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Abstract: The natural discrete Lindley (NDL) distribution is an intuitive idea that uses discrete
analogs to well-known continuous distributions rather than using any of the published discretization
techniques. The NDL is a flexible extension of both the geometric and the negative binomial
distributions. In the present article, we further investigate new results of value in the areas of both
theoretical and applied reliability. To be specific, several closure properties of the NDL are proved.
Among the results, sufficient conditions that maintain the preservation properties under useful partial
orderings, convolution, and random sum of random variables are introduced. Eight different methods
of estimation, including the maximum likelihood, least squares, weighted least squares, Cramér–
von Mises, the maximum product of spacing, Anderson–Darling, right-tail Anderson–Darling, and
percentiles, have been used to estimate the parameter of interest. The performance of these estimators
has been evaluated through extensive simulation. We have also demonstrated two applications of
NDL in modeling real-life problems, including count data. It is worth noting that almost all the
methods have resulted in very satisfactory estimates on both simulated and real-world data.

Keywords: discrete Lindley analog; percentiles; estimation; closure reliability properties; partial
orders; total positivity; hazard rates

1. Introduction

Interests in discrete failure data came relatively late in comparison to its continuous
analog. The subject matter has, to some extent, been neglected. It was only briefly men-
tioned by [1]. For earlier works on discrete lifetime distributions, see [2–5]. In the last few
decades, many papers have appeared in the statistical literature on the discretization of con-
tinuous distributions. The most recent discrete distributions include the discrete analogs of
the continuous Burr and Pareto distributions [6], discrete analog of the continuous inverse
Weibull distribution [7], and discrete analog of the generalized exponential distribution [8].
These three distributions have at least two parameters each and have not yet received any
applications. Further, the moments of the three distributions are expressed in terms of
either non-standard special functions or infinite sums.

In spite of all the available discrete models, there is still a great need to create more
flexible discrete distributions to model several types of real data in many applied areas,
such as social sciences, economics, biometrics, and reliability studies, to model different
types of count data.

Recently, Al-Babtain et al. [9] introduced the natural discrete Lindley (NDL) distri-
bution, using a mixture of geometric and negative binomial distributions. However, the
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authors saw that there was still a lot of room for introducing new results relating the NDL
to both theoretical and applied reliability, which has motivated the authors to further study
the NDL distribution.

The NDL distribution [9], specified by the probability mass function (PMF), is

p(x) =
θ2

1 + θ
(2 + x)(1− θ)x, x = 0, 1, 2, . . . and θ ∈ (0, 1),

where survival function (SF) and hazard rate (HR) function are, respectively, given by

S(x) = P(X ≥ x) =
1 + θ + θx

1 + θ
(1− θ)x, x = 0, 1, 2, . . . and θ ∈ (0, 1)

and

r(x) =
p(x)

P(X ≥ x)
=

θ2(2 + x)
1 + θ + θx

, x = 0, 1, 2, . . . and θ ∈ (0, 1).

Further details about the NDL distribution can be explored in [9]. For example,
Figures 1 and 2 display possible shapes for the PMF and HR function of the NDL distribu-
tion for some values of θ, to show that the NDL distribution is always uni-modal for all
values of θ ∈ (0, 1), whereas its HR function is always increasing in θ.
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In the current article, several additional theoretical reliability properties, as well as
useful partial orderings, are introduced. Besides, different methods for estimating the
involved parameter are explored, and their results compared.
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Among the basic results, it has been shown that the hazard rate ordering of members
of the NDL family is preserved under a common contamination. This is quite useful in the
case where the systems are operating under random common environments. Important
results are derived covering the preservation of the sums of random variables under the
hazard rate, likelihood ratio, and the reversed hazard rate. Such results are quite useful in
the reliability practicing. More importantly, it is shown that the life lengths of two series
systems composed of ordered components of the NDL family preserve the hazard rate
order. A basic result gives sufficient conditions for the preservation of the D-MRL property
under the assumption of log-concavity of an added contamination. Other, similar results
consider the D-MRL case. Finally, an interesting application to renewal processes, which is
very helpful in “replacement studies”, is also presented.

In particular, we give sufficient conditions that maintain the preservation proper-
ties under useful partial orderings, convolution, and random sum of random variables.
Preservation under common random effects of the surrounding environment is also es-
tablished. Moreover, interesting applications to weighted distributions and length-biased
models have been carefully investigated. Finally, different methods have been used to
estimate the parameter of the NDL, and the efficiencies of these estimation methods have
been compared.

The rest of the paper is organized as follows. For completeness, several reliability
closure properties and useful partial ordering comparisons are established in Section 2.
In Section 3, a discrete renewal process application is presented. Section 4 is devoted to
inferences about the involved parameter. In Section 5, we conduct a detailed simulation
study to explore the behavior of the proposed estimators. In Section 6, the validity of
estimation methods is checked empirically using two real biological datasets. Finally,
conclusions and future work are given in Section 7.

2. Closure Properties of the NDL Distribution
2.1. Preliminaries

This section is devoted to presenting definitions, notation, and basic facts used throughout
the paper. We use increasing (decreasing) in place of nondecreasing (nonincreasing).

The following two lemmas pave the road for introducing our new results.

Lemma 1. Let X1 ∼ NDL(θ1) and Y1 ∼ NDL(θ2). Then, X ≤HR Y for all θ1 > θ2.

Lemma 1 shows that the NDL family is ordered by different values of the parameter
according to the HR order. For a proof, see Corollary 2 in [9].

The next lemma shows that the NDL has the increasing failure rate (IFR) property.

Definition 1. A discrete random variable (rv) X with PMF p(x) is said to have an IFR if p(x) is
log-concave, that is, if p(x + 2) p(x) ≤ p(x + 1)2, f or x = 0, 1, 2, . . . [10].

Lemma 2. Let X ∼ NDL(θ) , then X has IFR property.

Proof. See Theorem 1 in [9]. �

Let Xi be NDL(θi), i = 1, 2. Let Z be a contaminated independent of Xi’s. The
following theorem shows that the HR ordering is preserved under an added contamination.

Definition 2. The discrete rv X is said to be smaller than Y in weak likelihood ratio (WLR) ordering
(say X ≤WLR Y) if pX(x+1)

pY(x+1) ≤
pX(0)
pY(0)

∀ x ≥ 0 [11].

Definition 3. The mean residual lifetime (MRL) of the NDL distribution is given by

m(x) = E(X− x|X ≥ x) =
1− θ

θ2 r(x) +
(1− θ)(2− θ)

θ(1 + θ + θx)
,



Mathematics 2021, 9, 1139 4 of 17

where r(x) is the HR function of the NDL distribution.

Definition 4. The rv X is said to have a smaller discrete mean residual lifetime (D-MRL) than that
of Y , written X ≤D−MRL Y , if

∑∞
i=x F(i)
F(x)

≤ ∑∞
i=x G(i)
G(x)

for all x ∈ No.

Definition 5. The rv X is said to have a smaller discrete hazard rate (D-HR) than that of Y ,
written X ≤D−HR Y , if

F(x)
G(x)

is decreasing in xforall x ∈ No.

Definition 6. A probability vector α = (α1, . . . , αn) is said to be smaller than that probability
vector β = (β1, . . . , βn) in the sense of the discrete likelihood ordering (D-LR), denoted by
α ≤D−LR β if

βi
αi
≤

βj

αj
for all 1 ≤ i ≤ j ≤ n.

Definition 7. Let X and Y be two random variables (rvs) with cumulative distribution functions
(CDFs) FX(.) and FY(.), respectively.

(i) Stochastic order (ST) (X ≤ST Y): if FX(x) ≥ FY(x) for all x.
(ii) HR order (X ≤HR Y): if rX(x) ≥ rY(x) for all x.
(iii) Reversed hazard (RH) rate order (X ≤RH Y): if r∗X(x) ≤ r∗Y(x) for all x.
(iv) MRL order (X ≤MRL Y): if mX(x) ≤ mY(x) for all x.
(v) Likelihood ratio (LR) order (X ≤LR Y): if pX(x)/pY(x)is non-decreasing in x.

The following chains of implication hold [12].

X ≤LR Y ⇒
X ≤HR Y
⇓

X ≤ST Y
⇒ X ≤MRL Y and X ≤LR Y ⇒ X ≤RH Y

For completeness, we summarize the main results established in [9].

Definition 8. Let X1, .., Xn be NDL rvs with corresponding CDFs F1, .., Fn.
Define

F(x) = α1F1(x) + . . . + αnFn(x)

and
G(x) = β1F1(x) + . . . + βnFn(x).

2.2. Closure under Hazard and Reversed Hazard Orders

Theorem 1. Let Xi ∼ NDL(θi), i = 1, 2. Let Z ∼ NDL(θ3). Then, X1 + Z ≤HR X2 + Z for
all θ1 > θ2.

Proof. Follows directly from Lemma 1.B.3. in [13] and Lemma 1. �

The following result shows that convolutions of members from the NDL family is
preserved under the reserved HR ordering.
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Theorem 2. Let (Xi, Yi) be independent NDL pairs of rvs with parameters (θi, θ∗i ), such that
θi > θ∗i , for i = 1, 2, . . . , m. Then

m

∑
i=1

Xi ≤RH

m

∑
i=1

Yi ∀ m = 1, 2, 3, . . .

Proof. Using Lemma 1, it follows that Xi ≤rh Yi ∀ i. The proof then follows from Lemma
1.B.4. in [13]. �

Let X be a non-negative rv with PMF p(x). For a non-negative function w such that
E[w(x)] exists, define Xw as a rv with so-called weighted PMF pw(x) given by

pw(x) =
w(x) p(x)
E[w(x)]

, x = 0, 1, 2, . . .

Below, we prove that weighted NDL distributions are (under mild conditions on the
weights) preserved in the reversed HRs.

Theorem 3. If w is increasing, then X ≤RH Y implies that Xw ≤RH Yw.

Proof. Observe that the HR function, rXw , of Xw is given by

rXw(x) =
w(x)rX(x)

E[w(x)|X >x]
, x = 0, 1, 2, . . . ,

where rX is the HR function of X. Similarly, the HR function of, rYw , of Yw is given by

rYw(x) =
w(x)rY(x)

E[w(y)|Y >x]
, x = 0, 1, 2, . . . ,

where rY is the HR function of Y.
Now, appealing to Lemma 1, it follows that

E[X|X > x ] ≤RH E[Y|Y > x ] ∀ x = 0, 1, 2, . . .

Next, using Theorem 1.B.2. in [13] and the monotonicity assumption of w, we get that

E[w(x)|X > x] ≤RH E[w(y)|Y > x].

Combining this inequality with rX ≥ rY, the result follows. �

Next, we compare the life of two series systems composed of NDL components in the
HR order.

Theorem 4. Let X1, . . . , Xm be independent identically distributed (iid) NDL(θ1) and Y1, . . . , Ym
be iid NDL(θ2). Define Xs = min(X1, . . . , Xm) and Ys = min(Y1, . . . , Ym). If θ1 > θ2, then
Xs ≤RH Ys.

Proof. If suffices to prove the theorem for m = 2. Suppose X1, X2, Y2 and Y2 have HRs
r1, r2, q2 and q2, respectively. If is not hard to see that Xs has the HR r1 + r2 while Ys has
the HR q1 + q2.

By assumption r1(x) + r2(x) ≥ q1(x) + q2(x) for all x ≥ 0, that is, Xs ≤RH Ys. �

Theorem 5 shows that sums of members of the NDL family could be compared in the
LR ordering.
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Theorem 5. Let (Xi, Yi), i = 1, 2, . . . , m be independent pairs rvs. Let Xi ∼NDL(θi) and
Yi ∼NDL(ηi) with θi ≥ ηi, for i = 1, 2, . . . , n. Then

m

∑
i=1

Xi ≤LR

m

∑
i=1

Yi ∀ m = 1, 2, 3, . . .

Proof. According to Lemma 2, Xi and Yi each have a log-concave PMF. Since the convo-
lution of rvs with log-concave PMFs has a log-concave PMF, it is enough to show that
if X1, X2 and Z are independent rvs such that X1 ≤LR X2 and Z has a log-concave PMF,
then X1 + Z ≤LR X2 + Z. Let fXi

, fXi+Z, i = 1, 2 and fZ denote the PMFs of the indicated
rvs. Then,

fXi+Z(x) =
x

∑
u=0

fZ(x− u)fXi
(u), i = 1, 2, x = 0, 1, 2, . . .

The assumption X1 ≤LR X2 means that fXi (x), as a function of x and i ∈ {1, 2}, is TP2.
Now, the log-concavity of fZ means that fZ(x− u), as a function of u and x, is TP2.
Therefore, by the basic assumption formula ([14], P. 17), we see that fXi+Z(x) is TP2 in

i ∈ {1, 2} and xi. That is X1 + Z ≤LR X2 + Z. �

The following theorem proves that the NDL family is preserved under the D-MRL
ordering, as well as finite mixtures of members of the family under a well-known discrete
ordering of the weights.

Theorem 6. Let X1, X2 and Y be non-negative discrete rvs, Y and is independent of both X1 and
X2 and also let Y has a PMF g. Then, for X1 ≤D - MRL X2 and g is log-concave implies that
X1 + Y ≤D - MRL X2 + Y.

Proof. We have to show that

∑∞
i=0 ∑∞

x=0 g(k− i)ax+i

∑∞
i=0 ∑∞

x=0 g(k− i)bx+i
≥ ∑∞

i=0 ∑∞
x=0 g(`− i)ax+i

∑∞
i=0 ∑∞

x=0 g(`− i)bx+i
for all 0 ≤ ` ≤ k; `, k ∈ No.

Or equivalently,∣∣∣∣∣∣∣∣
∞
∑

i=0

∞
∑

x=0
g(`− i)bx+i

∞
∑

i=0

∞
∑

x=0
g(`− i)ax+i

∞
∑

i=0

∞
∑

x=0
g(k− i)bx+i

∞
∑

i=0

∞
∑

x=0
g(k− i)ax+i

∣∣∣∣∣∣∣∣ ≥ 0. (1)

Next, using the well-known composition formula ([14], p. 17), the left side of (1) is
equal to

∑
u1<

∑
u2

∣∣∣∣ g(s− u1) g(s− u2)
g(t− u1) g(t− u2)

∣∣∣∣
∣∣∣∣∣∣∣∣

∞
∑

x=0
bx+u1

∞
∑

x=0
ax+u1

∞
∑

x=0
bx+u2

∞
∑

x=0
ax+u2

∣∣∣∣∣∣∣∣.
The conclusion then follows if we note that the first determinant is non-negative since

g is log-concave, and that the second determinant is non-negative since X1 ≤D−MRL X2. �

Corollary 1. If X1, X2 and Y follow NDL distributions with parameters θ1, θ2 and θ, respectively
where θ1 ≤ θ2, then X1 + Y ≤D−MRL X2 + Y.

Note that Y could be thought of as a joint contamination when measuring X1 and X2.
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Corollary 2. If X1, X2 and Y follow NDL distributions with parameters θ1, η1, θ2 and η2,
respectively, such that θ1 ≤ η1, θ2 ≤ η2, X1 is independent of X2 and Y1 is independent of Y2,
then the following statement holds:

X1 + X2 ≤D−MRL Y1 + Y2.

Proof. The following chain of inequalities establish the result

X1 + X2 ≤D−MRL X1 + Y2 ≤D−MRL Y1 + Y2. �

The following theorem compares the distribution F(x) for a rv X, and G(x) for a rv Y.

Theorem 7. X ≤D−MRL Y.

Proof. One can follow similar arguments to those used in Theorem 3.2 of [15]. �

3. Discrete Renewal Process Application

Let {NF(t), t = 0, 1, 2, . . .} and {NG(t), t = 0, 1, 2, . . .} denote renewal processes hav-
ing inter-arrival distributions F and G, respectively.

Theorem 8. If F and G are the CDFs of NDL (θ1) and NDL (θ2), respectively, with θ1 ≤ θ2, then

NF(t) ≥D−V NG(t).

Proof. The proof follows by mimicking the elegant proofs of Lemma 8.5.5 and Theorem 8.6.4
of [16], and the fact that

E

(
NF(t)+1

∑
i=1

Xi

)
= E(X1|X1〉t) ≥ E(Y1|Y1〉t)E

(
NG(t)+1

∑
i=1

Yi

)
,

where {Xi} and {Yi} are two sequences of iid rvs having F and G as their respective CDFs.
A version of arguments used to prove Corollary 3.16 and Theorem 3.17 in Chapter 6

of [17] can be used to show that the following are valid.
Assume 0 ≤ h(1) ≤ h(2) ≤ . . .. Then,

∞

∑
n=1

h(n)Fn(t) ≤
∞

∑
n=1

h(n)Gn(t). �

In the next section, we shall estimate the parameter of interest using eight different
methods of estimations. Then, the section is concluded by a simulation study to compare
the obtained results.

4. Estimation Methods

In this section, we estimate the parameter θ of the NDL distribution, using eight
methods of estimation. The methods used include the maximum likelihood estimator
(MLE), least squares estimator (LSE), weighted least squares estimator (WLSE), Cramér–
Von Mises estimator (CME), maximum product of spacing estimator (MPSE), Anderson–
Darling estimator (ADE), right-tail Anderson–Darling estimator (RTADE), and percentiles
estimator (PCE).
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4.1. Maximum Likelihood Estimator

Now, we estimate the parameter θ of the NDL distribution using the MLE. The log-
likelihood function of the NDL distribution has the form

`( θ|x) ∝ 2n log(θ)− n log(1 + θ) + nx log(1− θ).

The MLE of θ follows by solving d
dθ `( θ|x) = 0, that is

d
dθ

`( θ|x) = 2n
θ
− n

1 + θ
− nx

1− θ
= 0.

After some algebra, the MLE of θ, is given by the following compact formula:

θ̂ =
1
2

√
1 + 8/(1 + x)− 1

2
.

Al-Babtain et al. [9] showed that the MLE and moment estimator of the parameter θ of
the NDL distribution have the same estimator in closed form. They also derived a formula
to calculate the bias-correction (BI-C) as follows:

BI−C
(
θ̂
)
= − 1

n2

[
1
θ3 +

1

(1 + θ)3 +
(1− θ)(2 + θ)

θ(1 + θ)(1− θ)3

]
.

4.2. Least Squares and Weighted Least Squares Estimators

Consider the order statistics of a random sample from the NDL distribution denoted
by x1:m, x2:m, · · · , xm:m. The LSE of θ follows by minimizing

LS(θ) =
m

∑
i=1

[
1− 1 + θ + θxi:m

1 + θ
(1− θ)xi:m −

(
i

m + 1

)]2
,

with respect to θ. Further, the LSE of θ follows by solving the non-linear equation

m

∑
i=1

[
1− 1 + θ + θxi:m

1 + θ
(1− θ)xi:m −

(
i

m + 1

)]
φ(xi:m|θ) = 0,

where φ(xi:m|θ) = d
dθ F(xi:m|θ) = d

dθ −
1+θ+θxi:n

1+θ (1− θ)xi:n and it reduces to

φ(xi:m|θ) = (1−θ+x+θxi:m)
1+θ

1+θ+θxi:m
1+θ (1− θ)xi:m−1

− (1+xi:m)
1+θ (1− θ)xi:m .

(2)

The WLSE of θ can be derived by minimizing the following equation with respect to θ

W(θ) =
m

∑
i=1

(m + 1)2 (m + 2)
i(m− i + 1)

[
1− 1 + θ + θ xi:m

1 + θ
(1− θ)xi:m − i

m + 1

]2
.

Further, the WLSE of θ can also be calculated by solving the following non-linear equation

m

∑
i=1

(m + 1)2 (m + 2)
i(m− i + 1)

[
1− 1 + θ + θ xi:m

1 + θ
(1− θ)xi:m − i

m + 1

]
φ(xi:m|θ) = 0,

in which φ(xi:m|θ) is derived in (2).
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4.3. Cramér–Von Mises Estimator

The CVME can be derived as the difference between the estimates of the CDF and the
empirical CDF [18]. The CVME of θ can be obtained by minimizing the following equation
with respect to θ

CM(θ) =
1

12 m
+

m

∑
i=1

[
1− 1 + θ + θ xi:m

1 + θ
(1− θ)xi:m −

(
2i− 1
2 m

)]2
.

The CVME of θ can also calculated by solving the following equation

n

∑
i=1

[
1− 1 + θ + θxi:m

1 + θ
(1− θ)xi:m −

(
2i− 1
2 m

)]
φ(xi:m|θ) = 0.

4.4. Maximum Product of Spacing Estimator

The MPSE is a good alternative to the MLE [19,20]. Consider the uniform spacings for
a random sample from the NDL distribution

Di(θ) =
1+θ+θ xi−1:m

1+θ (1− θ)xi−1:m − 1+θ+θ xi:m
1+θ (1− θ)xi:m ,

for i = 1, 2, . . . , m + 1,

where F(x0:m|θ) = 0, F(xm+1:m|θ) = 1 and ∑m+1
i=1 Di(θ) = 1.

The MPSE of θ follows by maximizing either the geometric mean of spacings, MS(θ),
or the logarithm of the sample geometric mean of spacings, LMS(θ), given by

MS(θ) =

{
m+1

∏
i=1

[
1 + θ + θ xi−1:m

1 + θ
(1− θ)xi−1:m − 1 + θ + θ xi:m

1 + θ
(1− θ)xi:n

]} 1
m+1

and

LMS(θ) =
1

m + 1

m+1

∑
i=1

log
[

1 + θ + θxi−1:m
1 + θ

(1− θ)xi−1:m − 1 + θ + θ xi:m
1 + θ

(1− θ)xi:m

]
.

The MPSE of θ follows also, by solving the following equation:

1
n + 1

m+1

∑
i=1

φ(xi:m|θ)− φ(xi−1:m|θ)
Di(θ)

= 0.

4.5. Anderson–Darling and Right-Tail Anderson–Darling Estimators

The ADE is a type of MDE. The ADE of the parameter θ can be derived by minimizing

start a new page without indent 4.6cm

AD(θ) = −m− 1
m

m

∑
i=1

(2i− 1)
{

log
[

1− 1 + θ + θ xi:m
1 + θ

(1− θ)xi:m

]
+ log

[
1 + θ + θ xi:m

1 + θ
(1− θ)xi:m

]}
,

with respect to θ. This estimator is also derived by solving the following equation:

m

∑
i=1

(2i− 1)
[

φ(xi:m|θ)
F(xi:m|θ)

− φ(xn+1−i:m|θ)
F(xn+1−i:m|θ)

]
= 0.
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The RTADE of the parameter θ of the NDL distribution can be derived by minimizing

RT(θ) =
m
2
− 2

n

∑
i=1

[
1− 1 + θ + θ xi:m

1 + θ
(1− θ)xi:m

]
− 1

m

m

∑
i=1

(2i− 1) log
[

1 + θ + θxm+1−i:m
1 + θ

(1− θ)xm+1−i:m

]
,

with respect to θ. The RTADE follows also, by solving the following equation:

− 2
m

∑
i=1

φ(xi:m|θ) +
1
m

m

∑
i=1

(2i− 1)
φ(xm+1−i:m|θ)
F(xm+1−i:m|θ)

= 0.

4.6. Percentiles Estimator

The percentiles approach is introduced by [21,22]. Consider the unbiased estimator
of F(xi:m|θ) given by ui = i/(m + 1). Then, the PCE of the NDL parameter is derived by
minimizing the following eqution with respect to θ:

P(θ) =
m

∑
i=1

{
xi:m + 1 +

1
θ
− 1

log(1− θ)
W
[
(ui − 1)(θ − 1)(1 + θ)(1− θ)

1
θ log(1− θ)

]}2
,

where W (x) denotes the negative branch of the Lambert W function that is known as the
product-log function in the Mathematica software© [23].

5. Simulation Results

Now, we present the results of a simulation study to explore the behavior of the
proposed estimators for different combinations of the parameter θ and samples sizes, based
on the average estimates (AVEs), average mean square errors (MSEs), average absolute
biases (AABs), and average mean relative errors (MREs).

The MSEs, AABs, and MREs are defined by MSEs = 1
N ∑N

i=1 (θ̂ − θ)
2
, AABs =

1
N ∑N

i=1
∣∣θ̂ − θ

∣∣, and MREs = 1
N ∑N

i=1
∣∣θ̂ − θ

∣∣/θ.
We generate 5000 random samples from the NDL distribution of sizes n = (15, 25,

50,100, 150, 200) using its quantile function, given by

Q(u) = −1− 1
θ
+

1
log(1− θ)

W
{
(u− 1)(θ − 1)(1 + θ)(1− θ)

1
θ log(1− θ)

}
, 0 < u < 1,

where x denotes the integer part of x.
The numerical results are calculated using R software© [24], for several values

θ = (0.05, 0.25, 0.35, 0.5, 0.75, 0.95). The AVEs, MSEs, AABs, and MREs for the pa-
rameter θ are reported in Tables 1–6. One can note, from Tables 1–6, that the estimates of
the parameter θ of the NDL distribution are entirely good; that is, these estimates are quite
reliable and very close to the true values for all values of θ, showing small biases, MSEs,
and MREs for all considered values of θ. For all values of θ, the MSEs, AABs, and MREs
decrease as sample size increases, hence the eight estimators show the consistency property.
We conclude that the MLE, LSE, WLSE, CME, MPSE, ADE, RTADE, and PCE perform very
well in estimating the parameter θ of the NDL distribution. Further, the performance of
these methods will be checked empirically in the next section.



Mathematics 2021, 9, 1139 11 of 17

Table 1. Simulation results for the NDL distribution for θ = 0.05.

n Measure MLE LSE WLSE CME MPSE ADE RTADE PCE

15

AVEs

0.05085 0.05111 0.05102 0.05138 0.04919 0.05097 0.05057 0.04851
25 0.05047 0.05069 0.05066 0.05086 0.04918 0.05043 0.05020 0.04864
50 0.04990 0.05020 0.05019 0.05029 0.04950 0.05026 0.05015 0.04902

100 0.04970 0.05009 0.05010 0.05014 0.04962 0.05020 0.05014 0.04926
150 0.04958 0.05016 0.05016 0.05019 0.04979 0.05013 0.05009 0.04944
200 0.04948 0.05013 0.05013 0.05015 0.04980 0.05008 0.05006 0.04955

15

MSEs

0.00008 0.00011 0.00004 0.00011 0.00008 0.00011 0.00009 0.00009
25 0.00005 0.00006 0.00006 0.00006 0.00005 0.00006 0.00005 0.00005
50 0.00002 0.00003 0.00003 0.00003 0.00002 0.00003 0.00003 0.00003

100 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
150 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001
200 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

15

AABs

0.00699 0.00807 0.00787 0.00808 0.00716 0.00779 0.00752 0.00745
25 0.00562 0.00622 0.00603 0.00622 0.00540 0.00581 0.00568 0.00578
50 0.00390 0.00430 0.00416 0.00430 0.00386 0.00411 0.00400 0.00415

100 0.00270 0.00298 0.00287 0.00298 0.00275 0.00291 0.00283 0.00295
150 0.00223 0.00247 0.00237 0.00247 0.00221 0.00238 0.00233 0.00245
200 0.00201 0.00214 0.00206 0.00214 0.00197 0.00204 0.00200 0.00213

15

MREs

0.13977 0.16132 0.15749 0.16152 0.14323 0.15570 0.15039 0.14898
25 0.11234 0.12440 0.12060 0.12448 0.10794 0.11627 0.11365 0.11569
50 0.07792 0.08605 0.08328 0.08605 0.07713 0.08211 0.08007 0.08295

100 0.05404 0.05960 0.05730 0.05961 0.05499 0.05811 0.05655 0.05897
150 0.04453 0.04945 0.04741 0.04946 0.04418 0.04768 0.04651 0.04895
200 0.04023 0.04281 0.04114 0.04282 0.03937 0.04080 0.04002 0.04250

Table 2. Simulation results for the NDL distribution for θ = 0.25.

n Measure MLE LSE WLSE CME MPSE ADE RTADE PCE

15

AVEs

0.23987 0.25384 0.25272 0.25431 0.24590 0.25283 0.25140 0.24286
25 0.23826 0.25159 0.25251 0.25343 0.24549 0.25259 0.25048 0.24307
50 0.23677 0.25090 0.25121 0.25167 0.24700 0.25121 0.25097 0.24525

100 0.23599 0.25087 0.25101 0.25123 0.24757 0.25098 0.25017 0.24651
150 0.23546 0.25052 0.25058 0.25070 0.24839 0.25053 0.25047 0.24723
200 0.23515 0.25028 0.25010 0.25015 0.24878 0.25004 0.25025 0.24814

15

MSEs

0.00146 0.00226 0.00195 0.00207 0.00169 0.00182 0.00181 0.00182
25 0.00095 0.00124 0.00121 0.00129 0.00099 0.00117 0.00099 0.00113
50 0.00057 0.00062 0.00057 0.00062 0.00049 0.00057 0.00050 0.00058

100 0.00039 0.00030 0.00028 0.00030 0.00025 0.00028 0.00026 0.00028
150 0.00034 0.00020 0.00019 0.00020 0.00016 0.00019 0.00017 0.00019
200 0.00032 0.00015 0.00014 0.00015 0.00012 0.00013 0.00013 0.00014

15

AABs

0.03082 0.03702 0.03429 0.03522 0.03250 0.03336 0.03312 0.03425
25 0.02515 0.02761 0.02740 0.02821 0.02521 0.02690 0.02493 0.02696
50 0.01962 0.01955 0.01892 0.01963 0.01773 0.01871 0.01782 0.01938

100 0.01647 0.01379 0.01317 0.01374 0.01256 0.01323 0.01269 0.01351
150 0.01571 0.01125 0.01075 0.01127 0.01028 0.01099 0.01026 0.01100
200 0.01548 0.00961 0.00956 0.00995 0.00891 0.00920 0.00910 0.00957

15

MREs

0.12328 0.14807 0.13718 0.14088 0.13000 0.13346 0.13249 0.13701
25 0.10060 0.11043 0.10958 0.11283 0.10082 0.10762 0.09971 0.10782
50 0.07847 0.07818 0.07568 0.07853 0.07091 0.07486 0.07127 0.07753

100 0.06587 0.05515 0.05269 0.05497 0.05023 0.05292 0.05075 0.05404
150 0.06285 0.04499 0.04301 0.04510 0.04110 0.04397 0.04106 0.04401
200 0.06193 0.03845 0.03826 0.03978 0.03563 0.03682 0.03638 0.03828
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Table 3. Simulation results for the NDL distribution for θ = 0.35.

n Measure MLE LSE WLSE CME MPSE ADE RTADE PCE

15

AVEs

0.32722 0.35373 0.35512 0.35600 0.34188 0.35345 0.35091 0.33938
25 0.32441 0.35258 0.35302 0.35286 0.34399 0.35227 0.35090 0.34068
50 0.32319 0.35171 0.35160 0.35237 0.34602 0.35068 0.35071 0.34307

100 0.32185 0.35100 0.35036 0.35070 0.34760 0.35027 0.35066 0.34559
150 0.32190 0.35040 0.35057 0.35102 0.34790 0.35036 0.35008 0.34633
200 0.32154 0.34980 0.35055 0.35068 0.34804 0.35012 0.34973 0.34707

15

MSEs

0.00263 0.00369 0.00367 0.00393 0.00291 0.00325 0.00304 0.00315
25 0.00181 0.00224 0.00193 0.00205 0.00176 0.00199 0.00187 0.00192
50 0.00131 0.00108 0.00097 0.00104 0.00087 0.00092 0.00090 0.00098

100 0.00109 0.00053 0.00048 0.00053 0.00042 0.00047 0.00045 0.00050
150 0.00098 0.00035 0.00032 0.00033 0.00028 0.00031 0.00030 0.00032
200 0.00096 0.00027 0.00024 0.00026 0.00022 0.00023 0.00022 0.00026

15

AABs

0.04205 0.04735 0.04687 0.04840 0.04298 0.04473 0.04327 0.04570
25 0.03533 0.03725 0.03447 0.03557 0.03359 0.03499 0.03431 0.03505
50 0.03047 0.02610 0.02477 0.02541 0.02362 0.02404 0.02398 0.02515

100 0.02916 0.01815 0.01730 0.01832 0.01642 0.01726 0.01688 0.01784
150 0.02837 0.01487 0.01431 0.01449 0.01345 0.01394 0.01371 0.01434
200 0.02855 0.01317 0.01220 0.01258 0.01195 0.01219 0.01186 0.01280

15

MREs

0.12016 0.13529 0.13390 0.13830 0.12279 0.12781 0.12362 0.13057
25 0.10096 0.10642 0.09850 0.10163 0.09598 0.09998 0.09802 0.10013
50 0.08707 0.07458 0.07078 0.07260 0.06750 0.06868 0.06853 0.07186

100 0.08330 0.05186 0.04943 0.05233 0.04692 0.04933 0.04822 0.05098
150 0.08105 0.04249 0.04088 0.04141 0.03843 0.03982 0.03918 0.04097
200 0.08158 0.03762 0.03485 0.03595 0.03416 0.03482 0.03389 0.03656

Table 4. Simulation results for the NDL distribution for θ = 0.5.

n Measure MLE LSE WLSE CME MPSE ADE RTADE PCE

15

AVEs

0.44899 0.50421 0.50362 0.50662 0.48943 0.50339 0.50070 0.48498
25 0.44702 0.50275 0.50263 0.50427 0.49055 0.50106 0.49952 0.48593
50 0.44353 0.50036 0.50036 0.50114 0.49429 0.50087 0.50016 0.49048

100 0.44294 0.50013 0.50024 0.50052 0.49649 0.50100 0.50053 0.49378
150 0.44316 0.50080 0.50090 0.50107 0.49744 0.50062 0.50037 0.49496
200 0.44282 0.50067 0.50069 0.50087 0.49783 0.50033 0.50021 0.49595

15

MSEs

0.00549 0.00584 0.00555 0.00586 0.00484 0.00539 0.00502 0.00507
25 0.00450 0.00357 0.00336 0.00358 0.00279 0.00307 0.00287 0.00308
50 0.00401 0.00170 0.00158 0.00170 0.00143 0.00156 0.00146 0.00160

100 0.00367 0.00083 0.00076 0.00083 0.00067 0.00078 0.00072 0.00079
150 0.00351 0.00057 0.00052 0.00057 0.00047 0.00053 0.00049 0.00056
200 0.00348 0.00043 0.00040 0.00043 0.00035 0.00039 0.00036 0.00041

15

AABs

0.06219 0.06071 0.05920 0.06072 0.05600 0.05837 0.05624 0.05737
25 0.05767 0.04720 0.04568 0.04720 0.04256 0.04408 0.04284 0.04506
50 0.05724 0.03293 0.03178 0.03292 0.03024 0.03130 0.03030 0.03212

100 0.05710 0.02286 0.02191 0.02286 0.02082 0.02219 0.02143 0.02251
150 0.05685 0.01897 0.01812 0.01897 0.01718 0.01823 0.01764 0.01904
200 0.05719 0.01643 0.01574 0.01644 0.01489 0.01562 0.01519 0.01627

15

MREs

0.12438 0.12141 0.11840 0.12145 0.11200 0.11674 0.11248 0.11473
25 0.11535 0.09440 0.09136 0.09440 0.08512 0.08815 0.08568 0.09012
50 0.11448 0.06586 0.06357 0.06583 0.06049 0.06261 0.06059 0.06423

100 0.11420 0.04573 0.04382 0.04573 0.04164 0.04438 0.04286 0.04501
150 0.11370 0.03794 0.03624 0.03794 0.03436 0.03647 0.03529 0.03807
200 0.11437 0.03287 0.03147 0.03288 0.02978 0.03124 0.03039 0.03253
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Table 5. Simulation results for the NDL distribution for θ = 0.75.

n Measure MLE LSE WLSE CME MPSE ADE RTADE PCE

15

AVEs

0.63596 0.74661 0.74653 0.74945 0.73229 0.74750 0.74502 0.72713
25 0.63323 0.74924 0.74935 0.75097 0.73825 0.74826 0.74671 0.73176
50 0.63242 0.74964 0.74975 0.75052 0.74228 0.75019 0.74961 0.73793

100 0.63177 0.75052 0.75063 0.75099 0.74571 0.74953 0.74922 0.74208
150 0.63147 0.75014 0.75027 0.75045 0.74670 0.75037 0.75013 0.74403
200 0.63124 0.74939 0.74958 0.74963 0.74697 0.75015 0.74991 0.74516

15

MSEs

0.01597 0.00590 0.00559 0.00583 0.00516 0.00557 0.00519 0.00608
25 0.01534 0.00384 0.00363 0.00385 0.00331 0.00334 0.00302 0.00375
50 0.01469 0.00196 0.00180 0.00194 0.00164 0.00169 0.00157 0.00189

100 0.01441 0.00096 0.00088 0.00096 0.00078 0.00089 0.00081 0.00095
150 0.01434 0.00066 0.00060 0.00066 0.00052 0.00058 0.00053 0.00064
200 0.01432 0.00050 0.00046 0.00051 0.00041 0.00044 0.00041 0.00047

15

AABs

0.11486 0.06201 0.06026 0.06159 0.05780 0.06011 0.05786 0.06256
25 0.11687 0.04975 0.04850 0.04992 0.04636 0.04626 0.04416 0.04915
50 0.11758 0.03531 0.03388 0.03528 0.03238 0.03324 0.03162 0.03506

100 0.11823 0.02478 0.02366 0.02481 0.02228 0.02374 0.02263 0.02460
150 0.11853 0.02044 0.01936 0.02042 0.01824 0.01924 0.01833 0.02014
200 0.11876 0.01789 0.01727 0.01806 0.01630 0.01679 0.01625 0.01734

15

MREs

0.15314 0.08268 0.08035 0.08212 0.07706 0.08014 0.07714 0.08341
25 0.15582 0.06634 0.06466 0.06656 0.06182 0.06168 0.05888 0.06553
50 0.15677 0.04708 0.04518 0.04703 0.04318 0.04432 0.04216 0.04674

100 0.15764 0.03305 0.03155 0.03307 0.02970 0.03165 0.03017 0.03279
150 0.15804 0.02726 0.02582 0.02723 0.02431 0.02565 0.02444 0.02685
200 0.15835 0.02385 0.02302 0.02408 0.02173 0.02238 0.02167 0.02312

Table 6. Simulation results for the NDL distribution for θ = 0.95.

n Measure MLE LSE WLSE CME MPSE ADE RTADE PCE

15

AVEs

0.80304 0.94105 0.94130 0.94260 0.93574 0.94202 0.94230 0.93215
25 0.80123 0.94460 0.94513 0.94554 0.93952 0.94525 0.94465 0.93631
50 0.80091 0.94781 0.94781 0.94804 0.94403 0.94787 0.94735 0.94132

100 0.80015 0.94851 0.94908 0.94914 0.94617 0.94905 0.94830 0.94536
150 0.80038 0.94942 0.94922 0.94924 0.94744 0.94916 0.94899 0.94632
200 0.80043 0.94948 0.94912 0.94908 0.94805 0.94907 0.94933 0.94707

15

MSEs

0.02310 0.00158 0.00153 0.00154 0.00159 0.00144 0.00130 0.00193
25 0.02304 0.00087 0.00083 0.00091 0.00090 0.00083 0.00078 0.00113
50 0.02269 0.00044 0.00041 0.00044 0.00041 0.00040 0.00038 0.00053

100 0.02269 0.00022 0.00020 0.00022 0.00020 0.00020 0.00019 0.00024
150 0.02254 0.00014 0.00013 0.00015 0.00012 0.00013 0.00012 0.00015
200 0.02249 0.00011 0.00010 0.00012 0.00009 0.00010 0.00009 0.00011

15

AABs

0.14696 0.03066 0.02965 0.02983 0.03001 0.02868 0.02757 0.03284
25 0.14877 0.02298 0.02253 0.02357 0.02300 0.02250 0.02171 0.02535
50 0.14909 0.01653 0.01613 0.01667 0.01570 0.01584 0.01524 0.01768

100 0.14985 0.01180 0.01112 0.01168 0.01099 0.01107 0.01079 0.01226
150 0.14962 0.00938 0.00913 0.00963 0.00885 0.00912 0.00869 0.00972
200 0.14957 0.00839 0.00814 0.00858 0.00762 0.00814 0.00755 0.00837

15

MREs

0.15469 0.03227 0.03121 0.03140 0.03159 0.03019 0.02902 0.03456
25 0.15660 0.02419 0.02372 0.02481 0.02421 0.02368 0.02286 0.02669
50 0.15694 0.01740 0.01698 0.01754 0.01652 0.01668 0.01604 0.01862

100 0.15774 0.01243 0.01170 0.01229 0.01157 0.01165 0.01135 0.01290
150 0.15750 0.00988 0.00961 0.01014 0.00931 0.00960 0.00915 0.01024
200 0.15744 0.00883 0.00857 0.00903 0.00802 0.00857 0.00795 0.00881
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6. Estimation Methods Based on Real Biological Data

To check the validity of the methods used in this paper to estimate the parameter
of the NDL distribution, two different datasets are taken from [9]. One dataset consists
of 47 observations representing the daily deaths in Egypt due to COVID-19 infections in
the time interval from 8 March to 30 April, 2020. The other dataset, measuring remission
times in weeks, consists of 20 leukemia patients who were randomly assigned to a certain
treatment [25]. Both datasets have been used to illustrate the flexibility of the NDL distri-
bution in modeling similar datasets in estimating the parameter θ. For this purpose, eight
methods of estimation have been applied to both datasets.

The estimates of the parameter θ and goodness-of-fit statistics such as Cramér–von
Mises (W), Anderson–Darling (A), and Kolmogorov–Smirnov (KS) statistics, with their as-
sociated p-value (KS p-value) are reported in Table 7. Probability–probability (PP) plots for
COVID-19 and remission times data for the eight estimates are displayed in Figures 3 and 4,
respectively. It is shown, from Table 7 and Figures 3 and 4, that all estimators perform
very well.

Table 7. Fitted estimates for COVID-19 and remission times data.

Data Method ^
θ W A KS KS p-Value

Data Set I

MLE 0.18127 0.07635 0.65453 0.09331 0.80785
LSE 0.18036 0.07640 0.65487 0.09382 0.80248

WLSE 0.18289 0.07627 0.65393 0.09238 0.81733
CME 0.18082 0.07637 0.65469 0.09356 0.80522
MPSE 0.18199 0.076312 0.65426 0.09290 0.81205
ADE 0.18407 0.07621 0.65349 0.09171 0.82413

RTADE 0.18381 0.07622 0.65359 0.09186 0.82262
PCE 0.18915 0.07595 0.65166 0.09413 0.79927

Data Set II

MLE 0.08934 0.01854 0.15568 0.11756 0.94505
LSE 0.08083 0.01784 0.15275 0.07503 0.99974

WLSE 0.08923 0.01855 0.15569 0.11792 0.94373
CME 0.08994 0.01853 0.15560 0.11564 0.95191
MPSE 0.08201 0.01778 0.15235 0.07120 0.99990
ADE 0.09058 0.01852 0.15551 0.11355 0.95873

RTADE 0.08794 0.01857 0.15587 0.12207 0.92686
PCE 0.08529 0.01864 0.15625 0.13053 0.88506
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7. Conclusions and Future Work

The natural discrete Lindley (NDL) distribution has been published as an application
of a natural discretization method. However, the published paper did not show its possible
applications in significant areas of statistics, like reliability applications. Thus, the main
object of this paper has been to widen the usefulness of the NDL distribution through
further study of several closure properties under different reliability properties, including
the conditions leading to an IFR, as well as hazard rate ordering, reversed hazard rate
ordering, and associated results based on these orders.

In addition to the basic results, we also show that the hazard rate ordering of members
of the NDL family is preserved under a common contamination. This is quite useful in
cases where the systems are operating under random common environments. Important
results are derived covering the preservation of the sums of random variables under the
hazard rate, likelihood ratio, and reversed hazard rate. Such results are quite useful in the
reliability practicing. Furthermore, it is shown that the life lengths of two series systems
composed of ordered components of the NDL family preserve the hazard rate order. A
basic result gives sufficient conditions for the preservation of the D-MRL property under
the assumption of log-concavity of an added contamination. Other, similar results consider
the D-MRL case. Finally, an interesting application to renewal processes, which is very
helpful in “replacement studies”, is also presented.
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The paper is concluded with eight different estimation methods to estimate the param-
eter θ, and a comparative study has been conducted on their results to explore the behavior
of the eight proposed estimators. Two real datasets have been used to explore the behavior
of these estimators for estimating the NDL parameter empirically. Each of the methods
used has demonstrated acceptable results.

For a possible direction of future studies, the work in this paper can be augmented
with the binomial distribution to generate a new model to handle the relationships between
the number of particles entering and leaving an attenuator, where several interesting results
of value in applications can be established. Compounding results based on adding the
life lengths of a random number of components following the NDL distribution could be
applied to several insurance problems.
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