|2
|x− y| dy

] 1
2
dξ
]2

.

Hence one easily arrives at (20).

Lemma 7. Let a(x) ∈ L2
wt. Then we get

||H ∗ a(t)||wt ≤ ||a||wt , for all t > 0 . (21)

Proof. The proof is analogous to the one of the previous lemma. Hence it is omitted.

Lemma 8. Let sup(0,T)
[
t

1
2 ||a(t)||∞ + ||b(t)||Kρ

]
< ∞. Then there exists a constant c independent

of a(t, x) and b(t, x) such that

||∇E ∗ (a⊗ b)(t)||Kρ ≤ c sup
(0,t)

τ
1
2 ||a(τ)||∞||b(τ)||Kρ , for all ρ > 0 and t ∈ (0, T) . (22)

Proof. Setting y− z = ξ in the convolution product, we have to estimate the integral

∫
B(x,ρ)

|x− y|−1
[ t∫

0

∫
R3

∇E(t− τ, ξ) · (a(τ, y− ξ)⊗ b(τ, y− ξ))dξdτ
]2

dy =: I(t, x)

Employing the Minkowski inequality, we get

I(t, x) ≤
[ t∫

0

∫
R3

|∇E(t− τ, ξ)|
[ ∫

B(x,ρ)

|a(τ, y− ξ)|2|b(τ, y− ξ)|2
|x− y| dy

] 1
2
dξdτ

]2
.

By virtue of our hypotheses and estimate (10) for the Oseen tensor, we find

I(t, x) ≤ c sup
(0,t)

τ
1
2 ||a(τ)||∞||b(τ)||Kρ

t∫
0

(t− τ)−
1
2 τ−

1
2 .



Mathematics 2021, 9, 1167 9 of 14

Hence one easily arrives at (22).

Lemma 9. Let sup(0,T)
[
t

1
2 ||a(t)||∞ + ||b(t)||wt

]
< ∞. Then there exists a constant c independent

of a(t, x) and b(t, x) such that

||∇E ∗ (a⊗ b)(t)||wt ≤ c sup
(0,t)

τ
1
2 ||a(τ)||∞||b(τ)||wt, for all t ∈ (0, T) . (23)

Proof. The proof is analogous to the one of the previous lemma. Hence it is omitted.

Lemma 10. In the hypotheses of Lemmas 4 and 5 the convolution products H ∗ a and∇E ∗ (a⊗ b)
are Hölder continuous functions, with exponent θ ∈ [0, 1), in (t, x) ∈ ((η, T)×R3), η > 0. In
particular we get

|H∗a(t,x)−H∗a(t,x)|[
|x−x|+|t−t|

1
2
]θ ≤ c

η
1+θ

2
||a||wt

|∇E∗(a⊗b)(t,x)−∇E∗(a⊗b)(t,x)|[
|x−x|+|t−t|

1
2
]θ ≤ c

η
1+θ

2

[
sup
(0,t)

τ||a(τ)b(τ)||∞+ sup
(0,t)
|||a(τ)b(τ)| 12 ||wt

]
.

(24)

Proof. Following the classical proof of the Hölder property for solutions to the heat equa-
tion, and the estimate given in Lemma 4, one obtains (24)1. We omit further details, as the
computations are similar to the following ones for ∇E.

Taking estimates (11) into account, applying Hölder’s inequality, for the term ∇E ∗
(a⊗ b)(t, x) we easily get the following estimate, θ ∈ [0, 1),∣∣∇E ∗ (a⊗ b)(t, x)−∇E ∗ (a⊗ b)(t, x)

∣∣
|x− x|θ

≤

c
t∫

0

∫
R3

[ |a(τ, y)||b(τ, y)|
(|x− y|+ (t− τ)

1
2 )4+θ

+
|a(τ, y)||b(τ, y)|

(|x− y|+(t− τ)
1
2 )4+θ

]
dydτ .

Employing the arguments developed in the proof of Lemma 5, one easily arrives to
the estimate∣∣∇E ∗ (a⊗ b)(t, x)−∇E ∗ (a⊗ b)(t, x)

∣∣
≤ ct−

1
2−

θ
2 |x− x|θ

[
sup
(0,t)

τ||a(τ)b(τ)||∞ + sup
(0,t)
|||a(τ)b(τ)|

1
2 ||wt

]
. (25)

Analogously, one proves the Hölder property with respect to time for the term ∇E ∗
(a⊗ b). Hence, for all η > 0, in (η, T)×R3, we have (24)2.

We study the integral relation

vm(t, x) = H ∗ v0(t, x)−∇xE ∗ (vm−1 ⊗ vm−1)(t, x) . (26)

In (2), for t > 0 and ρ > 0, we set

|||u|||(t,ρ) := sup
(0,t)

τ
1
2 ||u(τ)||∞ + sup

(0,t)
||u(τ)||Kρ +

t
1
2

ρ
sup
(0,t)
||u(τ)||wt .
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Lemma 11. Let v0 ∈ K. Set v0(t, x) := H ∗ v0. Then there exists a constant c, independent of v0
and m ∈ N, such that for the sequence (26) we get

|||vm|||(t,ρ) ≤ (1/(2
3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt + c|||vm−1|||2(t,ρ) ,

for all t > 0 and ρ > 0 .
(27)

Proof. From definition (26), by virtue of Lemmas 4–9, for all t > 0 and ρ > 0, we get

s
1
2 ||v1(s)||∞ ≤h0(s, ρ)||v0||Kρ + h(s, ρ)||v0||wt

+c
[

sup
(0,s)

τ
1
2 ||v0(τ)||∞+ sup

(0,s)
||v0(τ)||Kρ+

s
1
2

ρ sup
(0,s)
||v0(τ)||wt

]2
,

||v1(s)||Kρ ≤ ||v0||Kρ + c sup
(0,s)

τ
1
2 ||v0(τ)||∞||v0(τ)||Kρ

≤ ||v0||Kρ + c
[

sup
(0,s)

τ
1
2 ||v0(τ)||∞+ sup

(0,s)
||v0(τ)||Kρ+

t
1
2

ρ sup
(0,t)
||v0(τ)||wt

]2
,

||v1(s)||wt≤ ||v0||wt + c sup(0,s) τ
1
2 ||v0(τ)||∞||v0(τ)||wt ,

(28)

where c is a constant independent of t, ρ. Multiplying (28)3 for t
1
2
ρ , we get

t
1
2
ρ ||v

1(s)||wt ≤
t

1
2
ρ ||v0||wt + c

[
sup
(0,s)

τ
1
2 ||v0(τ)||∞+ sup

(0,s)
||v0(τ)||Kρ+

t
1
2

ρ sup
(0,s)
||v0(τ)||wt

]2
.

Taking sup(0,t) in each of (28), then summing (28)1, (28)2, and the last inequality,
recalling the definition of the functional ||| · |||(t,ρ) and taking Remark 1 into account, we
arrive at

|||v1|||(t,ρ) ≤ (1/(2
3
2 π) + 1)||v0||Kρ + (h(t, ρ) +

t
1
2
ρ )||v0||wt + 3c|||v0|||2(t,ρ) ,

for all ρ > 0 and t > 0,

with a constant c independent of the datum v0. So, for m = 1, (26) is well defined and
estimate (27) is true. Then by induction one proves the estimate for all m ∈ N.

Lemma 12. Let {vm} be the sequence defined in (26) corresponding to v0 ∈ K. Then, there exists a
T(v0) > 0 such that, for all η, the sequence strongly converges in C0,θ((η, T(v0))×R3), θ ∈ [0, 1)
to a solution v to (9), and for all t ∈ (0, T(v0)), the sequence converges to v in L2

wt. In particular
we get, for all t ∈ [0, T(v0)),

|||v|||(t,ρ) ≤
2
[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt
]

1 +
(
1− 4c

[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt
]) 1

2

, (29)

and
lim
t→0

t
1
2 ||v(t)||∞ = 0 . (30)

Finally, for all t ∈ [0, T(v0)), the limit v(t, x) belongs to K.
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Proof. Recalling that |v0|2 ∈ K3 and Remark 1 for h, we choose ρ and subsequently t in
such a way that

1− 4c
[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) +

t
1
2

ρ )||v0||wt
]
> 0 . (31)

We denote by T(v0) the supremum of t(ρ) for which (31) holds. Then, by virtue of
(27) and Lemma 1, t ∈ [0, T(v0)) and uniformly in m ∈ N, we get

|||vm|||(t,ρ) ≤
2
[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt
]

1 +
(
1− 4c

[
(1/(2

3
2 π) + 1)||v0||Kρ + (h(t, ρ) + t

1
2

ρ )||v0||wt
]) 1

2

=: A(ρ, t). (32)

Employing again the definition given in (3), we also have the following immediate
property:

P: for any sequence {tp} → 0, one constructs a sequence {ρp} → 0 such that for all
p ∈ N (31) holds and the right-hand side of (32) tends to zero.

Estimate (32) ensures that, for all t ∈ [0, T(v0)), the sequence {|||vm|||(t,ρ)} is bounded.
We set wm := vm − vm−1. Hence from (26) we arrive at (m ≥ 0 and v−1 = 0)

wm+1(t, x) = −∇xE ∗ (wm ⊗ vm)(t, x)−∇xE ∗ (vm−1 ⊗ wm)(t, x) .

Employing the arguments of Lemmas 5, 6, and 9, and recalling estimate (32), we easily
arrive at the sequence of estimates

|||w1|||(t,ρ) ≤ cA2(ρ, t), . . . , |||wm|||(t,ρ) ≤ 2m−1cm Am+1(ρ, t), . . . . (33)

Since (31) furnishes A(ρ, t) < 1/2c < 1 for all t ∈ (0, T(v0)), we get the convergence of
{vm} with respect to the functional ||| · |||(t,ρ). The uniform convergence of the sequence of
continuous functions {vm} on (η, T)×R3 ensures that the limit is a continuous function
in (t, x) ∈ C((η, T) × R3). We denote by v the limit. Recalling that for all θ′ < θ the
following holds

[vm − vp]R
3

θ′ ≤ 2
θ−θ′

θ
[

sup
R3
|vm − vp|

] θ−θ′
θ
[[

vm − vp]R3

θ

] θ′
θ ,

where [ · ]R3

λ denotes the Hölder seminorm, thanks to the Hölder properties (24) and the
pointwise convergence just proved, for the limit v we obtain the Hölder property with
θ′ ∈ (0, θ). Moreover, by virtue of property P, we deduce (30). We conclude the proof by
proving that v(t, x) ∈ K for all t ∈ [0, T(v0)). In fact, we have to prove that

lim
ρ→0

sup
x

∫
B(x,ρ)

|v(t, y)|2
|x− y| dy = 0 .

The convergence with respect to the functional ||| · |||(t,ρ) in particular ensures that
the limit v satisfies the integral Equation (9). Actually, the field v enjoys the hypotheses of
Lemma 5. Thus considering um−1 := v− vm−1, we have to estimate in L∞ the quantity

∇E ∗ (um−1 ⊗ v)(t, x) +∇E ∗ (vm−1 ⊗ um−1)(t, x) .

By virtue of estimate (19) , applying the Schwartz inequality, we get

||∇E ∗ (um−1 ⊗ v)(t, x) +∇E ∗ (vm−1 ⊗ um−1)(t, x)||∞
≤ c|||um−1|||(t,ρ)(|||v|||(t,ρ) + |||vm−1|||(t,ρ)) ,
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which ensures the desired convergence, hence

v(t, x) = H ∗ v0(t, x)−∇xE ∗ (v⊗ v)(t, x) . (34)

Hence, applying Lemmas 6 and 8, we deduce

||v(t)||Kρ ≤ ||v0||Kρ + c sup
(0,t)

τ
1
2 ||v(τ)||∞||v(τ)||Kρ for all ρ > 0 and t ∈ [0, T(v0)) .

Since A(ρ, t) < 1/2c for all t ∈ (0, T(v0)), we deduce that

sup
(0,t)
||v(τ)||Kρ

< ||v0||Kρ
+

1
2 sup

(0,t)
||v(τ)||Kρ , for all ρ > 0 and t ∈ [0, T(v0)) .

Since v0 ∈ K3, we deduce v ∈ K3 for all t > 0.

Remark 2. By the definitions, T(v0) in Lemma 12 and T(v0) introduced in (4) coincide.

4. Proof of the Main Results Stated in the Introduction

Proof of Existence. In the hypothesis of Theorem 1, by virtue of Lemmas 11 and 12, we
establish a solution v(t, x) divergence free to the integral Equation (9) such that

for all t ∈ (η, T(v0)), θ ∈ [0, 1), v ∈ C0,θ(R3),

for all t ∈ [0, T(v0)), v(t, x) ∈ K with ||v(t)||wt ∈ L∞((0, T(v0))).
(35)

Subsequently, by means of integral equation and thanks to the Hölder property, one
proves that v admits ∇∇v(t, x), vt(t, x) with the regularity stated in (5) (see, e.g., [14]).
Then, we consider πv solution to the Poisson equation ∆πv = −∇v · (∇v)T . By Lemma 3
one arrives at (6)1,2. Since v is solution to the integral Equation (34), by the couple (v, πv)
one finds the desired solution to System (1) (cf. [14,15] or [18] Section 4.6). Concerning the
initial condition v0, we first observe that the limit property (6)4 trivially holds for v0(t, x),
and then, via the integral Equation (9) and Lemma 9 for ∇E ∗ (v⊗ v), we get

||v(t)− v0(t)||wt ≤ c sup
(0,t)

τ
1
2 ||v(τ)||∞||v(τ)||wt for all t ∈ [0, T(v0)) .

Thus, since lim
t→0

sup
(0,t)

τ
1
2 ||v(τ)||∞ = 0 , we arrive at the limit property (6). Concerning the

global existence, we remark that ||v0||Kρ ≤ ||v0||wt holds for all ρ > 0. Hence, considering
t

1
2 /ρ in constant ratio, we can satisfy (31) by just requiring ||v0||wt to be sufficiently small.

Since we can consider arbitrary ρ, the same holds for t, which means global existence.

Proof of Proposition 1. We denote by ϕR a smooth nonegative cutoff function with value
ϕR(y) = 1 for |y| ≤ R and ϕR(y) = 0 for |y| ≥ 2R and R|∇ϕR|+ |∇∇ϕR| ≤ cR−2 for all
y ∈ R3. In order to prove (7) we multiply Equation (1) by |x− y|−1v(t, y)ϕR(y). Integrating
by parts on (s, t)×R3, we get

∫
R3

ϕR
|v(t, y)|2
|x− y| dy + 2

t∫
s

∫
R3

ϕR
|∇v(t, y)|2
|x− y| dydτ ≤

3
∑

i=1
Ii(t) , (36)
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where we set

I1(t) :=
t∫

s

∫
R3

|v(τ, y)|2|∆ ϕR
|x− y| |dydτ

I2(t) :=
t∫

s

∫
R3

c|v|3
R|x− y| +

|v|3
|x− y|2 dydτ

I3(t) := 2
t∫

s

∫
R3

|πv||v|
|x− y|2 +

c|πv||v|
R|x− y|dydτ .

By virtue of the regularity of v, applying Hölder’s inequality and employing
Lemmas 2 and 3, we get the right and sides of Ii, i = 1, 2, 3 uniformly bounded in R.
Hence applying the Beppo Levi monotonic convergence theorem, for all s, t ∈ (0, T(v0)),
we deduce that |x− y|− 1

2 |∇v(t, y)| ∈ L2(s, t; L2(R3)). This last integrability property and
the regularity of v allow us to arrive at (7). The result is proved.

Proof of Proposition 2. Finally, we prove the uniqueness in the class of existence. Consider
two solutions v and v enjoying the properties indicated in Theorem 1; then, as it is known,
for both solutions one writes the integral Equation (9). Hence by difference we arrive at

u(t, x) = −∇xE ∗ (u⊗ v)−∇xE ∗ (v⊗ u) ,

where u := v− v and t ∈ [0, T(v)) ∩ [0, T(v)). By virtue of Lemma 9 we get

||u(t)||wt ≤ c sup
(0,t)

τ
1
2 (||v

(
τ)||∞ + ||v(τ)||∞

)
sup
(0,t)
||u(τ)||wt .

Since the limit property (6) holds, one easily deduce the uniqueness on some interval
(0, δ]. In order to complete the uniqueness for t ∈ [δ, T(v)) ∩ [δ, T(v)), one employs the
weighted energy inequality. Multiplying equation of u, that is ut − ∆u + v · ∇u + u · ∇v +
∇πu = 0, by u/|x− y| and integrating on (δ, t)×R3, one obtains

∫
R3

|u(t, y)|2
|x− y| dy + 2

t∫
δ

∫
R3

|∇u(t, y)|2
|x− y| dydτ ≤ 2

3
∑

i=1
Ii(t) , (37)

where we set

I1(t) :=
t∫

δ

∫
R3

|v · ∇u · u|+ |u · ∇u · v|
|x− y| dy

I2(t) :=
t∫

δ

∫
R3

|u||u · v|
|x− y|2 dy

I3(t) :=
t∫

δ

∫
R3

|∇πu||u|
|x− y| dydτ .

Since v, v ∈ L∞((δ, T(v)) ∩ (δ, T(v)) × R3), by virtue of Lemma 2, we obtain the
estimates:

I1(t) ≤ c
t∫

δ

[
||v(τ)||∞ + ||v(t)||∞

][ ∫
R3

|u|2
|x− y|dy

] 1
2
[ ∫
R3

|∇u|2
|x− y|dy

] 1
2
dτ

I2(t) ≤ c
t∫

δ

||v(τ)||∞
[ ∫
R3

|u|2
|x− y|dy

] 1
2
[ ∫
R3

|∇u|2
|x− y|dy

] 1
2
dτ .
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Since ∆πu = −∇ · ∇ · (u⊗ v + v⊗ u), employing Lemma 3, then we get the estimate

∫
R3

|∇πu|2
|x− y| ≤ c

[
||v||∞ + ||v||∞

]2 ∫
R3

|∇u|2
|x− y|dy .

Hence for I3 we obtain

I3(t) ≤ c
t∫

δ

[
||v(τ)||∞ + ||v(τ)||∞

][ ∫
R3

|u|2
|x− y|dy

] 1
2
[ ∫
R3

|∇u|2
|x− y|dy

] 1
2
dτ .

Increasing the right-hand side of (37) with the previous estimates we deduce an
integral inequality for the uniqueness. The theorem is completely proved.
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