
mathematics

Article

Selecting Correct Methods to Extract Fuzzy Rules from Artificial
Neural Network

Xiao Tan 1, Yuan Zhou 2,*, Zuohua Ding 1,* and Yang Liu 2

����������
�������

Citation: Tan, X.; Zhou, Y.; Ding, Z.;

Liu, Y. Selecting Correct Methods to

Extract Fuzzy Rules from Artificial

Neural Network. Mathematics 2021, 9,

1164. https://doi.org/

10.3390/math9111164

Academic Editor: Basil Papadopoulos

Received: 21 April 2021

Accepted: 19 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Lab of Intelligent Computing and Software Engineering, Zhejiang Sci-Tech University,
Hangzhou 310018, China; 201930605029@mails.zstu.edu.cn

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore 639798, Singapore; yangliu@ntu.edu.sg

* Correspondence: y.zhou@ntu.edu.sg (Y.Z.); zuohuading@zstu.edu.cn (Z.D.)

Abstract: Artificial neural network (ANN) inherently cannot explain in a comprehensible form
how a given decision or output is generated, which limits its extensive use. Fuzzy rules are an
intuitive and reasonable representation to be used for explanation, model checking, and system
integration. However, different methods may extract different rules from the same ANN. Which
one can deliver good quality such that the ANN can be accurately described by the extracted fuzzy
rules? In this paper, we perform an empirical study on three different rule extraction methods. The
first method extracts fuzzy rules from a fuzzy neural network, while the second and third ones are
originally designed to extract crisp rules, which can be transformed into fuzzy rules directly, from
a well-trained ANN. In detail, in the second method, the behavior of a neuron is approximated by
(continuous) Boolean functions with respect to its direct input neurons, whereas in the third method,
the relationship between a neuron and its direct input neurons is described by a decision tree. We
evaluate the three methods on discrete, continuous, and hybrid data sets by comparing the rules
generated from sample data directly. The results show that the first method cannot generate proper
fuzzy rules on the three kinds of data sets, the second one can generate accurate rules on discrete data,
while the third one can generate fuzzy rules for all data sets but cannot always guarantee the accuracy,
especially for data sets with poor separability. Hence, our work illustrates that, given an ANN, one
should carefully select a method, sometimes even needs to design new methods for explanations.

Keywords: artificial neural network; ANN explanation; fuzzy rules

1. Introduction

Artificial neural networks (ANNs) become more and more important in many fields,
such as science, medicine, and industry [1–6] since they can approximate a system based
on only data, without the knowledge of concrete requirements or behavior model of the
system [7]. For example, in an intelligent self-adaptive software system, there usually have
two kinds of components: the subsystem components describing the system’s behavior and
the adaptation component making self-adaptation decisions; we usually cannot describe the
behavior of the adaptation component due to the uncertain and unpredictable environment.
So, ANNs are usually applied to describe the adaptation components [7].

Coming with their advantages, however, ANNs are usually black boxes and inherently
have the inability to explain the process of decision making and output generation in a
comprehensible form. The lack of interpretability limits their extensive usage, especially
in safety-critical domains, such as unmanned aerial vehicles, unmanned ground vehicles,
and autonomous vehicles. Hence, except the successful applications of machine learning
models, there has been a growing demand for explainable artificial intelligence (XAI) [8–10].
Interpretable local surrogates, occlusion analysis, gradient-based techniques, and layerwise
relevance propagation are four kinds of post hoc methods for XAI [8]. However, these
methods cannot naturally explain system behavior. The rule-based explanation provides

Mathematics 2021, 9, 1164. https://doi.org/10.3390/math9111164 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/math9111164?type=check_update&version=1
https://doi.org/10.3390/math9111164
https://doi.org/10.3390/math9111164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9111164
https://www.mdpi.com/journal/mathematics

Mathematics 2021, 9, 1164 2 of 22

a way to reveal the hidden knowledge of a network intuitively and approximate the
network’s predictive behavior [11]. Especially, fuzzy rules can not only provide an intuitive
explanation but also support rigorous semantic analysis and prediction inference [12].
Hence, in this paper, we focus on XAI via fuzzy rules.

Three kinds of techniques have been proposed for rule extraction from ANNs: de-
composition techniques which work on the neuron-level, pedagogical techniques which
regard the whole network as a black box, and eclectics techniques that combine both
decomposition and pedagogical approaches [13]. These techniques usually focus on crisp
rule extraction [14–17]. In Reference [14], rules are extracted based on (continuous) Boolean
function approximation of each perceptron. Decision trees are widely used in rule extrac-
tion from neural networks. For example, in Reference [15], a decision tree is generated
from a trained neural network, and rules are then extracted from the decision tree. This
method is extended to extract rules from ensemble neural networks [18] and deep neu-
ral networks [19,20].

However, crisp rules are lack of flexibility, adaptation, and cognitive understanding.
Compared with crisp rules, fuzzy rules provide a reasonable and cognitive format to
explain ANNs with the following advantages.

• Combining numeric and linguistic, a fuzzy inference system is not only understand-
able but also has well-defined semantics. It can be used in a complementary way with
other model languages for property analysis.

• Fuzzy rules provide an interface between data and variable symbols, and the variables
can be reconfigured in the running time. Thus, the running data can be incorporated
into the model. Via fuzzy inference reasoning, fuzzy rules show great adaptation.

• If ANNs are to be integrated within traditional software systems that need to be
verified, then ANNs must meet requirements. Rule extraction algorithms provide a
mechanism for either partially or completely decompiling a trained ANN. This allows
us to compare extracted rules and the software specification if we have.

There are a few works on the ANN explanation by fuzzy rules. The authors in
Reference [21] proposed a method to generated Sugeno fuzzy rules from sample data
through learning; the methods in References [22,23] extracted Sugeno fuzzy rules based on
the continuous activation functions of ANNs. However, for the interpretability purpose,
Mamdani fuzzy rules are preferred since they are more intuitive and interpretable and
have widespread acceptance [24]. The first method is to generate fuzzy rules from data
directly [25–27]. For example, in Reference [25], an algorithm is proposed to generate
Mamdani fuzzy rules directly from data, which has been widely applied to design fuzzy
controllers [28,29]. Note that this method can also be regarded as a pedagogical technique
to explain an ANN since we can generate fuzzy rules from the training data of an ANN
or the sample data computed by the ANN, which, in turn, can approximate the whole
network. Fuzzy rules can also be extracted from fuzzy neural networks (FNNs) [30–32].
For example, in Reference [30], a fuzzy neural network, combining with the fuzzification
layer and a three-layer ANN, is proposed to extract fuzzy rules according to casual index.
Even though the methods in References [14,15] are designed for the extraction of crisp
rules, they can also be applied to generate fuzzy rules from ANNs via fuzzification.

Even though some methods have been proposed for fuzzy rule extraction, they are
evaluated on some specific data sets. There is no study on the evaluation of explanation
accuracy with various data sets, which is important for their further applications. That is:
which method can deliver an accurate fuzzy rule-based explanation for ANNs trained from
various data sets? In this paper, we will exam three typical decomposition methods, i.e.,
References [14,15,30], to show their quality. The first method [30] extracts fuzzy rules from
an FNN. In the network, the data of each input variable is first transformed to a membership
value vector related to its fuzzy numbers; taking the membership value vectors as the
input layer, an ANN is trained, where the output layer is the membership value vectors
of the output variables. Then, by computing causal index for each pair of input neurons
and output neurons, i.e., the partial derivations of output neurons with respect to input

Mathematics 2021, 9, 1164 3 of 22

neurons, fuzzy rules can be extracted to approximate the neural network. Rather than
using a fuzzy neural network, the second method [14] and the third method [15] extract
rules from a well-trained ANN, which can be translated to fuzzy rules. In Reference [14],
the behavior of each perceptron is approximated by (continuous) Boolean functions with
respect to its input neurons, and a set of logical expressions are generated to approximate
the whole network, from which we can generate fuzzy rules with two fuzzy numbers for
each variable. In Reference [15], after dividing the continuous domain of each continuous
output variable into discrete intervals by clustering, a set of decision trees are built for each
type of output cluster. Based on the trees, a set of continuous/discrete rules are extracted,
and we can generate fuzzy rules by designing proper fuzzy numbers for each variable.

To compare their qualities, focusing on discrete, continuous, and hybrid data sets,
we compare the generated fuzzy rules with a standard pedagogical method [25], as this
method can be used to generate a benchmark of fuzzy rules to show the knowledge learned
by a convergent NN. The results show that the causal index-based method [30] is not robust
and cannot generate proper fuzzy rules to describe the data sets; the logical expression-
based method [14] can generate proper fuzzy rules on discrete data sets, but induce high
errors on continuous or hybrid data sets due to the 2-fuzzy-number fuzzification; the
decision tree-based method [15] can usually generate approximate fuzzy rules on discrete,
continuous, and hybrid data sets, but cannot guarantee the accuracy for data sets with poor
separability. Hence, there are no general methods to extract fuzzy rules that can explain
different ANNs accurately. It guides us to develop new methods to extract fuzzy rules
from ANNs for explanation.

The paper is organized as follows. Section 2 gives a brief review of the three rule
extraction methods. Section 3 introduces the data sets, the trained ANNs, and the measures
for comparison of different fuzzy rules. Sections 4–6 perform the detailed evaluations on
the three methods, respectively. The conclusion is shown in Section 7.

2. Review of Methods to Extract Fuzzy Rules

In this section, we give a brief review of the three selected rule extraction methods
from neural networks, i.e., References [14,15,30]. The method in Reference [30], denoted as
iDRF-1, trains an FNN and then extracts fuzzy rules. The methods in References [14,15],
denoted as iDRF-2 and iDRF-3, extract rules using Boolean functions and decision trees,
respectively, from a well-trained ANN. We also state how to transfer the generated rules to
fuzzy ones based on the inherent structure of these rules.

2.1. The Algorithm of iDRF-1

iDRF-1 first transfers the training input and output data into membership values,
which are applied to train a neural network, and then extracts fuzzy rules by computing
casual index, which can evaluate the relationship between the input and output neurons.

Suppose there are n input variables {xj}j and m output variables {yk}k, and each

variable has three fuzzy numbers with membership functions Mij
1 (xj), Mij

2 (xj), Mij
3 (xj) and

Mok
1 (yk), Mok

2 (yk), Mok
3 (yk). The architecture of the FNN is shown in Figure 1. Based on

this structure, the network training and rule extraction can be done as follows.

• Step 1: Compute membership values for each training data. Given the set of training
data {datal}l with datal = (xl

1, . . . , xl
n, yl

1, . . . , yl
m) , (Xl , Yl), they are first converted

to membership values {M(Xl , Yl)}l , where M(Xl , Yl) =
(

Mi1
1 (xl

1), Mi1
2 (xl

1), Mi1
3 (xl

1),

. . . , Min
1 (xl

n), Min
2 (xl

n), Min
3 (xl

n), Mo1
1 (yl

1), Mo1
2 (yl

1), Mo1
3 (yl

1), . . ., Mom
m (yl

m), Mom
2 (yl

m),

Mom
3 (yl

m)
)

, based on their corresponding membership functions.

• Step 2: Train a fuzzy neural network. Taking {M(Xl)}l as inputs of the input neurons
and {M(Yl)}l as the reference outputs of output neurons, an ANN, consisting of an
input layer, a hidden layer and an output layer, is trained using back-propagation al-
gorithm.

Mathematics 2021, 9, 1164 4 of 22

Three-Layer
Neural Network

......

x1

M i1

1 (x1)
M i1

2 (x1)
M i1

3 (x1)

xn

M in

1 (xn)
M in

2 (xn)
M in

3 (xn)

M o1
1 (y1)

M o1
2 (y1)

M o1
3 (y1)

 y1

M om
1 (ym)

M om
2 (ym)

M om
3 (ym)

 ym

Figure 1. The architecture of FNN: A normal three-layer neural network that takes the membership
values of the input and output variables’ fuzzy numbers as input and output data.

Steps 1 and 2 train an FNN. Based on the trained neural, Steps 3–8 describe the process
to extract a fuzzy rule based on a representative input pattern (Xr, Yr).

• Step 3: Compute causal index for each pair of input neurons and output neurons:

CIxj,v1,yk,v2 =
∂yk,v2

∂xj,v1
|M(Xr ,Yr),

where j ∈ Nn, k ∈ Nm, v1, v2 ∈ N3, and Ni = {1, . . . , i}.
• Step 4: Select the output variable. First, compute the relative causal index for each

output variable yk:

RCk =
∑j ∑v1 ∑v2 |CIxj,v1,yk,v2 |

∑k ∑j ∑v1 ∑v2 |CIxj,v1,yk,v2 |
,

and the variable with the maximal RCk is selected as the output variable, denoted as yk0 .
• Step 5: Select the output fuzzy number for yk0 . Compute the relative causal index for

each fuzzy number v of yk0 :

RCk0,v =
∑j ∑v1 |CIxj,v1,yk0,v |

∑v2 ∑j ∑v1 |CIxj,v1,yk0,v2 |
,

and the fuzzy number with the maximal RCk0,v, denoted as v0, is the selected
fuzzy number.

• Step 6: Transfer negative causal indexes to positive ones. For each input variable xj,
if CIxj,1,yk0,v0

< 0,

CIxj,v′ ,yk0,v0
= CIxj,v′ ,yk0,v0

−
CIxj,1,yk0,v0

2
, ∀v′ ∈ {2, 3},

and repeat for CIxj,2,yk0,v0
and CIxj,3,yk0,v0

.
• Step 7: Select the input fuzzy number for each input variable. For each input variable

xj0 , compute the relative causal index related to its fuzzy numbers v′:

RCj0,v′ ,k0,v0
=

CIxj0,v′ ,yk0,v0

∑j ∑v1 |CIxj,v1,yk0,v0
| ,

and the fuzzy number with the maximal value, say vj0 , is determined as the fuzzy
number for xj0 .

• Step 8: Extract a fuzzy rule. The final generated fuzzy rule is:

IF x1 is v1 AND x2 is v2 AND . . . AND xn is vn THEN yk0 is v0.

Mathematics 2021, 9, 1164 5 of 22

2.2. The Algorithm of iDRF-2

iDRF-2 extracts rules from an ANN using (continuous) Boolean functions to approx-
imate the behavior of neurons. The ANN is trained by either discrete variables whose
domain of discussion is {0, 1}n, or continuous variables whose domain of discussion is
the continuous domain [0, 1]n. This is because any discrete variable can be transformed
to Boolean dummy variables whose values are 0 or 1, and any continuous data can be
normalized to [0, 1] The activation function for each neuron is a monotone increasing func-
tion whose range is [0, 1], e.g., the sigmoid function. The main idea to extract rules from
such a trained ANN is that the value at each neuron is approximated by a Boolean value,
and the relation between its input neurons and itself is described as a Boolean function.
For example, as shown in Figure 2, the values of x1, . . . , xn are 0 or 1. There are total 2n

combinations, denoted as xi, in the input space. The Boolean value of the output neuron
can be computed based on the following Boolean function:

y =
2n∨

i=1

giai, (1)

where

gi =

{
1, g(xi) ≥ 0.5
0, g(xi) < 0.5.

g(xi) is a real value of the output neuron, which is computed based on the trained neural
network, and

ai =
n∧

j=1

xi(j),

with xi(j) = xj for xj = 1 and xi(j) = x̄j for xj = 0 in xi. The existence condition of each
element in (1) based on the trained weights is described in Theorem 1.

Theorem 1 ([14]). For each perceptron in a trained ANN, suppose the activation function S
and the trained weights are w1, . . ., wn, b. Let φi = xi1 . . . xik x̄ik+1

. . . x̄in . If S(∑ik
i=i1

wi + b +
∑j∈{1,...n}\{i1,...,in}∧pj<0 pj) ≥ 0.5, then φi exists in the approximate Boolean function.

x1 x2 xn

y

. . .

w1
w2 wn b

1

output
neuron

input
layer

Figure 2. A single layer perceptron in the trained neural network.

By substituting the Boolean functions of hidden neurons into the output neurons’
Boolean functions, we can obtain the Boolean functions of the output neurons with respect
to the input neurons. The method is also extended to continuous variables. Given a real
polynomial function f (x) = p(x)(x− x2) + ax + b, where a and b are real values, τx(f) =
ax + b. If f = f (x1, x2, . . . , xn) is a multivariate polynomial function, then τ(f) = ∏i τxi (f).
Then, three logical operations are defined: f ∧ g = τ(f g), f ∨ g = τ(f + g − f g) and
¬ f = f̄ = τ(1− f). Based on the above definitions, given a perceptron shown in Figure 2,
the output neuron can be approximated by a continuous Boolean function: y =

∨2n

i=1 giφi,
where φi = ∏n

j=1 e(xj) with e(xj) = xj or 1− xj, and gi ∈ {0, 1} can be determined based
on Theorem 1.

Mathematics 2021, 9, 1164 6 of 22

We point out that each rule extracted from Reference [14] can be translated to a fuzzy
rule, where each linguistic variable in the fuzzy rules has only two fuzzy numbers, M1 and
M2, and the membership functions are M1(x) = x and M2(x) = 1− x, respectively. For
example, if there exists a rule y = x̄1x2 ∨ x1 x̄2, the corresponding fuzzy rule is:

IF (x1 is M2 AND x2 is M1) or (x1 is M1 AND x2 is M2), THEN y is M1.

2.3. The Algorithm of iDRF-3

Focusing on both discrete and continuous data, the authors in Reference [15] proposed
a decision tree-based rule extraction from a trained three-layer ANN, i.e., the input layer,
a hidden layer, and the output layer. By clustering on the continuous values and generating
the boundaries of clusters, a decision tree of each perceptron can be extracted. The detailed
process is as follows.

• Step 1: Select a target pattern and set the corresponding output unit. In this step,
the continuous domain is discretized into a set of intervals by clustering, each of
which is regarded as a pattern.

• Step 2: Build a decision tree to describe the relationship between the target pattern
and the activation patterns of hidden neurons. Here, the activation patterns are also
generated by clustering on the data computed by the samples. In the tree, the target
pattern is the class variable and the activation patterns are attributes. Based on the
decision tree, we can extract intermediate rules, simplify the rules, and eliminate
redundant rules.

• Step 3: For all hidden neurons, build a decision tree between each hidden neuron and
the input neurons. In this tree, the input variables of sample data are the attribute vari-
able, and the discretized patterns generated in Step 2 are the class variables. Similarly,
we extract a set of input rules, simplify these rules, and eliminate redundant rules.

• Step 4: Generate the total rules by substituting the input rules for the intermediate
rules. Thus, we can generate the total rules, which describe the relationships between
the selected output pattern and the input patterns.

• Step 5: Merge the total rules for simplification by integrating continuous ranges with
the hill-climbing approach.

• Step 6: For all possible output patterns, repeat Steps 1–5, and we can extract all rules
that can approximate the trained ANN.

Similarly, the extracted rules can be translated to a set of fuzzy rules, where the input
and output patterns are fuzzy numbers, and their membership functions are determined
based on the clustering results. For example, suppose the continuous domain of a continu-
ous variable is [a, b], which is divided into three intervals after clustering: [a, a1], (a1, b1],
(b1, b]. We then have three fuzzy numbers, denoted as L, M, and H, and their membership
functions are shown in Figure 3.

a a1 b1 b

0.5

1

L M H

Figure 3. The membership functions of the fuzzy numbers related to a variable x.

Mathematics 2021, 9, 1164 7 of 22

3. Experiment Preparations

This section gives the preparations of the comparison experiments. Specifically, we
introduce the sets of training data used in this paper, the neural networks trained by the
data sets, and the measure for comparison.

3.1. Training Data Sets

In this paper, we focus on three kinds of data sets: discrete data sets, continuous data
sets, and hybrid data sets.

3.1.1. Discrete Training Data

As shown in Table 1, the sets of discrete data are generated from three basic logical
operators: OR, AND, and XOR, which have been widely used, such as Reference [14,16,25].
Based on the five discrete data sets, we will train three ANNs to approximate the execution
of OR, AND, and XOR, respectively.

Table 1. The sets of discrete training data.

Inputs Output

X1 X2
Y

OR AND XOR

0 0 0 0 1

0 1 1 0 0

1 0 1 0 0

1 1 1 1 1

3.1.2. Continuous Training Data

The continuous training data sets are generated from two continuous multi-variable
functions:

y =
x1 + x2

2
(linear function) and y = 2.5[(x1 − 0.5)2 − (x2 − 0.5)2] + 0.5 (nonlinear function).

Here, the input variables are x1 and x2, and the output variable is y. All of them are
continuous domains, and the ranges of input variables are both [0, 1]. The input training
data is {(x1, x2) : x1 = 0.05k1, x2 = 0.05k2}, where k1, k2 ∈ {0, 1, . . . , 20}.

3.1.3. Hybrid Training Data

We apply the iris data set as our hybrid training data. In the iris data set, the input
variables are four flower features: sepal length, sepal width, petal length, and petal width.
They are continuous values and determine the flower types, i.e., Setosa, Versicolor, and Vir-
ginica. Hence, the output is the flower type, which is a discrete variable. Figure 4 shows the
distribution of the three kinds of flowers with respect to the normalized petal length and
petal width. We can find that, with these two features, the flower can almost be classified.
Hence, for simplicity, we select these two features as the input neurons of an ANN.

Mathematics 2021, 9, 1164 8 of 22

Figure 4. The relationship between features and types in the iris data set.

3.2. The Architectures of the Trained ANNs

Based on the three kinds of training data sets, we can train an ANN for each data set
using the back-propagation algorithm. For the discrete and continuous data sets, we use
2× 4× 1 networks, i.e., 2 input neurons, 4 hidden neurons, and 1 output neuron, while,
for the iris data set, a 2× 4× 3 network is applied. Hence, the trained ANNs are shown in
Figure 5. The accuracy is 1, 1, 1, 1, 0.932, and 0.967, respectively.

2.56
4978

6

1

1

4.116069−0.5977046

1.1732274

2.
68
71
86
7

3.5
56
08
96

0.716
5649

2.915873

−1
.4
58
04
76

−2
.0
55
56
56

0.3
69
83
33

−1.272
9236

3.2725642

5.724535

−1.0868353

2.
05
23
55
5

−4
.2
82
74
44

(a) ANN for “OR”.

0.53
1339

94

1

1

3.2091198
2.5905282

0.39543954

−1
.8
64
60
47

3.5
58
21
13

1.025
605

1.3833065

−0
.3
09
73
44

−4
.9
31
37
5

−2
.24
91
97
2

2.390
8134

−
2.1718848

7.3679824

3.5992517

−1
.7
90
99
52

−3
.8
57
87
18

(b) ANN for “AND”.

−4.92
4985

1

1

2.0941737
−4.499208

3.243965

3.
85
50
00
7

1.9
11
32
64

5.492
7177

3.8999777

−1
.8
79
54
97

−3
.0
89
10
13

2.2
58
88
87

−0.753
087

6.6009836

−
2.7039487

−6.7096786

4.
58
44
93

0.
37
57
12
16

(c) ANN for “XOR”.

1.17
1810

9

1

1

2.5734084
3.140965

−
3.681981

−1
.5
03
31
54

−0
.71
24
21
66

1.885
8597

−4.0063257

1.
04
90
88
2

0.
14
61
07
08

−5
.15
63
34

0.109
7914

7

−
4.9051266

3.6719913

5.2569327

−4
.2
93
65
9

0.
45
58
62
6

(d) ANN for the linear function.

−2.71
2851

3

1

1

7.389058−7.4006987

2.7141466

7.
14
90
18

−2
.79
89
99
3

2.798
325

−7.14337

1.
50
11
35
8

1.
50
09
70
7

6.0
99
59
65

5.932
8914

9.342083

−
9.071214

−9.050608

9.
35
93
1

−0
.5
27
50
42

(e) ANN for the nonlinear function.

5.17
9076

1

1

−5.5917687
9.79397.231884

8.
07
05
97

−2
.33

49
46
4

7.15290
3

−7.4792585

−4
.4
29
22
54

6.
12
92
9

−10
.49

091
9

5.02257
87

−7.730848

8.168792

−14.071996

2.0020673

−6
.9
68
052.57

891
04

6.
19
71
61
7

−1
.6
31
70
22

−
8.147973

10.889309
−3.9596837

−4.38438
03

3.8468516

−10
.57

359
5

−0
.38
72
64
5

Setosa

Versicolor

Virginica

petal
length

petal
width

(f) ANN for the iris data.

Figure 5. The trained ANNs for different data sets.

3.3. Similarity Measure among Fuzzy Rules

Given a fuzzy rule benchmark and the set of fuzzy rules extracted from an ANN, we
need to evaluate how consistent the two rule sets is. The basic measure is the accuracy
of the generated rules, compared with the benchmark, i.e., how many rules are in the

Mathematics 2021, 9, 1164 9 of 22

benchmark. There may also have rules that are not in the benchmark. We also need to
evaluate the inaccuracy of such rules with respect to the benchmark.

There are some measures proposed to describe the relation between two fuzzy num-
bers [33–35]. They usually focus on their membership functions. However, in this paper,
we focus on the interpretability of ANNs using fuzzy rules, rather than using fuzzy rules
to approximate the original system or as a predictor, so we use an index-based measure,
which is a rough but intuitive measure, to describe the difference of two fuzzy numbers
related to a variable. The basic idea is that the difference between two fuzzy numbers
whose strict 0-cuts are disjoint is larger than the two sets whose strict 0-cuts are overlapped.

Definition 1. Given a variable x and the set of its fuzzy numbers A, its index function is defined
as Ix : A→ N+, where N+ is the set of positive integers.

For example, given the fuzzy numbers shown in Figure 3, we have Ix(L) = 1, Ix(M) =
2, and Ix(H) = 3. Based on the index function, we use the index vector to represent a
fuzzy rule.

Definition 2. Given a fuzzy rule r: “IF x1 is A1 and . . . and xn is An, THEN y1 is B1 and . . . and
ym is Bm”, the index vector of the rule is I(r) = (Ix1(A1), . . . , Ixn(An), Iy1(B1), . . . , Iym(Bm)).

Based on Definition 2, we represent a fuzzy rule by a point in the Euclidean space.
Since all the rules describe the same system, the index vector of each rule has the same
dimensions. So, we can describe the difference of two rules by the distance of their index
vectors and evaluate the difference between a rule and the benchmark.

Definition 3. Given an extracted rule r and the corresponding rule benchmark Rb, ∀ra ∈ Rb,
the difference between r and ra is d(r, ra) = d(I(r), I(ra)). The difference between r and Rb is
d(r, Rb) = min

ra∈Rb
d(r, ra)}.

For example, given an extracted rule r:

IF x1 is small and x2 is large, THEN y1 is small,

and a benchmark rule ra:

IF x1 is small and x2 is small, THEN y1 is large,

where each variable has three fuzzy numbers: small, middle, and large, then their differ-
ence is d(r, rb) = ‖(1, 3, 1)− (1, 1, 3)‖2 =

√
8. Clearly, if a rule is in the benchmark set,

the difference between the rule and the benchmark is 0. Based on Definition 3, we define
the similarity measure of the set of generated rules with respect to its benchmark.

Definition 4. Given the benchmark set of rules Rb and a set of extracted rules R = Rα ∪ Rβ, where
Rα ⊆ Rb and Rβ ∩ Rb = ∅. The inaccuracy of R, denoted as d(R, Rb), is defined as max

r∈Rβ

d(r, Rb).

4. Evaluation on iDRF-1

In this section, we evaluate iDRF-1 on the three data sets. Each variable is fuzzified by
three fuzzy numbers: S (small), M (middle), and L (large), whose membership functions
are shown in Figure 6, where a = 1/3 and b = 2/3.

Mathematics 2021, 9, 1164 10 of 22

0 1

1

x0.5a b

middle

small large

Figure 6. Fuzzy numbers and their membership functions in iDRF-1.

4.1. Fuzzy Rule Generation Using DFR

Before extracting fuzzy rules via iDRF-1, we first apply DFR [25] to generate the
benchmark of fuzzy rules for each data set. In this method, fuzzy rules are generated from
data directly. The inputs of the proposed algorithm is the set of training data pairs, each of
which contains the values of input and output variables. It contains the following steps.

• Step 1: Fuzzification. This step divides the domain of discussion of the input and
output variables into a set of fuzzy regions using triangle membership functions.

• Step 2: Fuzzy rule generation. Each training data will generates a fuzzy rule by
assigning each variable with the fuzzy number with the maximal membership value.

• Step 3: Rule simplification. For each rule generated from a data, a degree, which is
the product of the membership values and the priori data confidence, is assigned to
it. For each group of conflict rules, i.e., the rules with the same IF part but different
THEN parts, only the one that has the maximum degree is selected.

• Step 4: Rule base determination. The final rule base consists of the rules generated
from data and those from human experts.

Hence, with the same membership functions, we can generate fuzzy rules for each
data set. Tables 2 and 3 give the fuzzy rules for the three discrete data sets and for the two
continuous data sets, respectively. The fuzzy rules extracted from the iris data set are:

• IF x1 is S and x2 is S, THEN y1 is Setosa;
• IF x1 is M and x2 is M, THEN y1 is Versicolor;
• IF x1 is M and x2 is L, THEN y1 is Virginica;
• IF x1 is L and x2 is M, THEN y1 is Virginica;
• IF x1 is L and x2 is L, THEN y1 is Virginica.

Table 2. The benchmark of fuzzy rules for discrete data sets.

Operator Fuzzy Rule

OR

IF x1 is S and x2 is S, THEN y1 is S

IF x1 is S and x2 is L, THEN y1 is L

IF x1 is L and x2 is S, THEN y1 is L

IF x1 is L and x2 is L, THEN y1 is L

AND

IF x1 is S and x2 is S, THEN y1 is S

IF x1 is S and x2 is L, THEN y1 is S

IF x1 is L and x2 is S, THEN y1 is S

IF x1 is L and x2 is L, THEN y1 is L

Mathematics 2021, 9, 1164 11 of 22

Table 2. Cont.

Operator Fuzzy Rule

XOR

IF x1 is S and x2 is S, THEN y1 is S

IF x1 is S and x2 is L, THEN y1 is L

IF x1 is L and x2 is S, THEN y1 is L

IF x1 is L and x2 is L, THEN y1 is S

Table 3. The benchmark of fuzzy rules for continuous data sets.

Function Fuzzy Rule

y = x1+x2
2

IF x1 is S and x2 is S, THEN y1 is S

IF x1 is S and x2 is M, THEN y1 is S

IF x1 is S and x2 is L, THEN y1 is M

IF x1 is M and x2 is S, THEN y1 is S

IF x1 is M and x2 is M, THEN y1 is M

IF x1 is M and x2 is L, THEN y1 is L

IF x1 is L and x2 is S, THEN y1 is M

IF x1 is L and x2 is M, THEN y1 is L

IF x1 is L and x2 is L, THEN y1 is L

y = 5
2 [(x1 − 1

2)
2

−(x2 − 1
2)

2] + 0.5

IF x1 is S and x2 is S, THEN y1 is M

IF x1 is S and x2 is M, THEN y1 is L

IF x1 is S and x2 is L, THEN y1 is M

IF x1 is M and x2 is S, THEN y1 is S

IF x1 is M and x2 is M, THEN y1 is M

IF x1 is M and x2 is L, THEN y1 is S

IF x1 is L and x2 is S, THEN y1 is M

IF x1 is L and x2 is M, THEN y1 is L

IF x1 is L and x2 is L, THEN y1 is M

4.2. Rule Extraction from FNNs

In this section, we describe the fuzzy rules extracted from the FNNs. The architecture
of each FNN is 6× 18× 3 after fuzzification.

4.2.1. Discrete Data Sets

Table 4 gives the rules for discrete data sets based on iDRF-1. Based on Table 4, we can
find that iDRF-1 may generate wrong rules. For example, in the rules for the “OR” operator,
the first two rules are consistent with the rules in the benchmark set given in Table 2, while
the third rule is wrong. However, even though the second rule is in the benchmark set, it is
extracted from the sample pattern “x1 is small and x2 is large”, i.e., the sample data (0, 1).
It is generated from a wrong data pattern. Moreover, the two consistent rules for “AND”
are generated from wrong data patterns, while the three consistent rules for “XOR” are
generated from the right data patterns.

Mathematics 2021, 9, 1164 12 of 22

Table 4. Fuzzy rules generated from discrete data sets with iDRF-1.

Operator Fuzzy Rule Consist

OR

IF x1 is S and x2 is S, THEN y1 is S Yes

IF x1 is L and x2 is L, THEN y1 is L Yes

IF x1 is M and x2 is L, THEN y1 is M No

AND

IF x1 is M and x2 is S, THEN y1 is M No

IF x1 is L and x2 is L, THEN y1 is L Yes

IF x1 is S and x2 is S, THEN y1 is S Yes

XOR

IF x1 is S and x2 is S, THEN y1 is S Yes

IF x1 is M and x2 is S, THEN y1 is S No

IF x1 is L and x2 is S, THEN y1 is L Yes

IF x1 is L and x2 is L, THEN y1 is S Yes

4.2.2. Continuous Data Sets

Table 5 shows the rules generated for the two continuous data sets with iDRF-1. These
rules are generated from nine input data samples, which represent nine data patterns:
{(p1, p2) : p1, p2 ∈ {S, M, L}}. Each input data is computed as the mean of the training
data with the same data pattern. From Table 5, all the rules generated for the linear function
are in the set of benchmark rules given in Table 3, while the second and third rules for
the nonlinear function are inconsistent with those in Table 3. Moreover, some input data
patterns return wrong rules. For the linear function, the input data pattern (S, M) generates
the first rule in Table 5, the input data patterns (M, S) and (M, M) generate the third rule in
Table 5, and the patterns (M, L), (L, M) and (L, L) generate the fifth rule in Table 5. For the
nonlinear function, the three input patterns, i.e., (M, M), (M, L), and (L, M), generate the
right fuzzy rules.

Table 5. Fuzzy rules generated for continuous data sets.

Data Set Fuzzy Rule Consist

y = x1+x2
2

IF x1 is S and x2 is S, THEN y1 is S Yes

IF x1 is S and x2 is L, THEN y1 is M Yes

IF x1 is M and x2 is M, THEN y1 is M Yes

IF x1 is L and x2 is L, THEN y1 is L Yes

IF x1 is L and x2 is S, THEN y1 is M Yes

y =
5
2 [(x1 − 1

2)
2

−(x2 − 1
2)

2]

+0.5

IF x1 is M and x2 is M, THEN y1 is M Yes

IF x1 is L and x2 is S, THEN y1 is L No

IF x1 is S and x2 is S, THEN y1 is S No

IF x1 is M and x2 is L, THEN y1 is S Yes

IF x1 is L and x2 is M, THEN y1 is L Yes

IF x1 is S and x2 is M, THEN y1 is L Yes

Mathematics 2021, 9, 1164 13 of 22

4.2.3. The iris Data Set

The rules generated for the iris data set is as follows.

• IF x1 is middle and x2 is middle, THEN y1 is Versicolor;
• IF x1 is small and x2 is small, THEN y1 is Setosa;
• IF x1 is large and x2 is large, THEN y1 is Virginica.

Even though the rules generated by iDRF-1 are in the benchmark of fuzzy rules, they
are extracted from wrong input data patterns. Actually, the three rules are extracted from
the input patterns (small, small), (middle, middle), and (large, large), respectively.

4.3. Analysis and Evaluation on iDRF-1

In this subsection, we give more detailed analysis of iDRF-1 based on the generated
rules. Table 6 gives the statistic data of the generated data by iDRF-1 on different data sets.
The second column shows the number of extracted rule, and the third and fourth columns
show the accuracy and inaccuracy of the generated rules.

Table 6. Statistic data of the extracted fuzzy rules.

Data # Rules Accuracy Inaccuracy

OR 3 2/4
√

2

AND 3 2/4
√

2

XOR 4 3/4 1

Linear 5 5/9 0

Nonlinear 6 4/9 1

iris 3 3/5 0

Based on the results, we can find that the generated rules by iDRF-1 are not accurate,
and, in most of the data sets, wrong rules are generated. What is worse, iDRF-1 is not
robust and not reliable. We need to point out that the rules shown above are only for some
trial, and different trials will generate different rules even though the accuracy is almost
the same. In the interpretability of ANNs, we do not know the ground truth of fuzzy
rules; thus, we have no criteria to select which the best trial to generate fuzzy rules.

In conclusion, iDRF-1 is not suitable to extract fuzzy rules to explain the relationship
between input and output data. Hence, iDRF-1 cannot be used as an explanation of ANNs.

5. Evaluation on iDRF-2

In this section, we first generate fuzzy rules using iDRF-2. For comparison, with the
membership functions computed from iDRF-2, we generate fuzzy rules based on DFR.
Finally, we give an evaluation on iDRF-2.

5.1. (Continuous) Logical Expressions and Fuzzy Rule Generation

As described in Section 2.2, given the trained ANNs shown in Figure 5, each discrete
variable is approximated by two values (i.e., 0 or 1), and each continuous variable x is
approximated by two functions (i.e., x or 1 − x). Hence, we can obtain the (continuous)
logical expressions based on iDRF-2. The results are shown in Table 7, where “x1 + x2”
represents “x1 ∨ x2”, "x1x2" represents “x1 ∧ x2”, and x̄1 represents the negative of x1. Note
that, in the continuous logical expression, x1 = 1 means x1 > 0.5, while x1 = 0 means
x1 < 0.5.

Mathematics 2021, 9, 1164 14 of 22

Table 7. Rules extracted by DFR and iDRF-2.

Data Set Logical Expression

Rules

(2 Fuzzy Numbers/Variable)

DFR
iDRF-2

(Rα + Rβ)

OR y = x1 + x2 4 4 + 0

AND y = x1x2 4 4 + 0

XOR y = x1 x̄2 + x̄1x2 4 4 + 0

Linear y = x1x2 4 4 + 0

Nonlinear y = x1 x̄2 + x̄1x2 - 0 + 4

iris
Set = x̄1 x̄2

Ver = x̄1x2 + x1 x̄2

Vir = x1x2

5 5 + 0

Based on the logical expression, we can obtain the related fuzzy rules. Take the logical
expression for the nonlinear function as an example. If x1 = 0 and x2 = 0, x1 x̄2 = x̄1x2 = 0,
so we have y = 0; if x1 = 1 and x2 = 0, x1 x̄2 = 1, so we have y = 1; similarly, if x1 = 0 and
x2 = 1, y = 1; if x1 = 1 and x2 = 1, y = 0. Hence, we have the following fuzzy rules:

• IF x1 is S and x2 is S, THEN y is S,
• IF x1 is L and x2 is S, THEN y is L,
• IF x1 is S and x2 is L, THEN y is L,
• IF x1 is L and x2 is L, THEN y is S.

Similarly, we can generate fuzzy rules for other data sets.

5.2. Fuzzy Rule Generation Using DFR

Now, we apply DFR to generate fuzzy rules from data directly. Based on the logical
expression, we can fuzzify each variable into two fuzzy numbers: S (small) and L (large),
whose membership functions are given in Figure 7. Hence, based on DFR, we find that the
rules for the discrete data sets are the same as those given in Table 2, and the rules for the
linear function are:

• IF x1 is S and x2 is S, THEN y is S;
• IF x1 is S and x2 is L, THEN y is S;
• IF x1 is L and x2 is S, THEN y is S;
• IF x1 is L and x2 is L, THEN y is L.

The rules for the iris data set are:

• IF x1 is S and x2 is S, THEN y is Setosa;
• IF x1 is S and x2 is L, THEN y is Versicolor;
• IF x1 is L and x2 is S, THEN y is Versicolor;
• IF x1 is L and x2 is L, THEN y is Virginica.

Note that we cannot generate proper rules for the nonlinear function based on DFR
since each potential IF part has multiple THEN parts with the same rule degree.

5.3. Analysis and Evaluation on iDRF-2

Table 7 also gives a comparison of the generated rules based on DFR and iDRF-2.
In the table, the third column shows the number of rules generated by DFR where each
variable is associated with two fuzzy numbers (i.e., S and L), and the fourth column shows
the number of rules generated by iDRF-2 where the first and the second items represent
the numbers of rules in and not in the set of rules generated by DFR, respectively. We can

Mathematics 2021, 9, 1164 15 of 22

find that except for the nonlinear function, with 2-fuzzy-number fuzzification, the accuracy
of iDRF-2 is 100%, and inaccuracy is 0, which means the rules generated by iDRF-2 are the
same as those generated by DFR. Hence, iDRF-2 performs well if each variable is fuzzified
with two fuzzy numbers.

0 1

1
small large

x

Figure 7. Membership functions for a variable associated with two fuzzy numbers.

However, the main limitation of iDRF-2 is that it can only deal with the situation that
each variable can be fuzzified with two fuzzy numbers directly or after some transformation.
Hence, iDRF-2 can be used and perform well for data with discrete domains since the
discrete domains can be reduced to 0, 1 domain by dummy variables, which can be well
fuzzified with two fuzzy numbers. For the continuous domains, if a variable is fuzzified
with only two fuzzy numbers, it may induce large errors or inaccuracy. For example,
Figure 8 shows the data distribution of the linear function data set, where the points show
the distribution of the fuzzy numbers of y with respect to the input variables, and the
alphabets show the output fuzzy numbers of the generated rules with respect to the
combinations of the input fuzzy numbers. For the 2-fuzzy-number fuzzification, there are
25% data whose relationship between the input and output variables cannot be represented
by the generated rules (Figure 8a), while, for 3-fuzzy-number fuzzification, 22% data cannot
be described correctly by the generated rules (Figure 8b). Using DFR, we can get higher
accuracy with more fuzzy numbers, which cannot be achieved by iDRF-2.

In conclusion, iDRF-2 can generate accurate fuzzy rules to describe the relation of
discrete data sets but does not perform well in continuous and hybrid data sets. Hence, it
can be used to explain ANNs which are applied in discrete domains but is not suitable to
explain ANNs trained in continuous domains.

S S

S L

(a) Fuzzy rules for two-fuzzy-number fuzzification.

S S M

M L

MS L

L

(b) Fuzzy rules for three-fuzzy-number fuzzification.

Figure 8. Data distributions and generated fuzzy rules on the linear function data set.

Mathematics 2021, 9, 1164 16 of 22

6. Evaluation on iDRF-3

In this section, we evaluate the performance of iDRF-3.

6.1. Clustering and Fuzzy Rule Generation

Based on iDRF-3, we first generate the hidden-output and input-hidden decision trees.
To generate the hidden-output decision tree, we need to compute the values of the hidden
neurons based on the training data. In the sequel, we give the detailed procedure for each
data set.

6.1.1. Discrete Data Sets

Given the training data {(x, y)} and the well-trained ANNs, we can compute the
values of the four hidden neurons, denoted as h = (h1, h2, h3, h4). Based on the data set
{(h, y)}, we can build the decision tree for the hidden-output layer. Take the “XOR” data
set as an example, whose trained ANN is shown in Figure 5c, and the values of the input,
hidden, and output neurons are shown in Table 8.

Table 8. The values of input, hidden, and output neurons for the “XOR” data set.

Input Hidden Output

1 (0, 0) (0.1324, 0.0436, 0.9054, 0.3201) 0

2 (0, 1) (0.8782, 0.2355, 0.9996, 0.9588) 1

3 (1, 0) (0.0011, 0.2699, 0.0962, 0.9235) 1

4 (1, 1) (0.0498, 0.7143, 0.9628, 0.9983) 0

Based on the hidden and output data, we can build a hidden-output decision tree for
each target output. Figure 9a shows the hidden-output decision tree for the target y = 0.
Based on the decision tree, we have an intermediate rule: h1 ≤ 0.505 & h3 > 0.501→ target.
Then, we can build the input-hidden decision tree with the target h1 ≤ 0.505 & h3 > 0.501,
which is shown in Figure 9b. Based on this decision tree, we have x1 = 0 & x2 = 0 →
h1 ≤ 0.505 & h3 > 0.501 and x1 = 1 & x2 = 1→ h1 ≤ 0.505 & h3 > 0.501. Hence, we can
extract the following rules for the target y = 0: “IF x1 = 0 and x2 = 0, THEN y = 0” and
“IF x1 = 1 and x2 = 1, THEN y = 0”. Similarly, for the target y = 1, the decision trees are
shown in Figure 10, and we can obtain the rules: “IF x1 = 0 and x2 = 1, THEN y = 1” and
“IF x1 = 1 and x2 = 0, THEN y = 1”. For the data sets of “AND” and “OR”, we can do the
same procedure and generate the rules.

ℎ! ≥ 0.501

ℎ! ≤ 0.501

ℎ" ≤ 0.505

root

target

others

others

ℎ" ≥ 0.505

𝑥# = 0

𝑥# = 1

𝑥" = 0

root

target

others𝑥" = 1

target

others𝑥" = 0

𝑥" = 1

(a) Hidden-output decision tree.
Target: the output is 0

(b) Input-hidden decision tree.
Target: ℎ" ≤ 0.505 & ℎ! ≥ 0.501

Figure 9. The hidden-output decision tree for the target y = 0 in the “XOR” data set.

Mathematics 2021, 9, 1164 17 of 22

ℎ$ ≥ 0.622

ℎ! ≤ 0.501

ℎ# ≤ 0.492

root

target

others

others

ℎ" ≥ 0.505

𝑥" = 0

𝑥" = 1

𝑥# = 0

root

others

target𝑥# = 1

others

target𝑥# = 0

𝑥# = 1

(a) Hidden-output decision tree.
Target: the output is 1

(b) Input-hidden decision tree.
Target: ℎ# ≤ 0.492 & ℎ$ ≥ 0.622

Figure 10. The hidden-output decision tree for the target y = 1 in the “XOR” data set.

Based on the generated rules, we can fuzzify each variable with any number of fuzzy
numbers, e.g., those shown in Figures 6 and 7, and obtain the related fuzzy rules, which
are the same with those shown in Table 2.

6.1.2. Continuous Data Sets

For the continuous data sets, we first use k-mean to cluster the output values into three
categories. For each category, we then build the related hidden-output and input-hidden
decision trees. For example, in the data set of the linear function, the output is clus-
tered into three discrete ranges: [0.03894, 0.35732], [0.37642, 0.62568], and [0.64499, 0.94547].
Figure 11a shows the decision tree whose target is that the output is in the first discrete
range, and we can extract a rule “IF h3 ≤ 0.05 & h4 > 0.051 → y ∈ [0.03894, 0.35732]”.
Figure 11b represents the input-hidden tree with the target h3 ≤ 0.05 & h4 > 0.051, where
each rectangle represents a path in the tree that leads to the target leaf, and the number in
it denotes the number of samples belonging to this path. For example, the largest rectangle
represents the path “x1 ≤ 0.375 & x2 ≤ 0.375→ h3 ≤ 0.05 & h4 > 0.051”, and there are
64 samples satisfying this path. For simplicity and to reduce over-fitting, this decision
tree is then pruned by omitting the rectangles with a few samples and approximating
some adjacent rectangles with one rectangle. Hence, the decision tree in Figure 11b is
pruned to three rectangles, i.e., the three large blue rectangles, which can extract three
rules: “x1 ≤ 0.375 & x2 ≤ 0.375→ target”, “x1 ≤ 0.175 & 0.375 < x2 ≤ 0.575→ target”,
and “0.375 < x1 ≤ 0.625 & x2 ≤ 0.225→ target”. Finally, we can generate the following
input-output rules:

• 0 ≤ x1 ≤ 0.375 & 0 ≤ x2 ≤ 0.375→ y ∈ [0.03894, 0.35732];
• 0 ≤ x1 ≤ 0.175 & 0.375 < x2 ≤ 0.575→ y ∈ [0.03894, 0.35732];
• 0.375 < x1 ≤ 0.625 & 0 ≤ x2 ≤ 0.225→ y ∈ [0.03894, 0.35732].

0.175，0.575

0.375，0.375

0.625，0.225

ℎ! ≤ 0.05

ℎ! > 0.05

ℎ$ > 0.051

root

target

others

others

ℎ$ ≤ 0.051

(a) Hidden-output decision tree with
target: 𝑦 ∈ [0.03894, 0.35732]

(b) Input-hidden decision tree with
target: ℎ! ≤ 0.05 & ℎ$ > 0.051

Figure 11. Decision trees for the target y ∈ [0.03894, 0.35732].

Similarly, the decision trees for the range [0.64499, 0.94547] is shown in Figure 12. We
can extract the following rules:

Mathematics 2021, 9, 1164 18 of 22

• 0.625 < x1 ≤ 1 & 0.625 < x2 ≤ 1→ [0.64499, 0.94547];
• 0.425 < x1 ≤ 0.625 & 0.725 < x2 ≤ 1→ [0.64499, 0.94547];
• 0.825 < x1 ≤ 1 & 0.425 < x2 ≤ 0.625→ [0.64499, 0.94547].

Figure 13 shows the decision trees for the middle range. For the input-hidden tree,
it is hard to find proper pruning directly. However, based on the results of the other two
ranges, we can find that we can partition each input variable into [0, 0.375], (0.375, 0.625],
and (0.625, 1]. Based on such a partition, as shown in Figure 13b, we can obtain the
following rules:

• 0 ≤ x1 ≤ 0.375 & 0.625 < x2 ≤ 1→ [0.37642, 0.62568];
• 0.375 < x1 ≤ 0.625 & 0.375 < x2 ≤ 0.625→ [0.37642, 0.62568;
• 0.625 < x1 ≤ 1 & 0 ≤ x2 ≤ 0.375→ [0.37642, 0.62568].

0.625，0.625

0.425，0.725

0.825，0.425

ℎ! > 0.088

ℎ! ≤ 0.088

ℎ$ ≤ 0.007

root

target

others

others

ℎ$ > 0.051

(a) Hidden-output decision tree with
target: 𝑦 ∈ [0.64499, 0.94574]

(b) Input-hidden decision tree with
target: ℎ! > 0.088 & ℎ$ ≤ 0.007

Figure 12. Decision trees for the target y ∈ [0.64499, 0.94547].

𝑥" = 0.375 𝑥" = 0.625

𝑥# = 0.625

𝑥# = 0.375
0.169 ≥ ℎ!
> 0.024

ℎ! ≤ 0.024
| ℎ! > 0.169

0.006 < ℎ$
≤ 0.054

root

target

others

others

ℎ$ > 0.054
| ℎ$ ≤ 0.006

(a) Hidden-output decision tree with
target: 𝑦 ∈ [0.64499, 0.94574]

(b) Input-hidden decision tree with
target: 0.024 < ℎ! ≤ 0.169 & 0.006 < ℎ$ ≤ 0.054

Figure 13. Decision trees for the target y ∈ [0.37642, 0.62568].

Based on the above extracted rules, we can generate fuzzy rules. We first fuzzify each
variable using the membership functions shown in Figure 6 with a = 0.375 and b = 0.625.
Thus, the above nine rules can be transformed into a set of fuzzy rules, whose formulas are
the same as those given in Table 3.

Similarly, for the data set from the nonlinear function, based on the decision trees
and with proper pruning and approximation, we can fuzzify each variable using the same
membership functions in Figure 6 with a = 0.33 and b = 0.67. Then, the generated fuzzy
rules are with the same formulas of those in Table 3.

6.1.3. iris Data Set

In the iris data set, the output variable is discrete, so we can build decision trees for
each discrete value. First, for the type “Setosa”, the decision trees are shown in Figure 14.
Based on the decision trees, we can extract the following rule: x1 ≤ 0.246 → y = Setosa.
Second, for the type “Versicolor”, the pruned decision trees are shown in Figure 15, and we
can extract a rule: 0.246 < x1 ≤ 0.636 & x2 ≤ 0.646 → y = Versicolor. Based on

Mathematics 2021, 9, 1164 19 of 22

the decision trees, shown in Figure 16, for the target Virginica, we can extract rules:
x1 > 0.653 & x2 > 0.688→ y = Virginica, and x1 > 0.737 & x2 ≤ 0.688→ y = Virginica.

Based on these rules, we fuzzify either input variable into S, M, and L, whose mem-
bership functions are shown in Figure 6 with a = 0.246 and b = 0.646, and generate
fuzzy rules:

• IF x1 is S, THEN y is Setosa;
• IF x1 is M and x2 is S, THEN y is Versicolor;
• IF x1 is M and x2 is M, THEN y is Versicolor;
• IF x1 is L, THEN y is Virginica.

ℎ! ≤ 0.00762

ℎ! > 0.00762

root
target

others
𝑥" > 0.246

𝑥" ≤ 0.246

root

others

target

(a) Hidden-output decision tree.
Target: the output is Setosa

(b) Input-hidden decision tree.
Target: ℎ! ≤ 0.00762

Figure 14. The decision trees for the target Setosa.

ℎ$ ≤ 0.65284

ℎ$ > 0.01456

root

target

others

others

0.636 ≥ 𝑥"
> 0.246

𝑥# ≤ 0.646

root

others

target

𝑥# > 0.646

others

(a) Hidden-output decision tree.
Target: the output is Versicolor

(b) Input-hidden decision tree.
Target: 0.65284 ≥ ℎ$ > 0.01456

ℎ$ ≤ 0.01456

ℎ$ > 0.65284 0.636 < 𝑥"
| 𝑥" ≤ 0.246

Figure 15. The decision trees for the target Versicolor.

𝑥# > 0.688

𝑥# ≤ 0.688

𝑥" > 0.653

root

others

target

others

target𝑥" > 0.737

𝑥" ≤ 0.737

𝑥" ≤ 0.653

(b) Input-hidden decision tree.
Target: ℎ$ ≤ 0.01456 & ℎ! > 0.72471

(a) Hidden-output decision tree.
Target: the output is Virginica

ℎ$ > 0.01456

root

others

ℎ$ ≤ 0.01456

ℎ! > 0.72471 target

ℎ! ≤ 0.72471 others

Figure 16. The decision trees for the target Virginica.

6.2. Fuzzy Rule Generation Using DFR

For the discrete data sets, no matter what kinds of membership functions applied,
the generated fuzzy rules using iDRF-3 are the same as those generated with DFR, consist-
ing of those given in Table 2. For the continuous data sets, if the membership functions are
determined with the results of data clustering, then the fuzzy rules generated by DFR and
iDRF-3 are the same, which have the same formula with those in Table 3. Based on the new
membership functions, we can obtain the fuzzy rules for the iris data set using DFR, which
is shown as follows.

Mathematics 2021, 9, 1164 20 of 22

• IF x1 is S and x2 is S, THEN y is Setosa;
• IF x1 is M and x2 is M, THEN y is Versicolor;
• IF x1 is M and x2 is L, THEN y is Virginica;
• IF x1 is L and x2 is M, THEN y is Virginica;
• IF x1 is L and x2 is L, THEN y is Virginica.

6.3. Analysis and Evaluation of iDRF-3

Based on the generated fuzzy rules from DFR and iDRF-3, the discrete and continuous
data sets, DFR and iDRF-3 are consistent. For the hybrid data set, comparing the two sets
of fuzzy rules by DFR and iDRF-3, we can find that, in the set of fuzzy rules generated by
iDRF-3, there are four rules that DFR does not generate: “IF x1 is S and x2 is M, THEN y
is Setosa”, “IF x1 is S and x2 is L, THEN y is Setosa”, “IF x1 is M and x2 is S, THEN y is
Versicolor”, and “IF x1 is L and x2 is S, THEN y is Virginica”, while the rule “IF x1 is L and
x2 is M, THEN y is Virginica” does not exist in the rules generated by iDRF-3.

The reason for the missing of the four rules using DFR is that there is no data related
to these four rules, which means that their degrees are 0, so DFR does not generate these
rules, while iDRF-3 focuses on the boundaries that can separate different kinds of data
without considering the region without any data. This means the extracted rules may
contain empty regions using the generated boundary. Moreover, to reduce over-fitting,
we prune some branches of the decision trees since there are a few samples in the leaf
nodes with large depth. This will result in the missing of some fuzzy rules generated by
DFR since they only contain very few samples. However, one drawback of iDRF-3 is that,
sometimes, it is not easy to extract proper rules from the decision trees and compute a
unified membership function for a variable among different output targets, especially for
data with poor separability.

In conclusion, both DFR and iDRF-3 can generate proper fuzzy rules for discrete,
continuous, and hybrid data sets, but may induce errors. Hence, iDRF-3 can be applied to
explain ANNs trained by discrete, continuous, and hybrid data sets, and cannot guarantee
the accuracy if we have no knowledge of the data relations (e.g., separability).

7. Conclusions

In this paper, we evaluate the performance of three widely-used methods to explain
ANNs with fuzzy rules. The results show that the method based on causal index cannot
explain ANNs, while the method based on Boolean logical expression can be used to
explain ANNs trained by discrete data sets, and the method based on decision trees can be
used to explain ANNs on all data sets but cannot guarantee the accuracy for data with poor
separability. We find that, even though some methods have been proposed to extract fuzzy
rules from ANNs trained by specific data sets, there is no general method to extract fuzzy
rules from ANNs trained by different data sets. Users must carefully select proper methods
for rule extraction based on the applications. It is necessary to develop new extraction
methods to explain general ANNs in terms of fuzzy rules.

In the future, we will evaluate the three methods on more data sets and investigate
other methods for the fuzzy rule-based explanation of ANNs. Since each method has its
own limitations, we need to investigate novel methods to explain ANNs using fuzzy rules.
Finally, we will also focus on the explanation of deep neural networks.

Author Contributions: Data curation, X.T.; Formal analysis, X.T. and Y.Z.; Investigation, X.T. and
Y.Z.; Methodology, Y.Z. and Z.D.; Project administration, Z.D. and Y.L.; Supervision, Z.D.; Writing—
original draft, Y.Z.; Writing—review and editing, Z.D. and Y.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by National Nature Science Foundation of China (Grant
Nos.61751210).

Institutional Review Board Statement: Not applicable.

Mathematics 2021, 9, 1164 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schütt, K.T.; Arbabzadah, F.; Chmiela, S.; Müller, K.R.; Tkatchenko, A. Quantum-chemical insights from deep tensor neural

networks. Nat. Commun. 2017, 8, 1–8. [CrossRef]
2. Shang, M.; Luo, X.; Liu, Z.; Chen, J.; Yuan, Y.; Zhou, M. Randomized latent factor model for high-dimensional and sparse matrices

from industrial applications. IEEE/CAA J. Autom. Sin. 2018, 6, 131–141. [CrossRef]
3. Liu, L.; Liu, Y.J.; Tong, S. Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched

nonlinear systems. IEEE Trans. Cybern. 2018, 49, 2536–2545. [CrossRef]
4. Zhou, H.; Zhao, H.; Zhang, Y. Nonlinear system modeling using self-organizing fuzzy neural networks for industrial applications.

Appl. Intell. 2020, 50, 1657–1672. [CrossRef]
5. El Hamidi, K.; Mjahed, M.; El Kari, A.; Ayad, H. Adaptive control using neural networks and approximate models for nonlinear

dynamic systems. Model. Simul. Eng. 2020, 2020, 8642915.
6. Amisha, P.M.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019,

8, 2328–2331. [CrossRef]
7. Ding, Z.; Zhou, Y.; Zhou, M. Modeling self-adaptive software systems with learning Petri nets. IEEE Trans. Syst. Man Cybern.

Syst. 2015, 46, 483–498. [CrossRef]
8. Samek, W.; Montavon, G.; Lapuschkin, S.; Anders, C.J.; Müller, K.R. Explaining deep neural networks and beyond: A review of

methods and applications. Proc. IEEE 2021, 109, 247–278. [CrossRef]
9. Holzinger, A. From machine learning to explainable AI. In Proceedings of the 2018 World Symposium On Digital Intelligence For

Systems And Machines (DISA), Košice, Slovakia, 23–25 August 2018; pp. 55–66.
10. Bau, D.; Zhu, J.Y.; Strobelt, H.; Lapedriza, A.; Zhou, B.; Torralba, A. Understanding the role of individual units in a deep neural

network. Proc. Natl. Acad. Sci. USA 2020, 117, 30071–30078. [CrossRef]
11. Craven, M.W. Extracting Comprehensible Models from Trained Neural Networks. Ph.D. Thesis, Department of Computer

Sciences, University of Wisconsin-Madison, Madison, WI, USA, 1996.
12. Ding, Z.; Zhou, Y.; Zhou, M., Modeling self-adaptive software systems by fuzzy rules and Petri nets. IEEE Trans. Fuzzy Syst.

2017, 26, 967–984. [CrossRef]
13. Hailesilassie, T. Rule extraction algorithm for deep neural networks: A review. Int. J. Comput. Sci. Inf. Secur. 2016, 14, 376–381.
14. Tsukimoto, H. Extracting rules from trained neural networks. IEEE Trans. Neural Netw. 2000, 11, 377–389. [CrossRef] [PubMed]
15. Sato, M.; Tsukimoto, H. Rule extraction from neural networks via decision tree induction. In Proceedings of the International

Joint Conference on Neural Networks, Washington, DC, USA, 15–19 July 2001; Volume 3, pp. 1870–1875.
16. Fu, L. Rule generation from neural networks. IEEE Trans. Syst. Man Cybern. 1994, 24, 1114–1124.
17. Taha, I.A.; Ghosh, J. Symbolic interpretation of artificial neural networks. IEEE Trans. Knowl. Data Eng. 1999, 11, 448–463.

[CrossRef]
18. Hayashi, Y.; Sato, R.; Mitra, S. A new approach to three ensemble neural network rule extraction using recursive-rule extraction

algorithm. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August
2013; pp. 1–7.

19. Zilke, J.R.; Mencía, E.L.; Janssen, F. Deepred–rule extraction from deep neural networks. In Proceedings of the International
Conference on Discovery Science, Bari, Italy, 19–21 October 2016; pp. 457–473.

20. Bologna, G.; Hayashi, Y. A rule extraction study on a neural network trained by deep learning. In Proceedings of the 2016
International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 668–675.

21. Lo, J.-C.; Yang, C.-H. A heuristic error-feedback learning algorithm for fuzzy modeling. IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 1999, 29, 686–691.

22. Benítez, J.M.; Castro, J.L.; Requena, I. Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 1997, 8, 1156–1164.
[CrossRef]

23. Castro, J.L.; Mantas, C.J.; Benítez, J.M. Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans. Neural
Netw. 2002, 13, 101–116. [CrossRef]

24. Fahmy, R.; Zaher, H. A comparison between fuzzy inference systems for prediction (with application to prices of fund in Egypt).
Int. J. Comput. Appl. 2015, 109, 6–11. [CrossRef]

25. Wang, L.; Mendel, J.M. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 1992, 22, 1414–1427.
[CrossRef]

26. Guillaume, S. Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. Fuzzy Syst. 2001,
9, 426–443. [CrossRef]

27. Duţu, L.C.; Mauris, G.; Bolon, P. A fast and accurate rule-base generation method for Mamdani fuzzy systems. IEEE Trans. Fuzzy
Syst. 2018, 26, 715–733. [CrossRef]

http://doi.org/10.1038/ncomms13890
http://dx.doi.org/10.1109/JAS.2018.7511189
http://dx.doi.org/10.1109/TCYB.2018.2828308
http://dx.doi.org/10.1007/s10489-020-01645-z
http://dx.doi.org/10.4103/jfmpc.jfmpc_440_19
http://dx.doi.org/10.1109/TSMC.2015.2433892
http://dx.doi.org/10.1109/JPROC.2021.3060483
http://dx.doi.org/10.1073/pnas.1907375117
http://dx.doi.org/10.1109/TFUZZ.2017.2700286
http://dx.doi.org/10.1109/72.839008
http://www.ncbi.nlm.nih.gov/pubmed/18249768
http://dx.doi.org/10.1109/69.774103
http://dx.doi.org/10.1109/72.623216
http://dx.doi.org/10.1109/72.977279
http://dx.doi.org/10.5120/19246-0604
http://dx.doi.org/10.1109/21.199466
http://dx.doi.org/10.1109/91.928739
http://dx.doi.org/10.1109/TFUZZ.2017.2688349

Mathematics 2021, 9, 1164 22 of 22

28. Kim, D. An implementation of fuzzy logic controller on the reconfigurable FPGA system. IEEE Trans. Ind. Electron. 2000,
47, 703–715.

29. Tzou, Y.-Y.; Lin, S.-Y. Fuzzy-tuning current-vector control of a three-phase PWM inverter for high-performance AC drives. IEEE
Trans. Ind. Electron. 1998, 45, 782–791. [CrossRef]

30. Enbutsu, I.; Baba, K.; Hara, N. Fuzzy rule extraction from a multilayered neural network. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN), Seattle, WA, USA, 8–12 July 1991; Volume 2, pp. 461–465.

31. Wu, S.; Er, M.J.; Gao, Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks.
IEEE Trans. Fuzzy Syst. 2001, 9, 578–594.

32. Leng, G.; McGinnity, T.M.; Prasad, G. An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural
network. Fuzzy Sets Syst. 2005, 150, 211–243. [CrossRef]

33. Setnes, M.; Babuska, R.; Kaymak, U.; van Nauta Lemke, H.R. Similarity measures in fuzzy rule base simplification. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 1998, 28, 376–386. [CrossRef]

34. Johanyák, Z.C.; Kovács, S. Distance based similarity measures of fuzzy sets. In Proceedings of the 3rd Slovakian-Hungarian Joint
Symposium on Applied Machine Intelligence, Herl’any, Slovakia, 21–22 January 2005; Volume 2005.

35. McCulloch, J.; Wagner, C.; Aickelin, U. Measuring the directional distance between fuzzy sets. In Proceedings of the 2013 13th
UK Workshop on Computational Intelligence (UKCI), Guildford, UK, 9–11 September 2013; pp. 38–45.

http://dx.doi.org/10.1109/41.720335
http://dx.doi.org/10.1016/j.fss.2004.03.001
http://dx.doi.org/10.1109/3477.678632

	Introduction
	Review of Methods to Extract Fuzzy Rules
	The Algorithm of iDRF-1
	The Algorithm of iDRF-2
	The Algorithm of iDRF-3

	Experiment Preparations
	Training Data Sets
	Discrete Training Data
	Continuous Training Data
	Hybrid Training Data

	The Architectures of the Trained ANNs
	Similarity Measure among Fuzzy Rules

	Evaluation on iDRF-1
	Fuzzy Rule Generation Using DFR
	Rule Extraction from FNNs
	Discrete Data Sets
	Continuous Data Sets
	The iris Data Set

	Analysis and Evaluation on iDRF-1

	Evaluation on iDRF-2
	(Continuous) Logical Expressions and Fuzzy Rule Generation
	Fuzzy Rule Generation Using DFR
	Analysis and Evaluation on iDRF-2

	Evaluation on iDRF-3
	Clustering and Fuzzy Rule Generation
	Discrete Data Sets
	Continuous Data Sets
	iris Data Set

	Fuzzy Rule Generation Using DFR
	Analysis and Evaluation of iDRF-3

	Conclusions
	References

