
mathematics

Article

An Adaptive Cuckoo Search-Based Optimization Model for
Addressing Cyber-Physical Security Problems

Mohamed Abdel-Basset 1, Reda Mohamed 1, Nazeeruddin Mohammad 2, Karam Sallam 1,*
and Nour Moustafa 3,*

����������
�������

Citation: Abdel-Basset, M.;

Mohamed, R.; Mohammad, N.;

Sallam, K.; Moustafa, N. An Adaptive

Cuckoo Search-Based Optimization

Model for Addressing Cyber-Physical

Security Problems. Mathematics 2021,

9, 1140. https://doi.org/10.3390/

math9101140

Academic Editor:

Angel Martín-del-Rey

Received: 10 March 2021

Accepted: 7 May 2021

Published: 18 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Faculty of Computers and Informatics, Zagazig University,
Zagazig 44519, Egypt; mohamedbasset@zu.edu.eg (M.A.-B.); redamoh@zu.edu.eg (R.M.)

2 Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia; nmohammad@pmu.edu.sa
3 School of Engineering & Information Technology, UNSW, Canberra, ACT 2620, Australia
* Correspondence: karam_sallam@zu.edu.eg (K.S.); nour.moustafa@unsw.edu.au (N.M.)

Abstract: One of the key challenges in cyber-physical systems (CPS) is the dynamic fitting of data
sources under multivariate or mixture distribution models to determine abnormalities. Equations of
the models have been statistically characterized as nonlinear and non-Gaussian ones, where data have
high variations between normal and suspicious data distributions. To address nonlinear equations
of these distributions, a cuckoo search algorithm is employed. In this paper, the cuckoo search
algorithm is effectively improved with a novel strategy, known as a convergence speed strategy,
to accelerate the convergence speed in the direction of the optimal solution for achieving better
outcomes in a small number of iterations when solving systems of nonlinear equations. The proposed
algorithm is named an improved cuckoo search algorithm (ICSA), which accelerates the convergence
speed by improving the fitness values of function evaluations compared to the existing algorithms.
To assess the efficacy of ICSA, 34 common nonlinear equations that fit the nature of cybersecurity
models are adopted to show if ICSA can reach better outcomes with high convergence speed or
not. ICSA has been compared with several well-known, well-established optimization algorithms,
such as the slime mould optimizer, salp swarm, cuckoo search, marine predators, bat, and flower
pollination algorithms. Experimental outcomes have revealed that ICSA is superior to the other in
terms of the convergence speed and final accuracy, and this makes a promising alternative to the
existing algorithm.

Keywords: cuckoo search algorithm; systems of nonlinear equations; convergence improvement
strategy; cyber-physical systems

1. Introduction

With the norm of cyber-physical systems (CPS), cyber defense systems such as intru-
sion detection and threat intelligence, which deal with data sources under the constraints
of nonnormality and nonlinearity, should be designed to handle these constraints and pro-
duce accurate outcomes [1,2]. These models have been developed using nonlinear equation
systems (NESs) [3], which need to be accurately solved in reasonable time [4]. Therefore,
to overcome NESs, several numerical methods, including the Newton-type method [5]
and the iterative and recursive methods [6], have been proposed. However, most of those
methods cannot estimate the roots of NESs with a complex nature due to their sensitivity to
picking the initial guess of the solutions, which significantly affects the obtained outcomes
and stability of those methods [4]. Therefore, the only way to overcome those drawbacks
and to estimate the optimal roots is to use evolutionary and meta-heuristic algorithms,
which have gained significant attention over the last decades due to their superiority in
terms of local minima avoidance, convergence speed, and reaching the optimal solution in
a reasonable time.
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The evolutionary algorithms (EAs) and swarm algorithms (SAs) have achieved signif-
icant achievements in real-world optimization problems [7–18], particularly the convex,
discontinuous nonlinear optimization problem [11,19,20]. Therefore, they have been widely
used in the literature for solving the NESs. Unfortunately, the existing algorithms still
suffer from local minima and convergence speed to the optimal root. This causes two
problems when solving NESs: (1) consuming several numbers of function evaluations
before reaching the optimal root in some cases, and (2) the algorithms are unable to find
the optimal root with an increasing number of function evaluations due to the weak ability
of the algorithms in exploring as much of the search space as possible while avoiding
getting stuck in local minima problems. In cybersecurity, data distributions of intrusion
detection and threat models often demand nonlinear and non-Gaussian systems that can
discriminate small variations between normal and suspicious behaviors [21]. In this paper,
the cuckoo search algorithm (CSA) is improved in an effective way to help it avoid those
two problems while solving NESs. The algorithm is named as the improved CSA (ICSA).
ICSA was extensively validated using 34 well-known NES cases and compared with some
recently published, well-established optimization algorithms, namely the slime mould
algorithm (SMA, 2020) [22], marine predators algorithm (MPA, 2020) [23], Bat algorithm
(BA, 2012) [24], salp swarm algorithm (SSA, 2017) [25], standard cuckoo search algorithm
(CSA, 2009) [26], and flower pollination algorithm (FPA, 2012) [27], under various statistical
analyses that can flexibly fit nonlinear distributions of CPS-driven data sources, efficiently
enhancing the discovery of anomalous events. The experiments show that our improved
algorithm has significant performance for most test cases concerning the convergence
speed and final accuracy in comparison to the abovementioned algorithms. The main
contributions in this research are as follows:

(a) Improving the classical CSA using an effective strategy called the convergence im-
provement strategy (CIS) to produce a new variant able to accurately tackle NESs.
This variant was named ICSA.

(b) The experiments conducted on 34 well-known NES cases to assess the performance
of this variant, in addition to comparing its performance with 6 well-established
optimization algorithms, show the efficacy of this variant in terms of the convergence
speed and final accuracy for most test cases.

The remainder of this paper is organized as follows: Section 2 presents the literature
review, Section 3 overviews the standard CSA, Section 4 extensively describes our proposed
work, and Section 5 shows our experimental outcomes and some discussions. Finally,
Section 6 shows some conclusions devised from our proposed work and discusses our
future work.

2. Literature Review

This section is divided into two parts. The first part will define the problem formula-
tion of the NES, and the second reviews the EAs and the SAs proposed in the literature to
tackle the NESs.

2.1. Problem Description

Generally, nonlinear equation systems are mathematically formulated as follows:

S(x) =



f1(x1, x2, x3, . . . . . . . . . , xd) = 0
f2(x1, x2, x3, . . . . . . . . . , xd) = 0
f3(x1, x2, x3, . . . . . . . . . , xd) = 0

.

.

.
fn(x1, x2, x3, . . . . . . . . . , xd) = 0

(1)
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where d denotes the number of decision variables of the equation; n refers to the number of
equations; x is a vector of d-dimensions and includes a solution to the NES, where each
dimension within this solution must be subject to its search boundary: lower bound (Lb)
and upper bound (Ub).

As formulated in Equation (1), x denotes the decision variables and the attributes/
features in a cyber-physical problem, specifically, a machine learning-based intrusion de-
tection. When these attributes were statistically evaluated using the Kolmogorov–Smirnov
(K–S) test, the outcomes revealed that the attributes follow nonlinear and non-Gaussian
distributions. This indicates that the models must employ nonlinear equations to perfectly
fit small variations of normal and anomalous behaviors [1].

To solve the nonlinear attributes/decision attributes of NESs in a machine learning-
based intrusion detection problem, Equation (1) comprises n equations, while the optimiza-
tion algorithms usually work to minimize only one. Therefore, Equation (1), which defines
the NESs, was transformed into Equation (2) to become a minimization problem that could
be solved using an optimization algorithm.

f (x) =
n

∑
i=1

f 2
i (x) (2)

This equation is considered as the objective function that needs to be minimized
using optimization techniques to find the optimal roots and clear boundaries between the
nonlinear attributes of normal and suspicious events.

2.2. Swarm and Evolutionary Algorithms

In [28], the social emotion optimization algorithm (EOA) was integrated with a
metropolis rule as an attempt to escape the local minima that has been proposed for
the NESs. This hybrid algorithm, abbreviated as MSEOA, was compared with the particle
swarm algorithm (PSO) and the standard EOA to determine the best one for solving four
nonlinear equations. In the experiments, MSEOA was found to be more effective for solving
the NESs. Further, Wu Z. and L. Kang [29] proposed a parallel Elite-subspace evolutionary
algorithm (PESEA) to solve the NESs in a reasonable time. PESEA was validated using five
nonlinear equations to determine its punctuality in estimating their optimal roots. Based
on the conducted experiments, PESEA is faster and more punctual.

To solve NESs, the authors of [30] suggested a hybrid approach that involved using
the capability of chaos maps to dramatically explore the search space with a quasi-Newton
method outstanding with high convergence. The authors of [31] integrated an evolutionary
algorithm with additional strategies. The authors combined the k-means clustering method
with niching to guide the optimization process to the multiple roots within the search space,
and avoided getting stuck in local minima using the two methods. Finally, the authors
proposed using various crowding factors to decrease the replacement error for finding the
multiple roots of the NESs, and this algorithm was called a one-step k-means clustering-
based differential evolution (KSDE). Following the development of KSDE, 30 problems
have been used to validate its performance, in addition to comparing the algorithm with
some of the state-of-the-art methods to show its superiority.

Rizk-Allah [32] proposed a new approach, namely Q-SCA, to solve NESs based on
modifying the sine-cosine algorithm (SCA). Using Q-SCA, the Rizk-Allah dynamically
adjusted the SCA’s search ability to search around the current location or the best-so-
far solution to improve its exploitation capability as an attempt to accelerate the local
convergence rate. Q-SCA also used the quantum local search (QLS) to improve the obtained
solutions as an attempt to balance the algorithm’s exploration and exploitation capability.
This approach was investigated among 12 NESs and 2 electrical applications and compared
with several algorithms to show its stability and accuracy in achieving true better outcomes.
The experimental outcomes showed the superiority of this algorithm over the standard
one. The authors of [33–35] adapted various genetic algorithms (GAs) to solve the NESs.
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The grasshopper optimization algorithm (GOA) [36] has been hybridized with the GA
to produce a new hybrid algorithm known as hybrid GOA with GA for solving the NESs.
This hybrid algorithm combined the merits of both GA and GOA to escape from the local
minima and accelerate the convergence speed. More than that, the grey wolf optimizer
(GWO) has been integrated with differential evolution to tackle the NESs; this algorithm
was named GWO-DE. In [37], differential evolution improved and integrated with a restart
strategy, namely DE-R, has been proposed for the NESs. DE-R used a new mutation
operator and a restart technique to promote the exploration ability and avoid getting stuck
into local minima. DE-R was compared with some recently developed algorithms over
a set of nonlinear equation systems and real-world problems to show the effectiveness
of DE-R.

Ultimately, several continuous evolutionary and swarm intelligence algorithms have
been promoted that might be applied to tackle this problem in the future in the hope of find-
ing better outcomes; some of those algorithms are natural evolution strategies [38], particle
swarm optimization in the estimation of distribution algorithms (EDAs) framework [39],
the EDAs [40], and the covariance matrix adaptation evolution strategy [41].

3. Standard Algorithm: Cuckoo Search Algorithm

Xin Shen Yang [26] proposed a new metaheuristic algorithm, namely the cuckoo
search algorithm (CSA), for solving optimization problems. Recently, CSA was employed
for selecting the most relevant nonlinear attributes and discovering suspicious observa-
tions [42]. This research is motivated to develop a new variant of CSA that can efficiently
deal with nonlinear functions and will be effective in finding the clear bounds of legitimate
and suspicious behaviors while implementing classification methods. CSA is inspired by
the obligate brood parasitism of some cuckoo birds by laying their eggs in the nests of other
host birds. Sometimes, when the cuckoos find out the eggs in their nests do not belong to
them, those foreign eggs are either flung out or all the nests are abandoned. In general, the
CS algorithm is based on three rules:

(1) Each cuckoo lays one egg at a time and put its egg in a randomly chosen nest;
(2) The best nests with eggs having high quality will be used in the next generation;
(3) The available host nests number is fixed, and the cuckoos can discover a foreign egg

with a probability pa that varies between 0 and 1.

CSA could balance the global random walk and local random walk to promote its
searchability for reaching better outcomes. Mathematically, the global random walk is
formulated as

xt+1
i = xt

i + αL(s, λ) (3)

where t express the current iteration, xt
i is the current position of the ith cuckoo, xt+1

i
indicates the next position, L(s, λ) is the levy distributions used to determine the size of the
step of random walk, s is the stepsize, and α is a positive scaling factor. The local random
walk is defined as follows:

xt+1
i = xt

i + αs
⊗

H(pa − ε)
⊗(

xt
j − xt

k

)
(4)

where
⊗

indicates the entry-wise multiplication operator, H is a heavy-side function,
ε is a random number generated based on the normal distribution, and xt

j and xt
k are

two random positions chosen randomly from the current population. tmax indicates the
maximum number of iterations. The steps of CSA are shown in Algorithm 1.
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Algorithm 1 The steps of CSA

1. Create an initial population of N solutions.
2. Initialize α, pa, and t = 0;
3. Evaluate the fitness for each solution and determine the best-so-far solution x∗.
4. while (t < tmax)
5. Create a new population using Equation (3) and insert better ones into the current population.
6. t = t + 1;
7. Create a new population using Equation (4) and add into the current the best ones.
8. t = t + 1;
9. end while

4. Proposed Algorithm

In this section, the steps of the proposed algorithm, known as an improved cuckoo
search algorithm (ICSA), will be clearly described; those steps are initialization, evaluations,
and ICSA.

4.1. Initialization

At the outset of the optimization algorithm, a group of N solutions will be created
with d dimensions for each, which are randomly initialized within the search space of the
problem according to the following equation:

∀i ∈ N,
→
x i =

→
L +

→
r
⊗

(
→
U −

→
L ) (5)

where
→
U and

→
L are two vectors including the upper and lower bounds of various problem

dimensions, and
→
r is a vector of d elements assigned randomly between 0 and 1. After com-

pleting the initialization step, those initial solutions will be evaluated using Equation (2) to
determine the quality of each one, and the one with the highest quality will be extracted to
help later in improving the quality of the new populations.

4.2. Convergence Improvement Strategy (CIS)

A new strategy, called convergence improvement strategy, is proposed for improving
the performance of the meta-heuristic algorithm to achieve better convergence, in addi-
tion to improving final accuracy, and enhancing the ability to select the most significant
attributes for CPS problems. This strategy is two-fold: the first aspect is based on search-
ing the best-so-far solutions for a better solution using Equation (6) to save time in the
optimization process if the near-optimal solution is found around this best-so-far case,
but this best-so-far solution also may be a trap to drift the algorithm into local minima,
hence reducing the possibility of reaching better outcomes. Therefore, the second aspect,
formulated mathematically in Equation (7), is used to avoid falling into local minima
based on multiplying the current position in a vector vc generated randomly based on the
uniform distribution with the lower endpoints −1× r1 and upper endpoint r1; where r1 is
a value created randomly between 0 and 1.

xt+1
i = x∗ + αL

⊗(
xt

i − x∗
)

(6)

xt+1
i = vc

⊗
xt

i (7)

The swap between Equations (6) and (7) is determined based on a probability, namely
γ, picked during the experiments by the researcher at the expense of their outcomes; this
probability in our experiment was set to 0.1, after extensive experiments.
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4.3. Improved Cuckoo Search Algorithm (ICSA)

To improve the global random walk of CSA, CIS is called after executing the global
random walk, with probability pr to accelerate the convergence speed toward the best-so-
far solution, using the first aspect, and to avoid getting stuck into local minima, using the
second aspect. Generally, Algorithm 2 elaborates the steps of ICSA after integrating CIS.
Before starting the optimization process by ICSA, N solutions will be randomly distributed
within the search space to cover it as much as possible, in addition to initializing the main
parameters of the ICSA. Then, those solutions will be updated by the global random walk
integrated with the CIS with a probability pr set to 0.5, as explained in the experiments
section, to promote its searchability for reaching better outcomes, as described in Lines 6–16
in Algorithm 2. In Line 19, the current solution will be updated using the local random
walk as an attempt to avoid getting stuck into local minima. This optimization process is
continuously running until the termination condition is satisfied (reaching the maximum
iteration tmax).

Algorithm 2 The steps of ICSA

1. Create an initial population of N solutions.
2. Initialize α, pa, γ, and t = 0;
3. Evaluate the fitness for each solution and determine the best-so-far solution x∗.
4. while (t < tmax)
5. nX: Create a new population using Equation (3)
6. For (i = 1: N)
7. r: create a random number between 0 and 1.
8. if (r > pr)
9. r1: create a random number between 0 and 1.
10. if (r1 < γ)
11. Update the current solution nXi using Equation (6)
12. Else
13. Update the current solution nXi using Equation (7)
14. End if
15. End if
16. End for
17. Evaluate each solution in the new population and insert better ones into the

current population.
18. t = t + 1;
19. Create a new population using Equation (4) and add into the current the best ones.
20. t = t + 1;
21. end while

5. Outcomes and Discussion

This section validates the performance of the proposed algorithm, ICSA, to examine
its efficacy, in addition to witnessing its superiority compared to some well-established
optimization algorithms under various statistical analyses. Best, average (Avg), worst,
and standard deviation (SD) were obtained as the fitness values within 30 independent
trials, and the Wilcoxon rank-sum test was used to determine significance. The compared
algorithms used in our experiments included slime mould algorithm (SMA, 2020) [22],
marine predators algorithm (MPA, 2020) [23], Bat algorithm (BA, 2012) [24], salp swarm
algorithm (SSA, 2017) [25], standard cuckoo search algorithm (CSA, 2009) [26], and flower
pollination algorithm (FPA, 2012) [27]. Algorithms were programmatically implemented
using MATLAB R2019a based on the cited parameters under the same operating conditions
as the proposed algorithm; those conditions are summarized as the maximum number of
iterations, the population size, and the number of independent runs, which are respectively
set to 500, 30, and 30. A computer with 32GB of RAM, Intel(R) Core(TM) i7-4700MQ
CPU @ 2.40 GHz, and a 64-bit operating system (Windows 10) was used to conduct all
the experiments.



Mathematics 2021, 9, 1140 7 of 27

To validate the performance of our proposed algorithm, 34 test cases of the nonlinear
equation systems used widely in the literature were used. Most of these equations were
widely used in the design of cybersecurity models, such as intrusion detection and threat
models, to differentiate between small variations of normal and abnormal activities in
CPSs. The characteristics of these functions are summarized as the number of dimensions
(D), the search space (R) for each dimension, and formulas to those functions, and their
references are presented in Table 1.

To adjust the main effective parameters of the proposed algorithm, which include
α, γ, and pr, extensive experiments have been performed with various values for each
parameter on F12, and their outcomes for 30 independent trials are depicted in Figure 1.
Inspecting this figure shows that the near-optimal values for α, γ, and pr were 0.5, 0.1, and
0.5, respectively. The value of the parameter pr was set to 0.5 instead of 0.6 because the
algorithm was better able to minimize the objective value at this number.
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Table 1. Descriptions of the nonlinear equation systems used in our experiments.

Function Formulas D R References

F1 x1 − sin(5πx2) = 0
x1 − x2 = 0

2 xi = [−1, 1]∀i = 1, 2 [43]

F2 x1 − cos(4πx2) = 0
x2

1 + x2
2 − 1 = 0

2 xi = [−10, 10]∀i = 1, 2 [43]

F3 x1 − 0.25428722− 0.18324757x4x3x9 = 0
x2 − 0.37842197− 0.16275449x1x10x6 = 0
x3 − 0.27162577− 0.16955071x1x2x10 = 0
x4 − 0.19807914− 0.15585316x7x1x6 = 0
x5 − 0.44166728− 0.19950920x7x6x3 = 0
x6 − 0.14654113− 0.18922793x8x5x10 = 0
x7 − 0.42937161− 0..21180486x2x5x8 = 0
x8 − 0.07056438− 0.17081208x1x7x6 = 0
x9 − 0.34504906− 0.19612740x10x6x8 = 0
x10 − 0.42651102− 0..21466544x4x8x1 = 0

10 xi = [−10, 10]∀i = 1, . . . , 10 [44]

F4 3.0− x1x2
3 = 0

x3 sin
(

π
x2

)
− x3 − x4 = 0

−x2x3 exp(1.0− x1x3) + 0.2707 = 0
2x2

1x3 − x4
2x3 − x2 = 0

4 xi = [0, 5]∀i = 1, 4 [45]

F5 4x3
1 + 4x1x2 + 2x2

2 − 42x1 − 14 = 0
4x3

2 + 2x2
1 + 4x1x2 − 16x2 − 22 = 0

2 xi = [−20, 20]∀i = 1, 2 [46]

F6 − sin(x1) cos(x2)− 2 cos(x1) sin(x2) = 0
− cos(x1) sin(x2)− 2 sin(x1) cos(x2) = 0

2 xi = [0, π]∀i = 1, 2 [47]

F7 x2
1 + x2

2 − 1.0 = 0
x2

3 + x2
4 − 1.0 = 0

x2
5 + x2

6 − 1.0 = 0
x2

7 + x2
8 − 1.0 = 0

4.731 · 10−3 x1x3− 0.3578x2x3 − 0.1238x1 + x7 −
1.637 · 10−3x2 − 0.9338x4 − 0.3571 = 0
0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − x7 −
0.07745x2 − 0.6734x4 − 0.6022 = 0
x6x8 + 0.3578x1 + 4.731 · 10−3x2 = 0
−0.7623x1 + 0.2238x2 + 0.3461 = 0

8 xi = [−1, 1]∀i = 1, . . . , 8 [4]

F8 xi − cos

(
2xi −

D
∑

j=1
xj

)
= 0 3 xi = [−20, 20]∀i = 1, . . . , D [48]

F9 x2
1 − x2 − 2 = 0

x1 + sin
(

π
2 x2

)
= 0

2 x1 = [0, 1]
x2 = [−10, 0]

[45]

F10 x2
1 + x2

2 + x1 + x2 − 8 = 0
x1|x2|+ x1 + |x2| − 5 = 0

2 x1 = [−30, 30]
x2 = [−30, 30]

[49]

F11 x2
1 − |x2|+ 1 + 1

9 |x1 − 1| = 0
x2

2 + 5x2
1 − 7 + 1

9 |x2| = 0
2 x1 = [−1, 1]

x2 = [−10, 10]
[49]

F12 ∑D
i=1 x2

i − 1 = 0

|x1 − x2|+
D
∑

i=3
x2

1 = 0

20 xi = [−1, 1]∀i = 1, . . . , D [43]

F13 2x1 + x2 + x3 + x4 + x5 − 6.0 = 0
x1 + 2x2 + x3 + x4 + x5 − 6.0 = 0
x1 + x2 + 2x3 + x4 + x5 − 6.0 = 0
x1 + x2 + x3 + 2x4 + x5 − 6.0 = 0
x1 x2x3 x4x5 − 1.0 = 0

5 xi = [−2, 2]∀i = 1, . . . , D [50]
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Table 1. Cont.

Function Formulas D R References

F14 x2
1 − x1 − x2

2 − x2 + x2
3 = 0

sin (x2 − exp (x1)) = 0
x3 − log |x2| = 0

5 x1 = [0, 2]
x2 = [−10, 10]
x3 = [−1, 1]

[51]

F15 cos(x2)− sin(x1) = 0
xx1

3 −
1
x2

= 0
exp (x1)− x2

3 = 0

3 x1 = [0, 5]
x2 = [0, 5]
x3 = [0, 5]

[4]

F16 (x1 − 1)4 exp(x2) = 0
(x2 − 2)5(x1x2 − 1) = 0
(x3 + 4)6 = 0

3 x1 = [−5, 5]
x2 = [−5, 5]
x3 = [−5, 5]

[52]

F17 exp
(

x2
1
)
− 8x1 = 0

x1 + x2 − 1 = 0
(x3 − 1)3 = 0

3 x1 = [−5, 5]
x2 = [−5, 5]
x3 = [−5, 5]

[52]

F18 x3
1 − x1x2x3 = 0

x2
2 − x1x3 = 0

10x1x2x3 − x1 − 0.1 = 0

3 x1 = [−5, 5]
x2 = [−5, 5]
x3 = [−5, 5]

[53]

F19 sin
(

x3
1
)
− 3x1x2

2 − 1 = 0
cos
(
3x2

1x2
)
−
∣∣x3

2
∣∣+ 1 = 0

2 x1 = [−2, 2]
x2 = [−2, 2]

[4]

F20 4x3
1 − 3x1 − cos(x2) = 0

sin
(

x2
1
)
− |x2| = 0

2 x1 = [−2, 2]
x2 = [−2, 2]

[4]

F21 exp
(

x2
1 + x2

2
)
− 3 = 0

|x2|+ x1 + x2 − 2 sin(3|x2|+ x1) = 0
2 x1 = [−2, 2]

x2 = [−2, 2]
[4]

F22 −3.84x2
1 + 3.84x1 − x2 = 0

−3.84x2
2 + 3.84x2 − x3 = 0

−3.84x2
3 + 3.84x3 − x1 = 0

3 x1 = [0, 10]
x2 = [0, 10]
x3 = [0, 1]

[4]

F23 x4
1 + x4

2 − x1x3
2 − 6 = 0∣∣1− x2

1x2
2
∣∣− 0.6787 = 0

2 x1 = [−20, 20]
x2 = [−20, 20]

[4]

F24 0.5x2
1 + 0.5x2

2 + x1 + x2 − 8 = 0
|x1|x2 + x1 + |x2|x1 = −5 = 0

2 x1 = [−5, 5]
x2 = [−5, 5]

[4]

F25 4 sin(4x1)− x2 = 0
x2

1 + x2
2 − 15 = 0

2 x1 = [−20, 20]
x2 = [−20, 20]

[4]

F26 cos(2x1)− cos(2x2)− 0.4 = 0
2(x2 − x1) + sin(2x2)− sin(2x1)− 1.2 = 0

2 x1 = [−15, 15]
x2 = [−15, 15]

[4]

F27 x1 + 0.5x2
2 − 5 = 0

x1 + 5 sin
(πx2

2
)
= 0

2 x1 = [−5, 5]
x2 = [−5, 5]

[4]

F28 x2
1 + x2

2 − 1 = 0
20x2

1x2 + 2x5
2 + 1 = 0

2 x1 = [−5, 5]
x2 = [−5, 5]

[4]

F29 xx2
1 + xx1

2 − 5 x1 x2 x3 − 85 = 0
x3

1 − xx3
2 − xx2

3 − 60 = 0
xx3

1 − xx1
3 − x2 − 2 = 0

3 x1 = [3, 5]
x2 = [2, 4]
x2 = [0.5, 2]

[54]

F30 x3
1 − 3x1 x2

2 − 1 = 0
3x2

1 x2 − x3
2 + 1 = 0

2 x1 = [−10, 10]
x2 = [−10, 10]

[54]

F31 x2
1 + x2

3 − 1 = 0
x2

2 + x2
4 − 1 = 0

x5 x3
3 + x6 x3

4 = 0
x5 x3

1 + x6 x3
2 = 0

x5 x1x2
3 + x6 x2x2

4 = 0
x5 x3x2

1 + x6 x4x2
2 = 0

6 xi = [−10, 10]∀i = 1, . . . , D [54]
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Table 1. Cont.

Function Formulas D R References

F32 0.5 sin ( x1 x2)− 0.25 x2π − 0.5x1 = 0(
1− 0.25

π

)
(exp (2x1)− e) + ex2

π − 2ex1 = 0
2 x1 = [0.25, 1]

x2 = [1.5, 2π]
[54]

F33 3x1 − cos (x2 x3)− 0.5 = 0
x2

1 − 625 x2
2 − 0.25 = 0

exp(−x1x2) + 20x3 + (10π − 3)/3 = 0

2 xi = [−10, 10]∀i = 1, . . . , D [52]

F34 x1 + 0.25 x2
2x4x6 + 0.75 = 0

x2 + 0.405 exp(1 + x1 x2)− 1.405 = 0
x3 − 0.5 x4 x6 + 1.5 = 0
x4 − 0.605 exp

(
1− x2

3
)
− 0.395 = 0

x5 − 0.5 x2 x6 + 1.5 = 0
x6 − x1 x5 = 0

5 xi = [−2, 2]∀i = 1, . . . , D [54]

In Table 2, the best, worst, and Avg objective values, in addition to SD, were obtained
after running each algorithm 30 independent times, and test functions F1-F28 are exposed.
From this table, on one side, ICSA had the best metric for 26 of 28 test cases, where the less
possible value of 0 was reached for 19 out of those 26 test cases. This shows the superiority
of our proposed algorithm in minimizing objective values in comparison with the other
algorithms; for Avg, Worst, and SD measures, ICSA was best for 21 test cases, and this
indicates the proposed algorithm is not stable since its outcomes were relatively diversified
within all independent runs. This is our main limitation that needs to be addressed in
future work.

Furthermore, the proposed algorithm was compared with the others regarding the
convergence speed to see which algorithm quickly converged to the optimal solution. This
can be used to select the most relevant features or fit normal and abnormal observations
under multivariate distributions. The convergence curves based on the outcomes were
obtained by various algorithms for 21 test cases randomly selected among the first 21 test
cases, and these are depicted in Figures 2–22. From those figures, we point out that the
proposed algorithm reached a lower objective value faster than the others.
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Table 2. Comparison among algorithms on test cases F1–F28.

F ICSA BA FPA CSA MPA SSA SMA ICSA BA FPA CSA MPA SSA SMA

F1 Best 0 3 × 10−10 2 × 10−9 7 × 10−14 2 × 10−22 1 × 10−17 0 F15 1 × 10−32 5 × 10−8 5 × 10−5 2 × 10−6; 7 × 10−19 1 × 10−14 3 × 10−6;
- Avg 0 3 × 10−9 7 × 10−8 3 × 10−11 6 × 10−7 2 × 10−15 2 × 10−305 - 1 × 10−2 9 × 10+02 7 × 10−3 4 × 10−5 1 × 10−4 2 × 10−12 3 × 10−4

- Worst 0 1 × 10−8 3 × 10−7 2 × 10−10 6 × 10−6; 1 × 10−14 5 × 10−304 - 6 × 10−2 2 × 10+04 7 × 10−2 3 × 10−4 3 × 10−3 2 × 10−11 7 × 10−3

- SD 0 3 × 10−9 9 × 10−8 5 × 10−11 1 × 10−6; 3 × 10−15 0 - 2 × 10−2 4 × 10+03 1 × 10−2 6 × 10−5 5 × 10−4 4 × 10−12 1 × 10−3

F2 Best 0 1 × 10−10 5 × 10−9 6 × 10−14 1 × 10−8 1 × 10−19 2 × 10−18 F16 0 1 × 10−43 6 × 10−44 1 × 10−93 3 × 10−40 7 × 10−57 2 × 10−41

- Avg 5 × 10−32 6 × 10−2 5 × 10−7 3 × 10−11 8 × 10−6; 8 × 10−14 2 × 10−9 - 9 × 10−14 2 × 10−3 2 × 10−32 5 × 10−69 7 × 10−22 9 × 10−49 3 × 10−32

- Worst 3 × 10−31 7 × 10−1 2 × 10−6; 2 × 10−10 8 × 10−5 5 × 10−13 3 × 10−8 - 2 × 10−12 5 × 10−2 6 × 10−31 2 × 10−67 1 × 10−20 7 × 10−48 6 × 10−31

- SD 1 × 10−31 2 × 10−1 5 × 10−7 4 × 10−11 2 × 10−5 1 × 10−13 7 × 10−9 - 4 × 10−13 9 × 10−3 1 × 10−31 3 × 10−68 3 × 10−21 2 × 10−48 1 × 10−31

F3 Best 6 × 10−11 8 × 10−7 4 × 10−3 9 × 10−10 4 × 10−6; 1 × 10−13 2 × 10−4 F17 0 9 × 10−9 2 × 10−11 6 × 10−24 5 × 10−9 1 × 10−13 5 × 10−12

- Avg 5 × 10−8 2 × 10−6; 1 × 10−2 5 × 10−9 6 × 10−5 4 × 10−13 2 × 10−3 - 2 × 10−31 2 × 10−4 9 × 10−7 7 × 10−18 5 × 10−6; 3 × 10−5 6 × 10−9

- Worst 6 × 10−7 2 × 10−5 3 × 10−2 1 × 10−8 2 × 10−4 7 × 10−13 7 × 10−3 - 3 × 10−30 3 × 10−3 8 × 10−6; 2 × 10−16; 4 × 10−5 4 × 10−4 1 × 10−7

- SD 1 × 10−7 3 × 10−6; 6 × 10−3 3 × 10−9 6 × 10−5 1 × 10−13 2 × 10−3 - 8 × 10−31 5 × 10−4 2 × 10−6; 3 × 10−17 1 × 10−5 7 × 10−5 3 × 10−8

F4 Best 3 × 10−21 9 × 10−4 2 × 10−4 6 × 10−9 1 × 10−3 3 × 10−6; 4.00 F18 0 5 × 10−10 6 × 10−8 9 × 10−12 7 × 10−8 4 × 10−12 1 × 10−6;
- Avg 6 × 10−2 4.00 2 × 10−2 5 × 10−4 3 × 10−2 6 × 10−2 4.00 - 2 × 10−7 2 × 10−4 9 × 10−7 8 × 10−8 4 × 10−5 3 × 10−5 4 × 10−6;
- Worst 4 × 10−1 1 × 10 9 × 10−2 6 × 10−3 3 × 10−1 2 × 10−1 4.00 - 1 × 10−6; 4 × 10−3 3 × 10−6; 4 × 10−7 2 × 10−4 2 × 10−4 9 × 10−5

- SD 1 × 10−1 5.00 2 × 10−2 1 × 10−3 5 × 10−2 8 × 10−2 7 × 10−2 - 4 × 10−7 8 × 10−4 7 × 10−7 1 × 10−7 6 × 10−5 5 × 10−5 2 × 10−5

F5 Best 0 2 × 10−8 4 × 10−6; 1 × 10−11 2 × 10−6; 2 × 10−12 2 × 10−10 F19 0 1 × 10−6; 8 × 10−10 6 × 10−22 5 × 10−11 4 × 10−13 4 × 10−12

- Avg 4 × 10−29 6 × 10−7 2 × 10−4 5 × 10−9 4 × 10−3 1 × 10−10 5 × 10−8 - 1 × 10−32 1 × 10−1 4 × 10−7 5 × 10−19 2 × 10−6; 2 × 10−5 1 × 10−8

- Worst 8 × 10−28 3 × 10−6; 6 × 10−4 5.×10−8 8 × 10−2 9.× 10−10 4 × 10−7 - 4 × 10−31 3.00 7 × 10−6; 1 × 10−17 3 × 10−5 2 × 10−4 4 × 10−7

- SD 2 × 10−28 8 × 10−7 2 × 10−4 1 × 10−8 1 × 10−2 2 × 10−10 1 × 10−7 - 8 × 10−32 6 × 10−1 1 × 10−6; 2 × 10−18 6 × 10−6; 4 × 10−5 7 × 10−8

F6 Best 0 0 0 0 0 0 0 F20 0 3 × 10−12 7 × 10−11 2 × 10−16; 1 × 10−10 5 × 10−18 4 × 10−13

- Avg 0 3 × 10−31 2 × 10−32 1 × 10−32 0 0 0 - 0 6 × 10−10 1 × 10−8 3 × 10−13 3 × 10−7 5 × 10−16; 5 × 10−10

- Worst 0 1 × 10−30 3 × 10−31 3 × 10−31 0 0 0 - 0 6 × 10−9 1 × 10−7 3 × 10−12 2 × 10−6; 2 × 10−15 5.×10−9

- SD 0 4 × 10−31 8 × 10−32 5 × 10−32 0 0 0 - 0 1 × 10−9 2 × 10−8 6 × 10−13 5 × 10−7 5 × 10−16; 1 × 10−9

F7 Best 2 × 10−15 7 × 10−7 4 × 10−3 4 × 10−5 1 × 10−6; 8 × 10−14 9 × 10−13 F21 0 9 × 10−11 2 × 10−8 3 × 10−15 8 × 10−10 3 × 10−16; 2 × 10−11

- Avg 4× 10−5 1 × 10−2 2 × 10−2 2 × 10−4 6 × 10−4 7 × 10−3 4×10−5 - 3 × 10−32 5 × 10−9 2 × 10−6; 1 × 10−11 4 × 10−6; 7 × 10−15 8 × 10−9

- Worst 5× 10−4 2 × 10−1 4 × 10−2 7 × 10−4 1 × 10−2 2 × 10−1 5×10−4 - 2 × 10−31 3 × 10−8 1 × 10−5 1 × 10−10 5 × 10−5 3 × 10−14 1 × 10−7

- SD 1 × 10−4 5 × 10−2 9 × 10−3 1 × 10−4 2 × 10−3 4 × 10−2 1×10−4 - 6 × 10−32 5 × 10−9 3 × 10−6; 2 × 10−11 9 × 10−6; 7 × 10−15 2 × 10−8

F8 Best 0 2 × 10−9 2 × 10−7 2 × 10−11 3 × 10−7 5 × 10−15 3 × 10−9 F22 0 0 0 0 0 0 0
- Avg 7 × 10−33 5,00 1 × 10−5 9 × 10−10 1 × 10−4 8 × 10−13 9 × 10−8 - 0 5 × 10−9 0 0 0 0 0
- Worst 6 × 10−32 5 × 10 8 × 10−5 6 × 10−9 1 × 10−3 4 × 10−12 1 × 10−6; - 0 4 × 10−8 0 0 0 0 0
- SD 1 × 10−32 1 × 10 1 × 10−5 1 × 10−9 2 × 10−4 1 × 10−12 2 × 10−7 - 0 9 × 10−9 0 0 0 0 0

F9 Best 0 2 × 10−13 3 × 10−15 2 × 10−31 2 × 10−27 6 × 10−19 3 × 10−16; F23 0 2 × 10−10 2 × 10−7 1 × 10−12 9 × 10−8 3 × 10−14 4 × 10−11

- Avg 0 3 × 10−10 7 × 10−11 1 × 10−18 7 × 10−7 6 × 10−16; 2 × 10−11 - 1 × 10−31 2 × 10−8 4 × 10−6; 2 × 10−9 2 × 10−4 2 × 10−12 4 × 10−8

- Worst 0 8 × 10−10 1 × 10−9 2 × 10−17 2 × 10−5 3 × 10−15 4 × 10−10 - 8 × 10−31 1 × 10−7 2 × 10−5 2 × 10−8 2 × 10−3 1 × 10−11 4 × 10−7

- SD 0 2 × 10−10 3 × 10−10 4 × 10−18 4 × 10−6; 8 × 10−16; 8 × 10−11 - 3 × 10−31 2 × 10−8 5 × 10−6; 4. × 10−9 4 × 10−4 3 × 10−12 1 × 10−7

F10 Best 0 1 × 10−10 5 × 10−8 5 × 10−15 2 × 10−7 1 × 10−14 3 × 10−11 F24 0 5 × 10−12 1 × 10−8 1 × 10−13 3 × 10−8 1 × 10−16; 1 × 10−10

- Avg 4 × 10−30 5.00 3 × 10−6; 9 × 10−12 3 × 10−4 2 × 10−12 3 × 10−8 - 5 × 10−31 8 × 10−2 7 × 10−6; 2 × 10−10 2 × 10−5 1 × 10−13 6 × 10−2

- Worst 1 × 10−28 7 × 10 8 × 10−6; 5 × 10−11 2 × 10−3 7 × 10−12 4 × 10−7 - 3 × 10−30 2.00 5 × 10−5 1 × 10−9 2 × 10−4 5 × 10−13 9 × 10−1

- SD 2 × 10−29 2 × 10 2 × 10−6; 1 × 10−11 6 × 10−4 2 × 10−12 7 × 10−8 - 1 × 10−30 5 × 10−1 1 × 10−5 4 × 10−10 5 × 10−5 1 × 10−13 2 × 10−1

F11 Best 3 × 10−32 2 × 10−10 4 × 10−7 2 × 10−13 5 × 10−22 5 × 10−17 2 × 10−10 F25 0 1 × 10−9 4 × 10−7 3 × 10−11 6 × 10−21 1 × 10−13 3 × 10−10

- Avg 1 × 10−31 4 × 10−9 9 × 10−6; 3 × 10−11 5 × 10−5 3 × 10−14 3 × 10−8 - 7 × 10−3 4 × 10−2 2 × 10−5 8 × 10−9 7 × 10−3 7 × 10−3 1 × 10−2

- Worst 2 × 10−31 2 × 10−8 3 × 10−5 5 × 10−10 3 × 10−4 2 × 10−13 1 × 10−7 - 1 × 10−1 1 × 10−1 1 × 10−4 4 × 10−8 1 × 10−1 1 × 10−1 1 × 10−1

- SD 1 × 10−31 3 × 10−9 1 × 10−5 9 × 10−11 9 × 10−5 4 × 10−14 3 × 10−8 - 3 × 10−2 5 × 10−2 3 × 10−5 1 × 10−8 3 × 10−2 3 × 10−2 3 × 10−2
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Table 2. Cont.

F ICSA BA FPA CSA MPA SSA SMA ICSA BA FPA CSA MPA SSA SMA

F12 Best 8 × 10−6; 6 × 10−6; 2 × 10−2 1 × 10−5 4 × 10−5 3 × 10−5 1 × 10−12 F26 0 2 × 10−11 4 × 10−7 2 × 10−11 4 × 10−8 4 × 10−15 4 × 10−11

- Avg 2 × 10−3 7 × 10−4 1 × 10−1 5 × 10−5 2 × 10−2 7 × 10−5 4 × 10−9 - 4 × 10−31 2 × 10−9 1 × 10−5 1 × 10−8 2 × 10−3 2 × 10−3 7 × 10−4

- Worst 3 × 10−2 1 × 10−2 2 × 10−1 9 × 10−5 3 × 10−1 2 × 10−4 3 × 10−8 - 3 × 10−30 8 × 10−9 1 × 10−4 8 × 10−8 7 × 10−3 7 × 10−3 7 × 10−3

- SD 6 × 10−3 2 × 10−3 5 × 10−2 3 × 10−5 6 × 10−2 3 × 10−5 7 × 10−9 - 9 × 10−31 2 × 10−9 2 × 10−5 2 × 10−8 3 × 10−3 3 × 10−3 2 × 10−3

F13 Best 3× 10−14 5 × 10−8 4 × 10−6; 2 × 10−9 8 × 10−6; 2 × 10−8 3 × 10−7 F27 0 3 × 10−11 2 × 10−8 5 × 10−18 1 × 10−10 5 × 10−16; 2 × 10−12

- Avg 9× 10−13 1 × 10−1 2 × 10−5 2 × 10−8 1 × 10−3 5 × 10−5 8 × 10−5 - 2 × 10−31 1 × 10−1 1 × 10−6; 2 × 10−11 8 × 10−6; 2 × 10−14 3 × 10−8

- Worst 4× 10−12 3.00 6 × 10−5 1 × 10−7 9 × 10−3 3 × 10−4 4 × 10−4 - 2 × 10−30 1.00 9 × 10−6; 4 × 10−10 9 × 10−5 1 × 10−13 1 × 10−7

- SD 1 × 10−12 6 × 10−1 1 × 10−5 2 × 10−8 2 × 10−3 8 × 10−5 1 × 10−4 - 5 × 10−31 4 × 10−1 2 × 10−6; 8 × 10−11 2 × 10−5 3 × 10−14 4 × 10−8

F14 Best 2 × 10−32 5 × 10−9 3 × 10−6; 5 × 10−14 1 × 10−8 3 × 10−14 2 × 10−9 F28 0 2 × 10−9 3 × 10−8 3 × 10−15 4 × 10−8 1 × 10−16; 3 × 10−11

- Avg 2 × 10−32 3 × 10−8 2 × 10−5 2 × 10−10 2 × 10−4 1 × 10−4 8 × 10−7 - 2 × 10−2 3 × 10−2 4 × 10−6; 2 × 10−10 1 × 10−5 7 × 10−3 1 × 10−2

- Worst 5 × 10−32 8 × 10−8 5 × 10−5 4 × 10−9 2 × 10−3 3 × 10−3 1 × 10−5 - 5 × 10−2 5 × 10−2 4 × 10−5 4 × 10−9 1 × 10−4 5 × 10−2 5 × 10−2

- SD 8 × 10−33 2 × 10−8 1 × 10−5 7 × 10−10 4 × 10−4 5 × 10−4 3 × 10−6; - 3 × 10−2 3 × 10−2 7 × 10−6; 8 × 10−10 2 × 10−5 2 × 10−2 2 × 10−2

Bold values indicate the best outcomes.



Mathematics 2021, 9, 1140 13 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 28 
 

 

- Worst  3 × 10⁻² 1 × 10⁻² 2 × 10⁻¹ 9 × 10⁻⁵ 3 × 10⁻¹ 2 × 10⁻⁴ 3 × 10⁻⁸ - 3 × 10⁻³⁰ 8 × 10⁻⁹ 1 × 10⁻⁴ 8 × 10⁻⁸ 7 × 10⁻³ 7 × 10⁻³ 7 × 10⁻³ 

- SD 6 × 10⁻³ 2 × 10⁻³ 5 × 10⁻² 3 × 10⁻⁵ 6 × 10⁻² 3 × 10⁻⁵ 7 × 10⁻⁹ - 9 × 10⁻³¹ 2 × 10⁻⁹ 2 × 10⁻⁵ 2 × 10⁻⁸ 3 × 10⁻³ 3 × 10⁻³ 2 × 10⁻³ 

F13 Best 3 × 10⁻¹⁴ 5 × 10⁻⁸ 4 × 10⁻⁶ 2 × 10⁻⁹ 8 × 10⁻⁶ 2 × 10⁻⁸ 3 × 10⁻⁷ F27 0 3 × 10⁻¹¹ 2 × 10⁻⁸ 5 × 10⁻¹⁸ 1 × 10⁻¹⁰ 5 × 10⁻¹⁶ 2 × 10⁻¹² 

- Avg 9 × 10⁻¹³ 1 × 10⁻¹ 2 × 10⁻⁵ 2 × 10⁻⁸ 1 × 10⁻³ 5 × 10⁻⁵ 8 × 10⁻⁵ - 2 × 10⁻³¹ 1 × 10⁻¹ 1 × 10⁻⁶ 2 × 10⁻¹¹ 8 × 10⁻⁶ 2 × 10⁻¹⁴ 3 × 10⁻⁸ 

- Worst  4 × 10⁻¹² 3.00 6 × 10⁻⁵ 1 × 10⁻⁷ 9 × 10⁻³ 3 × 10⁻⁴ 4 × 10⁻⁴ - 2 × 10⁻³⁰ 1.00 9 × 10⁻⁶ 4 × 10⁻¹⁰ 9 × 10⁻⁵ 1 × 10⁻¹³ 1 × 10⁻⁷ 

- SD 1 × 10⁻¹² 6 × 10⁻¹ 1 × 10⁻⁵ 2 × 10⁻⁸ 2 × 10⁻³ 8 × 10⁻⁵ 1 × 10⁻⁴ - 5 × 10⁻³¹ 4 × 10⁻¹ 2 × 10⁻⁶ 8 × 10⁻¹¹ 2 × 10⁻⁵ 3 × 10⁻¹⁴ 4 × 10⁻⁸ 

F14 Best 2 × 10⁻³² 5 × 10⁻⁹ 3 × 10⁻⁶ 5 × 10⁻¹⁴ 1 × 10⁻⁸ 3 × 10⁻¹⁴ 2 × 10⁻⁹ F28 0 2 × 10⁻⁹ 3 × 10⁻⁸ 3 × 10⁻¹⁵ 4 × 10⁻⁸ 1 × 10⁻¹⁶ 3 × 10⁻¹¹ 

- Avg 2 × 10⁻³² 3 × 10⁻⁸ 2 × 10⁻⁵ 2 × 10⁻¹⁰ 2 × 10⁻⁴ 1 × 10⁻⁴ 8 × 10⁻⁷ - 2 × 10⁻² 3 × 10⁻² 4 × 10⁻⁶ 2 × 10⁻¹⁰ 1 × 10⁻⁵ 7 × 10⁻³ 1 × 10⁻² 

- Worst  5 × 10⁻³² 8 × 10⁻⁸ 5 × 10⁻⁵ 4 × 10⁻⁹ 2 × 10⁻³ 3 × 10⁻³ 1 × 10⁻⁵ - 5 × 10⁻² 5 × 10⁻² 4 × 10⁻⁵ 4 × 10⁻⁹ 1 × 10⁻⁴ 5 × 10⁻² 5 × 10⁻² 

- SD 8 × 10⁻³³ 2 × 10⁻⁸ 1 × 10⁻⁵ 7 × 10⁻¹⁰ 4 × 10⁻⁴ 5 × 10⁻⁴ 3 × 10⁻⁶ - 3 × 10⁻² 3 × 10⁻² 7 × 10⁻⁶ 8 × 10⁻¹⁰ 2 × 10⁻⁵ 2 × 10⁻² 2 × 10⁻² 

Bold values indicate the best outcomes. 

 

Figure 2. Convergence curve for F1. 

 

Figure 3. Convergence curve for F2. 

  

Figure 3. Convergence curve for F2.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 28 
 

 

 

Figure 4. Convergence curve for F3. 

 

Figure 5. Convergence curve for F4. 

 

Figure 6. Convergence curve for F5. 

Figure 4. Convergence curve for F3.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 28 
 

 

 

Figure 4. Convergence curve for F3. 

 

Figure 5. Convergence curve for F4. 

 

Figure 6. Convergence curve for F5. 

Figure 5. Convergence curve for F4.



Mathematics 2021, 9, 1140 14 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 28 
 

 

 

Figure 4. Convergence curve for F3. 

 

Figure 5. Convergence curve for F4. 

 

Figure 6. Convergence curve for F5. Figure 6. Convergence curve for F5.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 28 
 

 

 

Figure 7. Convergence curve for F7. 

 

Figure 8. Convergence curve for F8. 

 

Figure 9. Convergence curve for F9. 

Figure 7. Convergence curve for F7.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 28 
 

 

 

Figure 7. Convergence curve for F7. 

 

Figure 8. Convergence curve for F8. 

 

Figure 9. Convergence curve for F9. 

Figure 8. Convergence curve for F8.



Mathematics 2021, 9, 1140 15 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 28 
 

 

 

Figure 7. Convergence curve for F7. 

 

Figure 8. Convergence curve for F8. 

 

Figure 9. Convergence curve for F9. Figure 9. Convergence curve for F9.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 10. Convergence curve for F10. 

 

Figure 11. Convergence curve for F11. 

 

Figure 12. Convergence curve for F12. 

Figure 10. Convergence curve for F10.

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 10. Convergence curve for F10. 

 

Figure 11. Convergence curve for F11. 

 

Figure 12. Convergence curve for F12. 

Figure 11. Convergence curve for F11.



Mathematics 2021, 9, 1140 16 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 28 
 

 

 

Figure 10. Convergence curve for F10. 

 

Figure 11. Convergence curve for F11. 

 

Figure 12. Convergence curve for F12. Figure 12. Convergence curve for F12.

Mathematics 2021, 9, x FOR PEER REVIEW 17 of 28 
 

 

 

Figure 13. Convergence curve for F13. 

 

Figure 14. Convergence curve for F14. 

 

Figure 15. Convergence curve for F15. 

Figure 13. Convergence curve for F13.

Mathematics 2021, 9, x FOR PEER REVIEW 17 of 28 
 

 

 

Figure 13. Convergence curve for F13. 

 

Figure 14. Convergence curve for F14. 

 

Figure 15. Convergence curve for F15. 

Figure 14. Convergence curve for F14.



Mathematics 2021, 9, 1140 17 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 17 of 28 
 

 

 

Figure 13. Convergence curve for F13. 

 

Figure 14. Convergence curve for F14. 

 

Figure 15. Convergence curve for F15. Figure 15. Convergence curve for F15.

Mathematics 2021, 9, x FOR PEER REVIEW 18 of 28 
 

 

 

Figure 16. Convergence curve for F16. 

 

Figure 17. Convergence curve for F17. 

 

Figure 18. Convergence curve for F18. 

Figure 16. Convergence curve for F16.

Mathematics 2021, 9, x FOR PEER REVIEW 18 of 28 
 

 

 

Figure 16. Convergence curve for F16. 

 

Figure 17. Convergence curve for F17. 

 

Figure 18. Convergence curve for F18. 

Figure 17. Convergence curve for F17.



Mathematics 2021, 9, 1140 18 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 18 of 28 
 

 

 

Figure 16. Convergence curve for F16. 

 

Figure 17. Convergence curve for F17. 

 

Figure 18. Convergence curve for F18. Figure 18. Convergence curve for F18.

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 19. Convergence curve for F19. 

 

Figure 20. Convergence curve for F20. 

 

Figure 21. Convergence curve for F21. 

Figure 19. Convergence curve for F19.

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 19. Convergence curve for F19. 

 

Figure 20. Convergence curve for F20. 

 

Figure 21. Convergence curve for F21. 

Figure 20. Convergence curve for F20.



Mathematics 2021, 9, 1140 19 of 27

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 19. Convergence curve for F19. 

 

Figure 20. Convergence curve for F20. 

 

Figure 21. Convergence curve for F21. Figure 21. Convergence curve for F21.

Mathematics 2021, 9, x FOR PEER REVIEW 20 of 28 
 

 

 

Figure 22. Convergence curve for F28. 

The Wilcoxon rank-sum test [55] was used to show the significance of the outcomes 

obtained by the proposed algorithm with each compared algorithm. Therefore, each algo-

rithm was executed 30 independent times, and the outcomes were compared using a con-

fidence level of 5% as significant. After that, the outcomes under this test are presented in 

Table 3. Inspecting this table shows that the proposed algorithm reached a P-value less 

than 0.05 for 22 test cases. This shows that the alternative hypothesis, which states there 

is a difference between the outcomes of ICSA and each compared algorithm, could be 

supported. 

Table 3. Comparison under the Wilcoxon rank-sum test. 

F 
BA FPA CSA MPA SSA SMA  BA FPA CSA MPA SSA SMA 

P-value h P-value h P-value h P-value h P-value h P-value h F P-value h P-value h P-value h P-value h P-value h P-value h 

F1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 4 × 10⁻² 1 F15 3 × 10⁻¹ 0 5 × 10⁻¹ 0 1 × 10⁻⁵ 1 1 × 10⁻⁵ 1 1 × 10⁻⁶ 1 4 × 10⁻⁵ 1 

F2 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 F16 9 × 10⁻¹⁰ 1 3 × 10⁻⁹ 1 3 × 10⁻⁹ 1 3 × 10⁻⁹ 1 3 × 10⁻⁹ 1 3 × 10⁻⁹ 1 

F3 3 × 10⁻¹¹ 1 3 × 10⁻¹¹ 1 1 × 10⁻¹ 0 3 × 10⁻¹¹ 1 3 × 10⁻¹¹ 1 3 × 10⁻¹¹ 1 F17 9 × 10⁻¹² 1 9 × 10⁻¹² 1 9 × 10⁻¹² 1 9 × 10⁻¹² 1 9 × 10⁻¹² 1 9 × 10⁻¹² 1 

F4 1 × 10⁻⁶ 1 6 × 10⁻² 0 4 × 10⁻¹ 0 1 × 10⁻² 1 1 × 10⁻² 1 3 × 10⁻¹¹ 1 F18 7 × 10⁻⁸ 1 2 × 10⁻⁶ 1 2 × 10⁻² 1 5 × 10⁻⁹ 1 4 × 10⁻⁹ 1 4 × 10⁻¹¹ 1 

F5 4 × 10⁻¹² 1 4 × 10⁻¹² 1 4 × 10⁻¹² 1 4 × 10⁻¹² 1 4 × 10⁻¹² 1 4 × 10⁻¹² 1 F19 1 × 10⁻¹¹ 1 1 × 10⁻¹¹ 1 1 × 10⁻¹¹ 1 1 × 10⁻¹¹ 1 1 × 10⁻¹¹ 1 1 × 10⁻¹¹ 1 

F6 3 × 10⁻⁷ 1 2 × 10⁻¹ 0 3 × 10⁻¹ 0 NaN 0 NaN 0 NaN 0 F20 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 1 × 10⁻¹² 1 

F7 6 × 10⁻¹⁰ 1 3 × 10⁻¹¹ 1 4 × 10⁻¹⁰ 1 4 × 10⁻¹⁰ 1 2 × 10⁻³ 1 2 × 10⁻¹⁰ 1 F21 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 

F8 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 2 × 10⁻¹¹ 1 F22 1 × 10⁻⁴ 1 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0 
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The Wilcoxon rank-sum test [55] was used to show the significance of the outcomes
obtained by the proposed algorithm with each compared algorithm. Therefore, each
algorithm was executed 30 independent times, and the outcomes were compared using a
confidence level of 5% as significant. After that, the outcomes under this test are presented
in Table 3. Inspecting this table shows that the proposed algorithm reached a P-value
less than 0.05 for 22 test cases. This shows that the alternative hypothesis, which states
there is a difference between the outcomes of ICSA and each compared algorithm, could
be supported.

Additionally, the outcomes of the algorithms on test cases F29–F34 are shown in
Table 4, which show the superiority of ICSA for F29, F30, F31, and F32 in terms of the best,
avg, worst, and SD values. Only the best objective value could be better for the other two
test cases. The convergence curves obtained by various algorithms for the same test cases
are respectively presented in Figures 23 and 24, which show that our proposed algorithm
moved toward the optimal solution faster; hence, the number of function evaluations
required for reaching the optimal solution will be significantly decreased compared to the
other algorithms used in our comparison.
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Table 3. Comparison under the Wilcoxon rank-sum test.

F

BA FPA CSA MPA SSA SMA BA FPA CSA MPA SSA SMA

P-value h P-value h P-value h P-value h P-value h P-value h F P-value h P-value h P-value h P-value h P-value h P-value h

F1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 4 × 10−2 1 F15 3 × 10−1 0 5 × 10−1 0 1 × 10−5 1 1 × 10−5 1 1 × 10−6; 1 4 × 10−5 1
F2 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 F16 9 × 10−10 1 3 × 10−9 1 3 × 10−9 1 3 × 10−9 1 3 × 10−9 1 3 × 10−9 1
F3 3 × 10−11 1 3 × 10−11 1 1 × 10−1 0 3 × 10−11 1 3 × 10−11 1 3 × 10−11 1 F17 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1
F4 1 × 10−6; 1 6 × 10−2 0 4 × 10−1 0 1 × 10−2 1 1 × 10−2 1 3 × 10−11 1 F18 7 × 10−8 1 2 × 10−6; 1 2 × 10−2 1 5 × 10−9 1 4 × 10−9 1 4 × 10−11 1
F5 4 × 10−12 1 4 × 10−12 1 4 × 10−12 1 4 × 10−12 1 4 × 10−12 1 4 × 10−12 1 F19 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1
F6 3 × 10−7 1 2 × 10−1 0 3 × 10−1 0 NaN 0 NaN 0 NaN 0 F20 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1
F7 6 × 10−10 1 3 × 10−11 1 4 × 10−10 1 4 × 10−10 1 2 × 10−3 1 2 × 10−10 1 F21 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1
F8 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 F22 1 × 10−4 1 NaN 0 NaN 0 NaN 0 NaN 0 NaN 0
F9 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 1 × 10−12 1 F23 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1 2 × 10−11 1
F10 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 F24 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1
F11 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 F25 8 × 10−10 1 6 × 10−9 1 6 × 10−9 1 4 × 10−9 1 4 × 10−9 1 3 × 10−9 1
F12 6 × 10−3 1 4 × 10−11 1 8 × 10−6; 1 9 × 10−2 0 2 × 10−4 1 3 × 10−11 1 F26 8 × 10−12 1 8 × 10−12 1 8 × 10−12 1 8 × 10−12 1 8 × 10−12 1 8 × 10−12 1
F13 1 × 10−8 1 7 × 10−8 1 1 × 10−7 1 2 × 10−8 1 8 × 10−8 1 5 × 10−8 1 F27 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1 1 × 10−11 1
F14 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 9 × 10−12 1 F28 4 × 10−6; 1 4 × 10−1 0 4 × 10−1 0 4 × 10−1 0 9 × 10−2 0 1 × 10−2 1

Table 4. Comparison among algorithms based on the objective values for test cases F29–F34.

F ICSA BA FPA CSA MPA SSA SMA F ICSA BA FPA CSA MPA SSA SMA

F29 Best 0 2 × 10−7 1 × 10−8 3 × 10−17 5 × 10−2 2 × 10−2 2 × 10−6; F32 Best 0 3 × 10−12 2 × 10−11 1 × 10−22 4 × 10−9 8 × 10−17

- Avg 2 × 10−27 2 × 10−5 4 × 10−7 1 × 10−14 2.00 5 × 10−1 2 × 10−4 - Avg 5 × 10−34 4 × 10−4 3 × 10−9 1 × 10−16; 2 × 10−6; 5 × 10−14

- Worst 5 × 10−26; 5 × 10−5 3 × 10−6; 1 × 10−13 6.00 3.00 2 × 10−3 - Worst 3 × 10−33 1 × 10−2 1 × 10−8 7 × 10−16; 1 × 10−5 2 × 10−13

- SD 1 × 10−26; 1 × 10−5 7 × 10−7 2 × 10−14 1.00 5 × 10−1 5 × 10−4 - SD 6 × 10−34 2 × 10−3 4 × 10−9 2 × 10−16; 3 × 10−6; 8 × 10−14

F30 Best 0 2 × 10−11 2 × 10−9 7 × 10−19 4 × 10−11 1 × 10−16; 9 × 10−13 F33 Best 1 × 10−17 2 × 10+02 4 × 10 6.00 2 × 10+02 9 × 10+02

- Avg 1 × 10−31 5 × 10−9 4 × 10−7 2 × 10−16; 4 × 10−7 1 × 10−14 3 × 10−9 - Avg 1 × 10+04 9 × 10+05 3 × 10+03 2 × 10+03 4 × 10+04 3 × 10+04

- Worst 5 × 10−31 2 × 10−8 2 × 10−6; 2 × 10−15 4 × 10−6; 6 × 10−14 4 × 10−8 - Worst 2 × 10+04 2 × 10+07 1 × 10+04 1 × 10+04 9 × 10+04 8 × 10+04

- SD 1 × 10−31 5 × 10−9 6 × 10−7 4 × 10−16; 8 × 10−7 1 × 10−14 7 × 10−9 - SD 5 × 10+03 4 × 10+06; 3 × 10+03 3 × 10+03 3 × 10+04 2 × 10+04

F31 Best 2 × 10−30 5 × 10−8 1 × 10−3 3 × 10−7 8 × 10−8 2 × 10−13 3 × 10−11 F34 Best 8 × 10−16; 3 × 10−7 1 × 10−9 1 × 10−4 4 × 10−5 2 × 10−6

- Avg 9 × 10−22 2 × 10+03 3 × 10−2 3 × 10−6; 2 × 10−2 2 × 10−2 1 × 10−6; - Avg 8 × 10−3 4 × 10−2 2 × 10−7 5 × 10−4 2 × 10−2 1 × 10−2

- Worst 3 × 10−20 7 × 10+04 1 × 10−1 8 × 10−6; 2 × 10−1 3 × 10−1 1 × 10−5 - Worst 8 × 10−2 4 × 10−1 4 × 10−6; 1 × 10−3 8 × 10−2 8 × 10−2

- SD 5 × 10−21 1 × 10+04 2 × 10−2 2 × 10−6 4 × 10−2 6 × 10−2 3 × 10−6 - SD 3 × 10−2 8 × 10−2 6 × 10−7 3 × 10−4 3 × 10−2 3 × 10−2
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Figure 23. Convergence curve of the algorihms for various test cases: (a) Convergence curve for F29; (b) Convergence 

curve for F30; (c) Convergence curve for F31.  

Figure 23. Convergence curve of the algorihms for various test cases: (a) Convergence curve for F29; (b) Convergence curve
for F30; (c) Convergence curve for F31.

Last but not least, various algorithms in our experiments will be compared in terms of
CPU time consumed by each one until completing the optimization process for each test
case. For that, each algorithm was executed for 30 independent runs, and the consumed
time within those runs on all test cases was calculated. Afterward, the rate of consumption
on each test case was calculated by taking the average of the total consumed time and
presented in Figure 25. This figure shows the superiority of SSA, which could occupy the
first rank in terms of CPU time, while BA, FPA, MPA, CSA, and ICSA, respectively, came
in second, third, fourth, fifth, and sixth. Although ICSA occupied the sixth rank in terms of
the consumed time, its final accuracy and convergence speed make it a strong alternative
for tackling the NESs, as it could reach better outcomes with a fewer number of function
evaluations; hence, the consumed time will be minimized.
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Figure 25. Comparison among algorithms in terms of CPU time.

Ultimately, ICSA and the standard algorithm were separately compared with each
other using a boxplot to analyze the efficacy of our improvement strategy. In general, the
proposed algorithm and the standard one were independently executed 30 times, and the
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objective values obtained for 15 test cases are graphically pictured in Figures 26–30. These
figures show that ICSA was better for all used test cases except F4 and F12 depicted in
Figures 27a and 29c, where CSA could fulfill better outcomes. As a result, our improvement
strategy could make a significant, positive effect on the performance of the standard
algorithm for achieving better outcomes in fewer iterations and enhance the capability
of finding small variances of legitimate and suspicious observations in the CPS domain,
enhancing the performance of the machine learning-based intrusion detection techniques.
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From the above, it is concluded that our modification to the standard CSA signifi-
cantly improved its performance during solving the nonlinear equations system. This
improvement was due to the searchability of the integrated method to avoid falling into
local optima and accelerating the convergence speed in the right direction of the optimal
solution. However, ICSA could not outperform some optimization algorithms, with the
computational cost and stability as the limitations of our proposed algorithm, which will
be addressed in future work by integrating the CIS with one of the several continuous
evolutionary and swarm intelligence algorithms such as natural evolution strategies [38],
the particle swarm optimization in the estimation of distribution algorithms (EDAs) frame-
work [39], the EDAs [40], and the covariance matrix adaptation evolution strategy [41],
which have not been yet applied to tackle the NESs.

6. Conclusions and Future Work

This paper has presented a new algorithm with strong merits to promote the search-
ability for solving the systems of nonlinear equations with a low number of function
evaluations and fast convergence to the near-optimal solution. This is one of the challenges
in the cyber physical domain, especially finding small variations between normal and
abnormal behaviors of nonlinear attributes. This algorithm is based on integrating the
cuckoo search algorithm with a novel strategy to produce a new variant, named the im-
proved cuckoo search algorithm (ICSA), with high convergence speed and final accuracy in
a small number of function evaluations. To assess the performance of ICSA, 34 well-known
nonlinear equations systems were compared to see ICSA’s effectiveness in attacking the op-
timal solution for several function evaluations reaching 15,000 (multiplying the population
size by the maximum number of iterations). ICSA also was extensively compared with
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the standard cuckoo search algorithm and five well-established algorithms—slime mould
optimizer, marine predators algorithm, salp swarm algorithm, bat algorithm, and flower
pollination algorithm—to affirm the superiority of ICSA. Experimental findings affirmed
that ICSA could perform better for 32 test cases out of 34 in terms of the best objective
value, while for the Avg, worst, and SD values it performed better for 25 test cases. This is
considered as one of our main limitations to be processed in the future work, to preserve
the stability of the algorithm within all runs for fulfilling the same outcomes. Additionally,
the convergence curve and Wilcoxon rank-sum test were used to confirm the convergence
speed and significance of our proposed algorithm, which affirmed that ICSA was better
than several compared algorithms. In the future, we will integrate the proposed algo-
rithm for developing a dynamic and wrapper feature selection algorithm that will assist in
finding clear boundaries of legitimate and anomalous nonlinear attributes, improving the
performance of identifying anomalous events while applying classification algorithms.
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