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Abstract: Currently, there is a lack of accurate simulation tools for the thermal performance mod-
eling of courtyards due to their intricate thermodynamics. Machine Learning (ML) models have
previously been used to predict and evaluate the structural performance of buildings as a means of
solving complex mathematical problems. Nevertheless, the microclimatic conditions of the building
surroundings have not been as thoroughly addressed by these methodologies. To this end, in this
paper, the adaptation of ML techniques as a more comprehensive methodology to fill this research
gap, covering not only the prediction of the courtyard microclimate but also the interpretation of
experimental data and pattern recognition, is proposed. Accordingly, based on the climate zoning
and aspect ratios of 32 monitored case studies located in the South of Spain, the Support Vector
Regression (SVR) method was applied to predict the measured temperature inside the courtyard.
The results provided by this strategy showed good accuracy when compared to monitored data. In
particular, for two representative case studies, if the daytime slot with the highest urban overheating
is considered, the relative error is almost below 0.05%. Additionally, values for statistical parameters
are in good agreement with other studies in the literature, which use more computationally expensive
CFD models and show more accuracy than existing commercial tools.

Keywords: courtyard; climate change; microclimate; Support Vector Regression (SVR); machine
learning

1. Introduction

According to the latest forecasts, two trends will become progressively reinforced over
the present century. The first one is the gradual increase in average surface temperatures
mainly due to global greenhouse gas emissions [1]. The second is the concentration of
the population in cities [2]. This combination of factors, rising temperatures, and high
population concentration will accentuate other environmental problems related to human
thermal comfort, such as the so-called Urban Heat Island (UHI) effect. Urban Heat Islands
(UHIs) are defined as urban areas with higher air temperatures than their surrounding
rural areas [3]. The causes of the UHI effect are classified differently by Givoni [4] as due
either to meteorological factors or to urban parameters [5].

Several urban dynamics converge to generate this overheating. Apart from domestic
and industrial anthropogenic impacts, some of these factors are related to built-up topog-
raphy and urban features: firstly, the constructed zones offer more surface area for heat
absorption, radiating it slowly during the night; secondly, the canyon effect [6], which
causes the thermal energy to remain in the ground by the influence of multiple horizontal
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reflections and absorption of incoming radiation provoked by tall buildings. UHI is also
linked to a capsule of city gases that absorbs heat from the sun. In the city, buildings
obstruct the wind and the capsule remains in place [7]. Finally, the urban albedo, which
could be defined as the aptitude of construction materials to reflect solar radiation [8].

Considering the need to achieve the medium-term goal of nearly zero-energy buildings
and cities [9], different passive strategies have been evaluated to counteract this urban
overheating without resorting to energy-dependent cooling systems [10]. Like other animal
colonies, cities are usually adapted to the climate as kinds of human termite mounds,
perforating the urban fabric to regulate direct solar radiation. On a different scale than
other public spaces, such as urban canyons and squares, courtyards have traditionally acted
as passive cooling resources in cities around the world and not exclusively in hot and warm
climates. One study on low-rise housing in the Netherlands shows how courtyards improve
the energy efficiency of the building [11]. Previous research performed on courtyards in
Spain has quantified the courtyard tempering effect, which enables improving thermal
comfort and helping to reduce cooling energy consumption in buildings [12]. Due to
the growing interest in strategies capable of achieving more climate-resilient cities, many
studies have examined the microclimatic performance of the courtyard. Furthermore,
several literature reviews compiling research on this topic have been published [13–15].
The courtyard microclimate can be explained in terms of the thermodynamic effects that
occur within it, i.e., convection, radiation, stratification, and flow patterns. Among the
different parameters affecting these microclimatic conditions, most of the studies emphasize
the importance of courtyard geometry [13–29], in many cases considered the Aspect Ratio
(AR), which is the ratio between the height and the width of the courtyard.

AR =
Height
Width

(1)

Courtyard location, implying climatic conditions and specifically outdoor temper-
ature ranges, is another key factor that is becoming commonplace in a large number of
publications [14–21,25–30].

The perforation of the urban block with courtyards responds to light, ventilation, and
thermal needs. Different field monitoring campaigns in the existing literature have proved
the thermal tempering potential of courtyards to lower the outdoor temperature, in some
cases by up to 15 ◦C [23]. Many simulation methods and tools are currently available for
the thermal performance modeling of indoor spaces [22]. Notwithstanding, the alternatives
for simulating outdoor ones are more limited. This is mainly due to the complexity of these
outdoor spaces’ thermodynamics, which involve multiple variables and entails enormous
challenges to be modeled with enough accuracy. However, new software means have
emerged in recent years that are capable, to some extent, of simulating their microclimatic
conditions [31]. One of the most widely used tools is ENVI-met, based on CFD simula-
tion [32]. Other outdoor modeling software alternatives are Urban Weather Generator
(UWG), based on energy conservation principles [33]; SOLWEIG, which can simulate
spatial variations of 3D radiation fluxes and mean radiant temperatures [34]; Open FOAM,
which has been used in previous research to simulate urban wind flows [35]; FreeFem++,
employed to perform courtyard microclimate modelling [17,36]; and ANSYS Fluent, which
has been applied for the simulation of wind flows in outdoor spaces [17,36]. Most of these
tools present adequate accuracy for predicting urban outdoor microclimates, but they tend
to show a larger error range when they are used to model the microclimate of smaller-scale
spaces, such as courtyards, with greater dependence on the built environment [12,36].

Consequently, in this work, a new tool is proposed to predict this specific microclimate
inside courtyards based on Machine Learning (ML) techniques [37,38]. In the computers
and information era, a large amount of data are being generated in many different fields,
such as science, finance, engineering, and industry. Thus, statistical problems have grown
in size and complexity and the statistical analysis tries to understand these data. This is
what is called learning from data or ML. Some examples of ML problems are the following:
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predict the price of a stock for 6 months from now, based on company performance
measures and economic data; identify the numbers in a handwritten ZIP code from a
digitized image, or estimate the amount of glucose in the blood of a diabetic person from
the infrared absorption spectrum of that person’s blood [38]. ML models have been shown
previously to be useful for predicting and assessing structural performance [39].

ML problems are categorized as supervised or unsupervised. In supervised learning,
the aim is to predict the value of an outcome measure based on a certain number of input
measures (also known as features, attributes, or covariates). It is called supervised because
of the presence of the outcome variable to guide the learning process. In unsupervised
learning, there is no outcome measure, and the goal is to describe the associations and
patterns among a set of input measures. Mathematical optimization has played a crucial
role in supervised learning [37–40]. Support Vector Machine (SVM) and Support Vector
Regression (SVR) are some of the main applications of mathematical optimization for
supervised learning [41–46]. These are geometrical optimization problems that can be
written as convex quadratic optimization problems with linear constraints, solvable by
some nonlinear optimization procedure.

The present paper’s main goal is to implement the ML methodology as a suitable
and accurate system for predicting courtyard thermal patterns. To achieve this, the most
relevant features regarding courtyards’ thermoregulatory performance according to the
literature, i.e., geometry and outdoor temperature, have been considered. The advantages
of using ML techniques over conventional modeling tools are twofold: on the one hand,
they allow the identification of the fundamental variables, simplifying the calculation
processes; on the other hand, they are perfectible methodologies that make it possible
to increase the accuracy of predictions by providing feedback from monitored data by
increasing the size of the training dataset. In fact, despite presenting work based on an
extensive set of field-monitoring campaigns, the case studies monitored could be consid-
ered an initial limitation of the study. Nevertheless, the proposed methodology achieves
an accuracy level comparable to, and in some cases superior to, other outdoor thermal
modeling methods. The overall structure of the paper can be framed in a three-phase
procedure. Firstly, the case studies used to validate the thermal predictions are selected
and monitored. Secondly, simulations based on SVR and correlated employing MATLAB
interpolations are performed. Finally, different error ranges are verified and compared
with other tools simulation errors in the thermal patterns’ prediction of the courtyard mi-
croclimate. Note that the interpolation technique is applied when characteristic parameters
are within an appropriate range, defined by training data. Outside of this range, other
prediction techniques are needed.

2. Materials and Methods

Regarding specifically the application of the ML methodology, it was sequenced into
four steps. First, the reference study cases are defined and characterized. Second, the field
monitoring campaigns are characterized. Third, the problem setup is detailed. Fourth,
the SVR method is described. In particular, the following variables are considered: time
(hours), outside courtyard measured temperature (CMT), wind speed and direction, with
the aim of searching for a function that provides the temperature inside the courtyard all
along the week. This problem was solved using the statistical software R. Finally, using the
library of predicted data obtained from the ML method, the measured temperature inside
a given courtyard is predicted, based on its climate zone, year´s season, and ARs. This will
be done in two phases by an interpolation technique implemented in the scientific software
MATLAB.

2.1. Location, Climate and Cases Study

In this research, the thermal performance of 22 selected courtyards in a total of 12
different locations in three different Thermal Ranges (TR) are analyzed as case studies.
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The study was carried out in Mérida (Badajoz, Spain), Córdoba (Córdoba, Spain) and
Seville (Seville, Spain), located in south-western Spain. All three cities are characterized
by a hot climate in summer and a mild climate in winter. The specific Spanish regulations
CTE-DB-HE [47], characterize them as C4, B4, and B4, respectively. The letter (A–D)
represents the winter climate severity ranging from A for mild temperatures to D for very
cold climates, and the number (1–4) represents the summer climate severity, being 1 for
mild climates and 4 for very hot climates.

The selected case studies are intended to be analyzed in the warm season, so they
all belong to the same climatic zone in summer. According to the Köppen classification,
the selected cities are defined as Csa, with dry summers with low rainfall and very hot
summers. Many case studies were analyzed over an extended period, always exceeding
the minimum two-week monitoring period established by previous research [48].

Previous studies have shown the influence of outdoor temperature and geometry
on the thermal tempering potential of the courtyard [49] and their thermal sensation [50],
so for this research, a selection of case studies with different outdoor temperatures and
different AR (Equation (1), defined in (1)) are analyzed. Therefore, two values, ARI and
ARII, are defined. In Table 1, the main characteristics of the case studies selected for this
research are shown, including the longitude, latitude and meters above sea level (MASL)
of each case study.

Table 1. Location of monitored courtyards in this work.

Courtyard TR Location Longitude Latitude MASL Climate
Zone

Floor Area
(m2)

Dimensions
(m)

Height
(m) AR I AR II

CS1 TR1 M 38.90◦ 6.35◦ 229 C4 34.1 5.2 6.5 5.9 1.14 0.91
CS2 TR1 M 38.92◦ 6.93◦ 229 C4 25.2 4.1 6.1 6.3 1.54 1.04
CS3 TR1 M 38.91◦ 6.34◦ 229 C4 34.7 5.2 6.7 6.3 1.21 0.95
CS4 TR1 M 38.92◦ 6.35◦ 229 C4 36.5 3.2 11.5 10.8 3.41 0.94
CS5 TR2 S 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS6 TR2 C 37.88◦ 4.78◦ 106 B4 14.6 4.3 3.4 6.3 1.47 1.85
CS7 TR2 S 37.40◦ 6.00◦ 16 B4 101.2 11 9.2 12 1.1 1.3
CS8 TR2 S 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS9 TR2 S 37.36◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS10 TR2 S 37.40◦ 6.00◦ 16 B4 22.4 5.6 4 8.5 1.5 2.12
CS11 TR2 S 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS12 TR2 S 37.36◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS13 TR2 S 37.28◦ 5.92◦ 16 B4 75.9 11 6.9 8.9 0.81 1.29
CS14 TR2 2 37.39◦ 5.96◦ 16 B4 35.9 6.9 5.2 5 0.72 0.96
CS15 TR2-3 S 37.28◦ 5.93◦ 16 B4 99 13.2 7.5 10.7 0.81 1.43
CS16 TR3 C 37.88◦ 4.78◦ 106 B4 65.5 8.4 7.8 6.8 0.81 0.87
CS17 TR3 C 37.88◦ 4.77◦ 106 B4 14.6 4.3 3.4 6.3 1.47 1.85
CS18 TR3 S 37.36◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS19 TR3 C 37.88◦ 4.78◦ 106 B4 65.5 8.4 7.8 6.8 0.81 0.87
CS20 TR3 S 37.35◦ 5.99◦ 16 B4 48.2 7.3 6.6 14 1.92 2.12
CS21 TR3 C 37.88◦ 4.77◦ 106 B4 14.6 4.3 3.4 6.3 1.47 1.85
CS22 TR3 C 37.89◦ 4.78◦ 106 B4 65.5 8.4 7.8 6.8 0.81 0.87

2.2. Field Monitoring Campaign

As previously mentioned, in this research, numerous monitoring campaigns have
been carried out in courtyards with diverse geometries (AR) and with different outdoor
temperatures (TR). For both boundary conditions, AR and TR, the selected ranges are
based on previous studies [23].

Some campaigns were carried out over several months to select similar outdoor
temperature ranges in all case studies. One week was selected as a representative sample
for each courtyard. During the monitoring campaigns, outdoor climatological parameters
were analyzed, and simultaneously, the temperature inside the courtyards was recorded.
According to the U.S. National Weather Service [51], dry-bulb temperature (DBT), can be
measured using a normal thermometer freely exposed to the air but shielded from solar
radiation and moisture. The thermometer will be affected by thermal radiation from the
courtyard walls, so we will refer to the DBT as the Courtyard Measured Temperature (CMT)
rather than the air temperature. In the case of outdoor environment analysis, portable
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weather stations model PCE-FWS 20 were used, the technical data of which are shown in
Table 2. The weather station was located on the roof of the building, fully exposed, with
no nearby high-rise buildings that could affect data collection. Data, such as courtyard
measured temperature and wind speed and direction, were recorded with a measurement
interval of 15 min.

Table 2. Technical data of the measurement equipment.

Sensor Situation Variable Resolution Range Accuracy

PCE-FWS 20 Outdoor
Wind - 0–180 km/h ±1 m/s

Dry bulb Temp 0.1 ◦C −40 to +65 ◦C ±1 ◦C
RH 1% 12–99% ±5%

TESTO 174H/T Courtyard Dry bulb Temp 0.1 ◦C −20 to +70 ◦C ±0.5 ◦C
RH 2% 0–100% ±0.1%

Simultaneously, the temperatures in the courtyards of the selected case studies were
recorded with sensors’ model TESTO 174 H and TESTO 174 T, whose technical data
are shown in Table 2. The sensors were placed vertically suspended from the roof of
the building on the north-facing façade of the courtyard so that solar radiation would
not influence the results. In addition, they were protected with a reflective shield to
prevent overheating and to allow ventilation of the measuring equipment (Figure 1). As the
sensors’ measured temperature would vary throughout the courtyard due to several factors,
including stratification and infrared radiation, all the sensors were placed at +1.00 m and
+2.00 m, referring to the height of the courtyard inhabited by users.

Figure 1. Location of the measurement instruments: (a) Weather station PCE-FWS 20; (b,c) sensors TESTO 174.

2.3. Problem Setup

In this article, the variables selected to predict the value of the temperature inside
a courtyard are the two most relevant according to the literature review, namely, TR—
considering climate location zone and year´s season, and AR—as a numerical parameter
synthesizing courtyard geometry. To perform the modeling, two stages were considered.

In the first stage, work was accomplished with the data from 22 monitored courtyards
in every hour of one week, from different periods of the year, in various courtyards located
in the Spanish cities of Badajoz, Córdoba and Seville.
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The SVM method was used to create the library with some of these training data
along one week in different courtyards. After that, we consider courtyards with different
characteristic parameters, such as ARI and ARII, which are not included in the training
data and use interpolation techniques to obtain the prediction for a week.

2.4. Support Vector Regression Method

Support Vector Machines (SVMs) were introduced in the 90s by Vapnik and his
collaborators [45] in the framework of statistical learning theory. Although originally,
SVMs were thought to solve binary classification problems, they are currently used to solve
various types of problems, for example, regression problems [44], on which this research
has focused.

In this first stage, the predicted value of the measured temperature inside a courtyard
using some information related to it has been obtained. In particular, the time (hour of
the day), the outside CMT, the wind speed and direction have been considered. More
specifically, the following has been considered: x =

(
x1, x2, x3, x4), where,

• x1 = time (hour of the day);
• x2 = outside temperature;
• x3 = wind speed;
• x4 = wind direction.

Searching for a function f : R4 → R, such that y = f (x) provides the temperature
inside the courtyard was the goal in this step.

To find this function f for each courtyard, the m-collection of experimental data
associated with it was used. The idea of the SVR method [6] is to obtain a function such
that for every sample (xi, yi), i = 1, . . . , m, it is satisfied that | f (xi)− yi| ≤ ε, for some
ε > 0 small. Concretely, given ε, γ and C > 0, the following optimization problem is
considered:

max

{
−1

2

m

∑
i,j=1

(αi − α∗i )
(

αj − α∗j

)
exp

(
−γ ‖ xi − xj ‖2

)
− ε

m

∑
i,j=1

(αi + α∗i ) +
m

∑
i,j=1

yi(αi − α∗i )

}
,

subject to ∑m
i,j=1(αi − α∗i ) = 0, for αi, α∗i ∈ [0, C].

This problem was solved using the statistical software R. In particular, we used
the E1071 library [52], a software package designed to solve classification and regression
problems, using Support Vector Machines, which can be easily installed in R. The solution
provides a possible candidate function as follows:

f (x) =
m

∑
i=1

(αi − α∗i ) exp
(
−γ ‖ xi − x ‖2

)
+ b,

where the constant b ∈ R can be computed by forcing the Karush–Kuhn–Tucker (KKT)
condition [53]. The function K(x, x′) = exp

(
−γ ‖ x− x′ ‖2) is called the radial basis kernel.

It holds that | f (xi)− yi| ≤ ε, for all i = 1, . . . , m. The quality of function f depends on the
choice of the parameters ε, γ and C. In order to select the best parameters, Cross-Validation
(CV) technique was used to obtain the parameter values: γ = 0.1, C = 10 and ε = 0.1, with a
CV error around 1% for all test cases.

2.5. Predicted Temperature of a Courtyard

In the first stage, through the monitoring data and the SVR method, a library of
predicted temperatures inside various courtyards located in different cities of the south of
Spain was obtained. In this second stage, by using this library, the predicted temperature
inside a given courtyard was obtained.

In this section, given that the definition of AR is two-dimensional, two ARs were
measured: the first one, ARI was defined as the relation between the width and the height,
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and the second one, ARII was defined as the relation between the length and the height,
as follows:

ARI = hmax/W and ARII = hmax/L,

where hmax is the maximum height, W represents the width and L the length of the
courtyard.

Once both ARs were fixed, the predicted temperature inside a given courtyard in two
different ways was performed. First, the courtyards library was classified considering
three different TRs, depending on the range of temperatures of the courtyards and an
interpolation technique to predict the temperature inside a courtyard of the same class by
using ARs data was used, as it is explained in Section 2.5.1.

Second, the courtyards library was classified into different groups, depending on the
courtyards AR range and an interpolation technique to predict the temperature inside a
courtyard of the same class by using the maximum and minimum temperature data was
used. Two cases (AR.1 and AR.2) were considered: first, the classification by considering
ARI, and second, ARII was performed.

2.5.1. Fixed Temperature Range, Interpolation Using the ARs

In this case, the courtyards library was classified into three different TR, depending on
the range of temperatures inside the courtyard. These TRs correspond to statistical climatic
records in the locations where case studies are placed. The first group corresponds to the
hottest days of spring or autumn, the second, to a typical summer season and, the third, to
a summer heatwave.

TR1: (15◦, 35◦).
TR2: (20◦, 40◦).
TR3: (25◦, 45◦).
In the following Table 3, the courtyards are classified within these different TR. Note

that some courtyards are in more than one TR because the temperature range in the
courtyard changed from one week to another. This is because the courtyard, as a thermal
tempering device, performs differently depending on the outdoor temperature.

Table 3. Classification of courtyards within temperature range classes.

Thermal Range Courtyards

TR1 CS1, CS2, CS3, CS4

TR2 CS5, CS6, CS7, CS8, CS9, CS10, CS11, CS12,
CS13, CS14

TR3 CS16, CS17, CS18, CS19, CS20, CS21, CS22

For a given courtyard, its range of temperature is first estimated, being classified as
TR1, TR2 or TR3, and its AR, being classified as ARI or ARII.

Once courtyards are classified, the temperature prediction is verified through the SVR
method; by an interpolation technique, it can be obtained a prediction of the temperature
inside a courtyard of the same class. To achieve these data, MATLAB function scattered-
Interpolant was used, which performs interpolation on a 2D dataset of scattered data. In
particular, it returns the interpolant F for the given dataset such that we can evaluate F at a
set of query points in 2D to produce interpolated values Tq = F (ARIq, ARIIq), obtaining
the temperature inside the courtyard Tq.

2.5.2. Fixed the ARs, Interpolation Using Minimum and Maximum Temperatures

In this section, two different cases, depending on whether we fix ARI or ARII,
are considered.

First, the courtyards library was classified into two different classes, depending
on ARI:

ARI.1: (0, 1).
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ARI.2: (1, 2).
In the following Table 4, the courtyards are classified within these different classes. Note

that CS4 has not been taken into account, as its ARI is out of the considered ranges (3.41).

Table 4. Classification of courtyards within ARI range class.

ARI Range Class Courtyards

ARI.1 CS5, CS8, CS11, CS13, CS14, CS15, CS16, CS19, CS22

ARI.2 CS1, CS2, CS3, CS6, CS7, CS9, CS10, CS12, CS17, CS18,
CS20, CS21

Thus, for a given courtyard, we measure the ARI and classify it into ARI.1 or ARI.2.
Then, given the minimum and maximum temperature, Tmin and Tmax, respectively, of

some courtyards in the same class and their corresponding predicted temperatures through the
SVR method, by an interpolation technique implemented in the scientific software MATLAB, it
can be obtained a prediction of the temperature inside a courtyard of the same class. To do the
interpolation, we have used again the MATLAB function scatteredInterpolant, which performs
interpolation on a 2D dataset of scattered data. In this case, we obtained Tq = F

(
Tmin,q, Tmax,q

)
,

obtaining the temperature inside the courtyard Tq.
Second, we classified the courtyards library into two different classes, depending

on ARII:
ARII.1: (0, 1).
ARII.2: (1, 2.5).
In the following Table 5, we classify the courtyards within these different classes:

Table 5. Classification of courtyards within ARII range class.

ARII Range Class Courtyards

ARII.1 CS1, CS3, CS4, CS5, CS8, CS11, CS14, CS16, CS19, CS22

ARII.2 CS2, CS6, CS7, CS9, CS10, CS12, CS13, CS15, CS17, CS18,
CS20, CS21

Thus, for a given courtyard, first it was measured the ARII, being classified as ARII.1
or as ARII.2. To do the interpolation, the same procedure as in the case of ARI was followed,
using now ARII instead.

3. Results
3.1. Fixed Temperature Range, Interpolation Using AR

In this section, it is shown the predicted temperature obtained by the method proposed
in Section 2.5.1 in one courtyard of each temperature range class. The predicted temperature
in comparison to the monitored temperature inside the courtyard, as well as the outdoor
temperature, are both represented. In addition, a quantitative analysis was carried out. On
the one hand, it was evaluated the relative error of the predicted temperature with respect
to the monitored temperature in different discrete norms:

L1 (%) =
∑N

i=1

∣∣∣Tmonit. − Tpred.

∣∣∣(ti)

∑N
i=1 Tmonit.(ti)

· 100,L2 (%) =

[
∑N

i=1 (Tmonit. − Tpred.)
2(ti)

∑N
i=1 T2

monit.(ti)

]1/2

· 100,

where it is denoted by Tmonit.(ti) (resp, Tpred.(ti)), the monitored temperature (resp., the
predicted temperature) at time ti, i = 1, . . . , N (hours, (h)). Moreover, the percentage
in time for which the obtained absolute error within the predicted and the monitored
temperature is less than or equal to a fixed tolerance tol = 2 ◦C was evaluated. On the
other hand, the following statistical parameters were computed: the correlation coefficient
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R, the Root Mean Square Error (RMSE) and the Mean Absolute Percentage Error (MAPE).
The formulas for these parameters are as follows:

R =
∑N

i=1(Tmonit.(ti)− Tmonit.)
(

Tpred.(ti)− Tpred.

)
[

N
∑

i=1
(Tmonit.(ti)− Tmonit.)

2 N
∑

i=1
(Tpred.(ti)− Tpred.)

2
]1/2 ,

RMSE (oC) =

[
∑N

i=1 (Tmonit. − Tpred.)
2(ti)

N

]1/2

,

MAPE (%) =
1
N ∑N

i=1

∣∣∣Tmonit. − Tpred.

∣∣∣(ti)

Tmonit.(ti)
· 100,

where, in the formula for the correlation coefficient R, the mean monitored temperature
(resp., the mean predicted temperature) is denoted by Tmonit. (resp, Tpred.). The values of
the relative and absolute errors and the statistical parameters are shown in Tables 6 and 7
for the CMT in each selected courtyard of each temperature range class.

Table 6. Example 3.0.1. Relative and absolute errors for the courtyard measured temperature in each
selected courtyard of each TR.

Thermal Range L1 (%) L2 (%) Absolute Error ≤tol (%)

TR1 5.09 6.10 91.67
TR2 4.93 6.62 84.28
TR3 3.50 4.31 89.88

Table 7. Example 3.0.1. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each TR.

Thermal Range R RMSE (◦C) MAPE (%)

TR1 0.96 1.24 5.17
TR2 0.88 1.62 4.82
TR3 0.89 1.21 3.52

For the class TR1, the courtyard CS1, located in Badajoz was considered. The predic-
tion is performed for the dates 20 to 26 May. In the graph (Figure 2), simulation versus
monitoring results of this courtyard with mild and very irregular temperatures is shown.
There is hardly any thermal gap, and the prediction shows good accuracy. The obtained
results are specified in Tables 6 and 7 (first row).

For the class TR2, the courtyard CS5, located in Seville, was considered. The prediction
is performed for the date 7 to 13 September. The obtained results are represented in Figure 3
and Tables 6 and 7 (second row). Note that the prediction for the second half of the last day
is not represented in this plot. This is due to the fact that some of the training data used for
this prediction had fewer points than the 168 needed for the whole week. However, to be
consistent with the other cases, we decided to keep the whole week in this plot.



Mathematics 2021, 9, 1142 10 of 19

Figure 2. Example 3.0.1. Predicted temperature versus monitored and outdoor temperatures inside a
TR1 courtyard.

Figure 3. Example 3.0.1. Predicted temperature versus monitored and outdoor temperatures inside a
TR2 courtyard.

For the class TR3, the courtyard CS17, located in Córdoba, was considered. The
prediction is performed for the date 26 July to 1 August. Unlike the previous case shown
in Figure 2, in this one (Figure 4), the outside temperature is higher and there is a large
thermal gap. The predicted results show similarly good accuracy, particularly on days
of maximum outdoor temperature. The obtained results are detailed in Tables 6 and 7
(third row).

3.2. Fixed AR, Interpolation Using Minimum and Maximum Temperature

In this section, the predicted temperature obtained by the method proposed in
Section 2.5.2 in one courtyard of each AR range class is shown. First, the ARI range
class is considered, representing the predicted temperature in comparison to the monitored
temperature inside the courtyard, as well as the outdoor temperature. Additionally, a
quantitative analysis was carried out. On the one hand, the relative error of the predicted
temperature with respect to the monitored temperature in different discrete norms (L1 and
L2) was evaluated, as done in Section 3.1. Moreover, the percentage in time for which the
obtained absolute error within the predicted and the monitored temperature is less than or
equal to a fixed tolerance tol = 2 ◦C was also evaluated. On the other hand, the following
statistical parameters were computed: R, RMSE and MAPE. The values of the relative and
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absolute errors and the statistical parameters are shown in Tables 8 and 9 for the courtyard
measured temperature in each selected courtyard of each ARI range class.

Figure 4. Example 3.0.1. Predicted temperature versus monitored and outdoor temperatures inside a
TR3 courtyard.

Table 8. Example 3.0.1. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each temperature range class.

ARI Range Class L1 (%) L2 (%) Absolute Error ≤tol (%)

ARI.1 5.79 7.05 61.45
ARI.2 5.09 6.10 91.67

Table 9. Example 3.0.2. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each ARI range class.

ARI Range Class R RMSE (◦C) MAPE (%)

ARI.1 0.92 2.30 5.99
ARI.2 0.96 1.24 5.17

For the ARI.1, the courtyard CS16, located in Córdoba, was considered. The prediction
is performed for the date 26 July to 1 August. The obtained results are represented in
Figure 5 and Tables 7 and 8 (first row).

For the class ARI.2, the courtyard CS1, located in Badajoz, was considered. The
prediction is performed for the date 20 to 26 May. The obtained results are represented in
Figure 6 and Tables 7 and 8 (second row).

Finally, the ARII range class was considered and the predicted temperature was
represented in comparison to the monitored temperature inside the courtyard as well
as the outdoor temperature. As before, a quantitative analysis was carried out. On the
one hand, the relative error of the predicted temperature with respect to the monitored
temperature in different discrete norms (L1 and L2) was evaluated, as done in Section 3.1.
Moreover, the percentage in time for which the obtained absolute error within the predicted
and the monitored temperature is less than or equal to a fixed tolerance tol = 2 ◦C was
also evaluated. On the other hand, the following statistical parameters were computed:
R, RMSE and MAPE. The values of the relative and absolute errors, and the statistical
parameters are shown in in Tables 10 and 11 for the courtyard measured temperature in
each selected courtyard of each ARII range class.
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Figure 5. Example 3.0.2. Predicted temperature versus monitored and outdoor temperatures inside
an ARI.1 courtyard.

Figure 6. Example 3.0.2 Predicted temperature versus monitored and outdoor temperatures inside
an ARI.2 courtyard.

Table 10. Example 3.0.2. Relative and absolute errors for the courtyard measured temperature in
each selected courtyard of each ARII range class.

ARII Range Class L1 (%) L2 (%) Absolute Error ≤tol (%)

ARII.1 10.10 12.69 58.33
ARII.2 4.80 5.87 80.72

Table 11. Example 3.0.2. Statistical parameters for the courtyard measured temperature in each
selected courtyard of each ARII range class.

ARII Range Class R RMSE (◦C) MAPE (%)

ARII.1 0.64 2.65 9.78
ARII.2 0.79 1.46 4.86

For the class ARII.1, the courtyard CS4, located in Badajoz, was considered. The
prediction is performed for the date 20 to 26 May. In this case, as can be seen in Figure 7,
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the courtyard has a different thermal performance than in the previously described case
studies. This is mainly due to the overheating that occurs in the early morning hours
due to the low AR. The predicted results do not show such a tight accuracy under these
conditions. The obtained results are detailed in Tables 9 and 10 (first row).

Figure 7. Example 3.0.2. Predicted temperature versus monitored and outdoor temperatures inside a
ARII.1 courtyard.

For the class ARII.2, the courtyard CS9, located in Seville, was considered. The
prediction is performed for the date 4 to 10 September. The obtained results are represented
in Figure 8 and Tables 9 and 10 (second row).

Figure 8. Example 3.0.2. Predicted temperature versus monitored and outdoor temperatures inside
an ARII.2 courtyard.

3.3. Relative Errors Calculation

The main goal of this work is the accurate thermal modeling of the courtyard for
its optimization as a resilient strategy against climate change and urban overheating.
Therefore, the specific performance of courtyard thermodynamics was considered for the
evaluation of the model errors. The courtyard´s thermal tempering performance increases
as a function of the Thermal Gap (from now on, TG), that is, the difference between the
exterior monitored temperature and the monitored temperature inside the courtyard. TG
usually increases as the outside temperature rises. Accordingly, in this section, relative
errors from two different and representative case studies with different TRs are selected,
comparing statistical parameters more in detail.
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The first selected case study corresponds to the predicted temperature inside the TR1
courtyard CS1 (Figure 2), and the second case corresponds to the predicted temperature
inside the TR3 courtyard CS17 (Figure 4). These cases were selected since, in the first case,
monitored and predicted temperatures inside the courtyard are rather close to the exterior
monitored one, while in the second case, monitored and predicted temperatures inside the
courtyard are quite far from the exterior monitored one.

Conversely, the relative and absolute errors, as well as the statistical parameters
considered in the previous section, were computed. Then, the daily computations all along
the week were performed. The obtained results are given in Tables 12 and 13.

Table 12. Relative error CS1.

Errors + Stat. Param.\Day 1 2 3 4 5 6 7
L1 (%) 5.70 5.55 4.77 5.67 4.57 3.62 5.55
L2 (%) 6.79 6.95 5.62 6.40 5.30 4.42 6.52

Absolute error ≤ tol (%) 95.83 83.33 87.50 91.67 95.83 100 87.50
R 0.92 0.95 0.98 0.97 0.91 0.97 0.96

RMSE (◦C) 1.30 1.41 1.25 1.44 1.03 0.80 1.32
MAPE (%) 5.82 5.84 4.91 5.90 4.54 3.57 5.60

Table 13. Relative Error CS17.

Errors + Stat. Param.\Day 1 2 3 4 5 6 7
L1 (%) 2.16 2.68 2.71 5.10 2.40 3.23 5.95
L2 (%) 3.26 3.14 3.03 5.48 2.65 3.92 7.02

Absolute error ≤ tol (%) 95.83 95.83 100 83.33 100 95.83 58.33
R 0.91 0.96 0.96 0.92 0.97 0.91 0.89

RMSE (◦C) 0.90 0.87 0.85 1.54 0.76 1.12 1.93
MAPE (%) 2.42 2.65 2.74 5.18 2.42 3.30 5.91

On the other hand, bearing in mind the obtained results, the best predicted day in
each week was selected. In the first case, the day that gives better performances is the 6th
one, while in the second case, it is the 5th one. Then, the relative error of the predicted
temperature was computed hourly and represented in two ways. In the first way, with
respect to the TG and in the second way, with respect to the monitored temperature.
The graphics corresponding to CS1 and CS17 are included in Figure 9a,b, respectively.
The graphic represented in Figure 9a corresponds to the relative error of the predicted
temperature with respect to TG, and the graphic in Figure 9b corresponds to the relative
error of the predicted temperature with respect to the monitored temperature inside the
courtyard. In addition, the segment of the day in which critical urban overheating is
concentrated is indicated in each graph. These hours, according to climate records [54],
are between 13:00 and 19:00. On the left, considering CS1 plotted in Figure 9a, it can be
observed that the relative error with respect to TG is always below 3%, except for two peaks,
corresponding to time slots where the exterior temperature and the monitored temperature
inside the courtyard almost coincide. Considering CS17 in Figure 9a, it was obtained a very
low relative error with respect to TG in the central time slot of the day, that is, between
13:00 and 19:00, where TG is large. On the right, regarding the relative error with respect
to the courtyard measured temperature (CMT) in Figure 9b, it can be observed that the
plotted relative error for CS1 is below 0.1%, while for CS17, this relative error is always
below 0.05%. For both case studies, if the daytime slot with the highest urban overheating
is considered, the relative error is always below 0.05%.
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Figure 9. Relative errors CS1 and CS17 according to: (a) TG (b) CT.

4. Discussion

In this section, the results that were obtained in Section 3 are discussed. Regarding the
results obtained in Sections 3.1 and 3.2, on the one hand, it can be appreciated in Tables 6, 8
and 10 that the values for the relative errors in different discrete norms are around 5% and in
almost all cases are below 10%, and the percentage in time for which the obtained absolute
error w.r.t. the CMT is less than or equal to tol = 2 ◦C is superior to 80%, except for the cases
of Example 3.0.2, the ARI.1 range class and the ARII.1 range class. For the first critical case,
reasonable values for the relative errors in different discrete norms (within 5% and 8%) were
obtained, and the percentage in time for which the obtained absolute error w.r.t. the CMT
is less than or equal to tol = 2 ◦C is 61.45%. However, that case is rather special since it can
be observed at relatively high temperatures w.r.t. the other experiments. In any case, if the
tolerance parameter is increased to tol = 3 ◦C for that case, a higher percentage of up to 80.72%,
can be obtained. For the second critical case, the relative errors in different discrete norms are
within 10% and 13%, and the percentage in time for which the obtained absolute error w.r.t.
the CMT is less than or equal to tol = 2 ◦C is 58.33%. In any case, if the tolerance parameter is
increased to tol = 3 ◦C for that case, we obtain the higher percentage 74.40%. On the other
hand, the values for the statistical parameters that indicate that the simulation is accurate are
R→ 1, RMSE→ 0, MAPE→ 0 [36,42–44,50–52]. The values of these parameters for the
courtyard measured temperature in the present courtyards for each simulation confirm that
the used strategy is rather accurate. In particular, in Tables 7, 9 and 11 it can be observed that
the correlation coefficient R is quite close to 1 for all range classes (superior to 0.85, except for
the cases Example 3.0.2 ARII.1 and ARII.2 range classes for which it is within 0.6 and 0.8). The
RMSE values are around 1.5 ◦C and the MAPE values are around 5%, except for the critical
cases identified above for which the RMSE values are around 2.5 ◦C and the MAPE values
are within 5% and 10%.

Finally, in Section 3.3, relative and absolute errors as well as the statistical parameters
in two selected cases were computed daily. The case where the predicted CMT inside the
courtyard is rather close to the exterior one, and the case where the predicted CMT inside
the courtyard is quite far from the exterior one were chosen. The obtained results are given
in Tables 12 and 13, respectively. It can be observed that the values for the relative errors
in different discrete norms are around 6% in the first case, and around 3% in the second
case, and in almost all cases are below 7%. Moreover, the percentage in time for which
the obtained absolute error w.r.t. the CMT is less than or equal to tol = 2 ◦C is superior to
80% all the days except for the 7th day of the second case, arriving to 100% in the 6th day
of the first case and on the 3rd and 5th day of the second case. With respect to statistical
parameters, the correlation coefficient R is quite close to 1, being larger than 0.89 in all
cases. The RMSE values are around 1.25 ◦C in the first case and 1 ◦C in the second one,
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and the MAPE values are around 5% in the first case and 3% in the second case. Thus,
mostly, the results obtained in Section 3.3 daily in these selected cases improve the global
results computed for the whole week in Sections 3.1 and 3.2.

In brief, apart from the critical cases identified above, the values of the statistical pa-
rameters considered are in a similar range than those obtained in [36] for a similar problem.
In that work, the authors performed a very accurate courtyard thermal simulation based
upon a Computational Fluid Dynamics (CFD) FreeFEM 3D model, which is much more
computationally expensive than the ML technique SVR used in this work. In particular, the
computation of one-week temperature through the SVR method takes around one minute,
while the CFD method takes around four minutes per one day of simulation.

5. Conclusions

In the present work, the applicability of a supervised ML model as a suitable tool for
predicting microclimatic performance inside courtyards has been evaluated. For this pur-
pose, among the ML models developed as supervised learning, Support Vector Machines
(SVM) were selected. The model was fed and validated with empirical data from 22 case
studies in southern Spain.

The results provided by this strategy showed good accuracy when compared to
monitored data. In particular, we selected two representative and highly meaningful
case studies with different TGs. The final results for both cases showed that, when the
daytime slot with the highest urban overheating is considered, the relative error is almost
below 0.05%. Additionally, values for statistical parameters are in good agreement with
other studies in the literature that use more computationally expensive CFD models and
show more accuracy than existing commercial tools. Indeed, the present strategy shows
a Root Mean Square Error (RMSE) around 1 ◦C for the two representative case studies
selected, which is in a similar range to the values obtained in [36] for a similar problem by
a more computationally expensive CFD model, while corresponding values for existing
commercial software are typically around 3 ◦C.

Based on the results obtained, it can be stated that the new application proposed for
the ML method is useful for the development of design and measurement tools capable
of modeling the complex microclimate of courtyards. Furthermore, the accuracy of the
predictions for the analyzed case studies increases as a function of the courtyard thermal
tempering potential linked to the intensification of the outdoor temperature.

The enhancement of the proposed methodology with the inclusion of other com-
plementary microclimatic strategies, such as shading devices or vegetation as new ML
features as well as establishing a balance between an over fitted and under fitted ML model
considering the optimal number of training data, can be considered as future ways to
develop this research.
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Nomenclature

UHI Urban Heat Island
AR Aspect Ratio
ML Machine Learning
SVM Support Vector Machine
SVR Support Vector Regression
CS Case Study
TR Thermal Range
CFD Computational Fluids Dynamics
TG Thermal Gap
CMT Courtyard Measured Temperature
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