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Abstract: In this manuscript, we examine both the existence and the stability of solutions of the
boundary value problems of Hadamard-type fractional differential equations of variable order. New
outcomes are obtained in this paper based on the Darbo’s fixed point theorem (DFPT) combined with
Kuratowski measure of noncompactness (KMNC). We construct an example to illustrate the validity
of the observed results.
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1. Introduction

The idea of fractional calculus is to replace the natural numbers in the derivative’s
order with rational ones. Although it seems an elementary consideration, it has an exciting
correspondence explaining some physical phenomena.

Furthermore, studying both of the theoretical and practical aspects of fractional dif-
ferential equations (FDEqs) has become a focus of an extensive international academic
research [1–18]. A recent improvement in this investigation is the consideration of the
notion of variable order operators. In this sense, various definitions of fractional operators
involving the variable order have been introduced. This type of operators which are depen-
dent on their power-law kernel can describe some hereditary specifications of numerous
processes and phenomena [19,20]. In general, it is often difficult to find the analytical
solution of FDEqs of variable order; therefore, numerical methods for the approximation of
FDEqs of variable order are widespread. Regarding to the study existence of solutions to
the problems of variable order, we refer to [21–26]. On the contrary, a consistent approach
with the first-order precision for the solution of FDEqs of variable order is applied by
Coimbra et al. in [27]. Lin et al. [28] discussed the convergence and stability of an explicit
approximation related to the diffusion equation of variable order with a nonlinear source
term. In [29], Zhuang et al. introduced the implicit and explicit Euler approximations for
the nonlinear diffusion-advection equation of variable order.

While several research studies have been performed on investigating the solutions’
existence of the fractional constant-order problems, the solutions’ existence of the variable-
order problems are rarely discussed in literature; we refer to [30–34]. Therefore, investigat-
ing this interesting special research topic makes all our results novel and worthy.
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In particular, Agarwal et al. [5] studied the following problem:{
Du

0+x(t) = f (t, x(t)), t ∈ J := [0, ∞), u ∈]1, 2],
x(0) = 0, x bounded on [0, ∞),

where Du
0+ is the Riemann–Liouville fractional derivative of order u, f is a given function.

Inspired by [1–6,9,10,22–26,33,35], we deal with the following boundary value
problem (BVP) {

H Du(t)
1+ x(t) = f1(t, x(t)), t ∈ J := [1, T],

x(1) = x(T) = 0,
(1)

where 1 < u(t) ≤ 2, f1 : J × X → X is a continuous function and H Du(t)
1+ ,H Iu(t)

1+ are the
Hadamard fractional derivative and integral of variable-order u(t).

The formal definitions and properties of the Hadamard fractional derivatives and
integrals of variable-order will be given in the next section.

The goal of our research is to propose new existence criteria for the solutions of (1). In
addition, we study the stability of the obtained solution of (1) in the sense of Ulam–Hyers–
Rassias (UHR).

The remaining part of the paper is organized as follows. In Section 2, some notions and
preliminaries are introduced. In Section 3, novel existence conditions are obtained based
on the on the DFPT combined with KMNC. The UHR stability behavior is investigated
in Section 4. In Section 5, to show the effectiveness of the obtained results, an example is
considered. Section 6 is our Conclusions section.

2. Preliminaries

This section introduces some important fundamental definitions and concepts that
will be needed for obtaining our results in the next sections.

The symbol C(J, X) represents the Banach space of continuous functions κ : J → X
with the norm

‖κ‖ = Sup{‖κ(t)‖ : t ∈ J},

where X is a real (or complex) Banach space.

2.1. Hadamard Fractional Integrals and Derivatives of Variable-Order: Definitions and Main
Properties

For 0 < a1 < a2 < +∞, we consider the mappings u(t) : [a1, a2] → (0,+∞) and
v(t) : [a1, a2] → (n− 1, n). Then, the left Hadamard fractional integral (HFI) of variable-
order u(t) for function h1(t) ([36,37]) is

H Iu(t)
a+1

h1(t) =
1

Γ(u(t))

∫ t

a1

(log
t
s
)u(t)−1 h1(s)

s
ds, t > a1 (2)

and the left Hadamard fractional derivative (HFD) of variable-order v(t) for function
h1(t) ([36,37]) is

(H Dv(t)
a+1

h1)(t) =
1

Γ(n− v(t))
(t

d
dt
)n
∫ t

a1

(log
t
s
)n−v(t)−1 h1(s)

s
ds, t > a1. (3)

As anticipated, in case u(t) and v(t) are constant, then HFI and HFD coincide with the
standard Hadamard integral and Hadamard derivative, respectively, see, e.g., [11,36,37].

Recall the following pivotal observation.

Lemma 1 ([11]). Let α1, α2 > 0, a1 > 1, h1 ∈ L(a1, a2), and H Dα1
a+1

h1 ∈ L(a1, a2). Then, the

differential equation
H Dα1

a+1
h1 = 0
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has a unique solution

h1(t) = ω1(log
t

a1
)α1−1 + ω2(log

t
a1
)α1−2 + . . . + ωn(log

t
a1
)α1−n,

and

H Iα1
a+1
(H Dα1

a+1
)h1(t) = h1(t) + ω1(log

t
a1
)α1−1 + ω2(log

t
a1
)α1−2 + . . . + ωn(log

t
a1
)α1−n

with n− 1 < α1 ≤ n, ω` ∈ R, ` = 1, 2, . . . , n.
Furthermore,

H Dα1
a+1
(H Iα1

a+1
)h1(t) = h1(t)

and
H Iα1

a+1
(H Iα2

a+1
)h1(t) =H Iα2

a+1
(H Iα1

a+1
)h1(t) =H Iα1+α2

a+1
h1(t).

Remark 1. Note that the semigroup property discussed in Lemma 1 is not fulfilled for general
functions u(t), v(t), i.e., in general

H Iu(t)
1+ (H Iv(t)

1+ )h1(t) 6=H Iu(t)+v(t)
1+ h1(t).

Example 1. Let

v(t) =
{

1, t ∈ [1, 2]
2, t ∈ ]2, 4],

u(t) =
{

2, t ∈ [1, 2]
1, t ∈ ]2, 4],

f2(t) = 1, t ∈ [1, 4],

H Iu(t)
1+ (H Iv(t)

1+ ) f2(t) =
1

Γ(2)

∫ 2

1

1
s
(log

t
s
)1
[ 1

Γ(1)

∫ 2

1

1
τ
(log

s
τ
)1−1dτ +

1
Γ(2)

∫ s

2

1
τ
(log

s
τ
)2−1dτ

]
ds

+
1

Γ(1)

∫ t

2

1
s
(log

t
s
)1−1

[ 1
Γ(1)

∫ 2

1

1
τ
(log

s
τ
)1−1dτ +

1
Γ(2)

∫ s

2

1
τ
(log

s
τ
)2−1dτ

]
ds

and

H Iu(t)+v(t)
1+ f2(t) =

1
Γ(u(t) + v(t))

∫ t

1

1
s
(log

t
s
)u(t)+v(t)−1 f2(s)ds.

Thus, we get

H Iu(t)
1+ (H Iv(t)

1+ ) f2(t)|t=3 =
1

Γ(2)

∫ 2

1

1
s
(log

3
s
)
[

log 2 +
1
2
(log

s
2
)2)
]
ds +

1
Γ(1)

∫ 3

2

1
s

[
log 2 +

1
2
(log

s
2
)2
]
ds

' 0.9013

H Iu(t)+v(t)
1+ f2(t)|t=3 =

1
Γ(3)

∫ 2

1

1
s
(log

3
s
)2ds +

1
Γ(3)

∫ 3

2

1
s
(log

3
s
)2ds

' 0.2209

Therefore, we obtain

H Iu(t)
1+ (H Iv(t)

1+ ) f2(t)|t=3 6= H Iu(t)+v(t)
1+ f2(t)|t=3.

Lemma 2. If u : J → (1, 2] is a continuous function, then, for h1 ∈ Cδ(J, X) = {h1(t) ∈
C(J, X), (log t)δh1(t) ∈ C(J, X)}, (0 ≤ δ ≤ 1), the variable order fractional integral H Iu(t)

1+ h1(t)
exists at any point in J.
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Proof. Taking the continuity of Γ(u(t)) into account, we shall claim that Mu = maxt∈J | 1
Γ(u(t)) |

exists. We let u∗ = maxt∈J |(u(t))|. Thus, for 1 ≤ s ≤ t ≤ T, we have

(log
t
s
)u(t)−1 ≤ 1, if 1 ≤ t

s
≤ e,

(log
t
s
)u(t)−1 ≤ (log

t
s
)u∗−1, if

t
s
> e.

Then, for 1 ≤ t
s < +∞, we know

(log
t
s
)u(t)−1 ≤ max{1, (log

t
s
)u∗−1} = M∗.

For h1 ∈ Cδ(J, X), by the definition of (2), we deduce that

|H Iu(t)
1+ h1(t)| =

1
Γ(u(t))

∫ t

1
(log

t
s
)u(t)−1 |h1(s)|

s
ds

≤ Mu

∫ t

1
(log

t
s
)u(t)−1(log s)−δ(log s)δ |h1(s)|

s
ds

≤ Mu M∗
∫ t

1

1
s
(log s)−δ max

s∈J
(log s)δ|h1(s)|ds

≤ Mu M∗max
s∈J

(log s)δh?
∫ t

1

1
s
(log s)−δds

≤ Mu M∗max
s∈J

(log s)δh?
(log T)1−δ

1− δ
< ∞,

where h? = maxt∈J |h1(t)|. It yields that the variable order fractional integral H Iu(t)
1+ h1(t)

exists at any point in J.

Lemma 3. Let u : J → (1, 2] be a continuous function. Then,

H Iu(t)
1+ h1(t) ∈ C(J, X) f or h1 ∈ C(J, X).

Proof. For t, t0 ∈ J, t0 ≤ t and h1 ∈ C(J, X), we obtain∣∣∣H Iu(t)
1+ h1(t)−H Iu(t0)

1+ h1(t0)
∣∣∣ = ∣∣∣ ∫ t

1

1
Γ(u(t))

(log
t
s
)u(t)−1 h1(s)

s
ds

−
∫ t0

1

1
Γ(u(t0))

(log
t0

s
)u(t0)−1 h1(s)

s
ds
∣∣∣

=
∣∣∣ ∫ 1

0

1
Γ(u(t))

(t− 1)
r(t− 1) + 1

(log
t

r(t− 1) + 1
)u(t)−1h1(r(t− 1) + 1)dr

−
∫ 1

0

1
Γ(u(t0))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1h1(r(t0 − 1) + 1)dr

∣∣∣
=

∣∣∣ ∫ 1

0

[ 1
Γ(u(t))

(t− 1)
r(t− 1) + 1

(log
t

r(t− 1) + 1
)u(t)−1h1(r(t− 1) + 1)

− 1
Γ(u(t))

(t0 − 1)
r(t0 − 1) + 1

(log
t

r(t− 1) + 1
)u(t)−1h1(r(t− 1) + 1)

]
dr

+
∫ 1

0

[ 1
Γ(u(t))

(t0 − 1)
r(t0 − 1) + 1

(log
t

r(t− 1) + 1
)u(t)−1h1(r(t− 1) + 1)

− 1
Γ(u(t))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1h1(r(t− 1) + 1)

]
dr
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+
∫ 1

0

[ 1
Γ(u(t))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1h1(r(t− 1) + 1)

− 1
Γ(u(t0))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1h1(r(t− 1) + 1)

]
dr

+
∫ 1

0

[ 1
Γ(u(t0))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1h1(r(t− 1) + 1)

− 1
Γ(u(t0))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1h1(r(t0 − 1) + 1)

]
dr
∣∣∣

≤ h?
∫ 1

0

1
Γ(u(t))

(log
t

r(t− 1) + 1
)u(t)−1

∣∣∣ (t− 1)
r(t− 1) + 1

− (t0 − 1)
r(t0 − 1) + 1

∣∣∣dr

+ h?
∫ 1

0

1
Γ(u(t))

(t0 − 1)
r(t0 − 1) + 1

∣∣∣(log
t

r(t− 1) + 1
)u(t)−1 − (log

t0
r(t0 − 1) + 1

)u(t)−1
∣∣∣dr

+ h?
∫ 1

0

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1

∣∣∣ 1
Γ(u(t))

− 1
Γ(u(t0))

∣∣∣dr

+
∫ 1

0

1
Γ(u(t0))

(t0 − 1)
r(t0 − 1) + 1

(log
t0

r(t0 − 1) + 1
)u(t0)−1

∣∣∣h1(r(t− 1) + 1)− h1(r(t0 − 1) + 1)
∣∣∣dr,

where h? = maxt∈J |h1(t)|. On account of the continuity of the functions (t−1)
r(t−1)+1 ,

(log t
r(t−1)+1 )

u(t)−1, 1
Γ(u(t)) , h1(t), we get that the integral H Iu(t)

1+ h1(t) is continuous at the

point t0. Since t0 is arbitrary, we get that H Iu(t)
1+ h1(t) ∈ C(J, X) for h1(t) ∈ C(J, X).

We will also use the following concepts from [34,38,39].

Definition 1. I of R is called a generalized interval, if it is either an interval, or {a1} or { }.

Definition 2. A finite set P is called a partition of I, if each x in I lies in exactly one of the
generalized intervals E ∈ P .

Definition 3. A function g : I → X is called piecewise constant with respect to partition P of I,
if for any E ∈ P , g is constant on E.

2.2. Measures of Noncompactness

This subsection discusses some necessary background information about the KMNC.

Definition 4 ([40]). Let X be a Banach space and ΩX are bounded subsets of X. The KMNC is a
mapping ζ : ΩX → [0, ∞] which is constructed as follows:

ζ(D) = inf{ε > 0 : D(∈ ΩX) ⊆ ∪n
`=1D`, diam(D`) ≤ ε},

where
diam(D`) = sup{||x− y|| : x, y ∈ D`}.

The following properties are valid for KMNC:

Proposition 1 ([40,41]). Let X be a Banach space, D, D1, D2 are bounded subsets of X. Then,

1. ζ(D) = 0⇐⇒ D is relatively compact.
2. ζ(∅) = 0.
3. ζ(D) = ζ(D) = ζ(convD).
4. D1 ⊂ D2 =⇒ ζ(D1) ≤ ζ(D2).
5. ζ(D1 + D2) ≤ ζ(D1) + ζ(D2).
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6. ζ(λD) = |λ|ζ(D), λ ∈ R.
7. ζ(D1 ∪ D2) = Max{ζ(D1), ζ(D2)}.
8. ζ(D1 ∩ D2) = Min{ζ(D1), ζ(D2)}.
9. ζ(D + x0) = ζ(D) for any x0 ∈ X.

Lemma 4 ([42]). If U ⊂ C(J, X) is a equicontinuous and bounded set, then

(i) the function ζ(U(t)) is continuous for t ∈ J, and

ζ̂(U) = sup
t∈J

ζ(U(t)).

(ii) ζ
(∫ T

0 x(θ)dθ : x ∈ U
)
≤
∫ T

0 ζ(U(θ))dθ, where

U(s) = {x(s) : x ∈ U}, s ∈ J.

Theorem 1 (DFPT [40]). Let Λ be nonempty, closed, bounded and convex subset of a Banach
space X and W : Λ −→ Λ a continuous operator satisfying

ζ(W(S)) ≤ kζ(S) f or any (S 6= ∅) ⊂ Λ, k ∈ [0, 1).

Then, W has at least one fixed point in Λ.

Definition 5 ([43]). Let ϑ ∈ C(J, X). Equation (1) is UHR stable with respect to ϑ if there exists
c f > 0, such that for any ε > 0 and for every solution z ∈ C(J, X) of the following inequality:

‖H Du(t)
1+ z(t)− f (t, z(t))‖ ≤ εϑ(t), t ∈ J. (4)

there exists a solution x ∈ C(J, X) of Equation (1) with

‖z(t)− x(t)‖ ≤ c f εϑ(t), t ∈ J.

3. Main Existence Results

Let us introduce the following assumptions:

Hypothesis 1. Let n ∈ N be an integer,P = {J1 := [1, T1], J2 := (T1, T2], J3 := (T2, T3], . . . Jn :=
(Tn−1, T]} be a partition of the interval J, and let u(t) : J → (1, 2] be a piecewise constant function
with respect to P , i.e.,

u(t) =
n

∑
`=1

u` I`(t) =



u1, i f t ∈ J1,
u2, i f t ∈ J2,

.

.

.
un, i f t ∈ Jn,

where 1 < u` ≤ 2 are constants, and I` is the indicator of the interval J` := (T`−1, T`], ` =
1, 2, . . . , n, (here T0 = 1, Tn = T) such that

I`(t) =
{

1, for t ∈ J`,
0, elsewhere.

Hypothesis 2. Letting (log t)δ f1 : J × X → X be a continuous function (0 ≤ δ ≤ 1), there
exists a constant K > 0 such that

(log t)δ| f1(t, x1)− f1(t, x2)| ≤ K|x1 − x2|

for any x1, x2, ∈ X and t ∈ J.
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Remark 2. Using a remark in [44] page 20, we can easily show that the condition (H2) and the
following inequality

ζ(log t)δ‖ f1(t, B1)‖) ≤ Kζ(B1),

are equivalent for any bounded set B1 ⊂ X and for each t ∈ J.

Furthermore, for a given set U of functions u : J → X, let us denote by

U(t) = {u(t), u ∈ U}, t ∈ J

and
U(J) = {U(t) : v ∈ U, t ∈ J}.

We are now in a position to prove the existence of solutions for the (BVP) (1) based on
the concepts of MNCK and DFPT.

For each ` ∈ {1, 2, . . . , n}, the symbol E` = C(J`, X), indicates the Banach space of
continuous functions x : J` → X equipped with the norm

‖x‖E`
= sup

t∈J`
‖x(t)‖,

where ` ∈ {1, 2, . . . , n}.
Using (3), the equation in the BVP (1) can be expressed as

1
Γ(2− u(t))

(t
d
dt
)2
∫ t

1
(log

t
s
)1−u(t) x(s)

s
ds = f1(t, x(t)), t ∈ J. (5)

Taking (H1) into account, Equation (5) in the interval J`, ` = 1, 2, . . . , n can be shown
by

(t
d
dt
)2
( 1

Γ(2− u1)

∫ T1

1
(log

t
s
)1−u1

x(s)
s

ds + . . .

+
1

Γ(2− u`)

∫ t

T`−1

(log
t
s
)1−u`

x(s)
s

ds
)
= f1(t, x(t)), t ∈ J`. (6)

In what follows, we shall introduce the solution to the BVP (1).

Definition 6. A function x`, ` = 1, 2, . . . , n, is a solution of the BVP (1) if x` ∈ C([1, T`], X),
x` satisfies (6) and x`(1) = 0 = x`(T`).

According to the observation above, the BVP (1) can be expressed as in (5), with
J`, ` ∈ {1, 2, . . . , n} as (6).

For 1 ≤ t ≤ T`−1, we take x(t) ≡ 0; then, (6) is written as

H Du`

T+
`−1

x(t) = f1(t, x(t)), t ∈ J`.

We shall deal with the following BVP:{
H Du`

T+
`−1

x(t) = f1(t, x(t)), t ∈ J`
x(T`−1) = 0, x(T`) = 0.

(7)

For our purpose, the upcoming lemma will be a corner stone of the solution of (7).

Lemma 5. A function x ∈ E` forms a solution of (7), if and only if x fulfills the integral equation

x(t) = −(log
T`

T`−1
)1−u`(log

t
T`−1

)u`−1 H Iu`

T+
`−1

f1(T`, x(T`)) +
H Iu`

T+
`−1

f1(t, x(t)). (8)
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Proof. We presume that x ∈ E` is solution of the BVP (7). Employing the operator H Iu`

T+
`−1

to both sides of (7) and regarding Lemma 1, we find

x(t) = ω1(log
t

T`−1
)u`−1 + ω2(log

t
T`−1

)u`−2 +H Iu`

T+
`−1

f1(t, x(t)), t ∈ J`.

Due to the assumption of function f1 together with x(T`−1) = 0, we conclude that ω2 = 0.
Let x(t) satisfy x(T`) = 0. Thus, we observe that

ω1 = −(log
T`

T`−1
)1−u` H Iu`

T+
`−1

f1(T`, x(T`)).

Then, we find

x(t) = −(log
T`

T`−1
)1−u`(log

t
T`−1

)u`−1 H Iu`

T+
`−1

f1(T`, x(T`)) +
H Iu`

T+
`−1

f1(t, x(t)), t ∈ J`.

Conversely, let x ∈ E` be a solution of integral Equation (8). Regarding the continuity
of the function (log t)δ f1 and Lemma 1, we deduce that x is a solution of the BVP (7).

Our novel existence result is presented in the next Theorem.

Theorem 2. Assume that conditions (H1), (H2) hold and

K[(log T`)
1−δ − (log T`−1)

1−δ]

(1− δ)Γ(u`)
(log

T`

T`−1
)u`−1 <

1
2

. (9)

Then, the BVP (7) possesses at least one solution on J.

Proof. We construct the operator
W : E` → E`,

as follows:

Wx(t) = − 1
Γ(u`)

(log
T`

T`−1
)1−u`(log

t
T`−1

)u`−1
∫ T`

T`−1

(log
T`

s
)u`−1 f1(s, x(s))

s
ds

+
1

Γ(u`)

∫ t

T`−1

(log
t
s
)u`−1 f1(s, x(s))

s
ds. (10)

It follows from the properties of fractional integrals and from the continuity of function
(log t)δ f1 that the operator W : E` → E` in (10) is well defined.

Let

R` ≥
2 f ?

Γ(u`+1) (log
T`

T`−1
)u`

1− 2K[(log T`)
1−δ−(log T`−1)

1−δ ]

(1−δ)Γ(u`)
(log

T`
T`−1

)u`−1

with
f ? = sup

t∈J`
| f1(t, 0)|.

We consider the set
BR`

= {x ∈ E`, ‖x‖E`
≤ R`}.

Clearly, BR`
is nonempty, closed, convex and bounded. Now, we demonstrate that W

satisfies the assumption of the Theorem 1. We shall prove it in four phases:
Step 1: Claim: W(BR`

) ⊆ (BR`
).

For x ∈ BR`
and by (H2), we get
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‖Wx(t)‖ ≤ 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1‖ f1(s, x(s))‖ ds

s

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1‖ f1(s, x(s))‖ ds
s

≤ 2
Γ(u`)

∫ T`
T`−1

(log T`
s )

u`−1‖ f1(s, x(s))‖ ds
s

≤ 2
Γ(u`)

∫ T`
T`−1

(log T`
s )

u`−1‖ f1(s, x(s))− f1(s, 0)‖ ds
s + 2

Γ(u`)

∫ T`
T`−1

(log T`
s )

u`−1‖ f1(s, 0)‖ ds
s

≤ 2
Γ(u`)

∫ T`
T`−1

(log T`
s )

u`−1(log s)−δ(K‖x(s)‖) ds
s + 2 f ?

Γ(u`)

∫ T`
T`−1

(log T`
s )

u`−1 ds
s

≤ 2K
Γ(u`)

(log T`
T`−1

)u`−1‖x‖E`

∫ T`
T`−1

(log s)−δ ds
s + 2 f ?

Γ(u`+1) (log T`
T`−1

)u`

≤ 2K[(log T`)1−δ−(log T`−1)
1−δ ]

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1R` +

2 f ?

Γ(u`+1) (log T`
T`−1

)u`

≤ R`,

which means that W(BR`
) ⊆ (BR`

).
Step 2: Claim: W is continuous.
We presume that the sequence (xn) converges to x in E`. Then,

‖(Wxn)(t)− (Wx)(t)‖
≤ 1

Γ(u`)
(log T`

T`−1
)1−u`(log t

T`−1
)u`−1

∫ T`
T`−1

(log T`
s )

u`−1‖ f1(s, xn(s),H Iu`

T+
`−1

xn(s))− f1(s, x(s))‖ ds
s

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1‖ f1(s, xn(s),H Iu`

T+
`−1

xn(s))− f1(s, x(s))‖ ds
s

≤ 2
Γ(u`)

(log t
T`−1

)u`−1
∫ T`

T`−1
‖ f1(s, xn(s),H Iu`

T+
`−1

xn(s))− f1(s, x(s))‖ ds
s

≤ 2
Γ(u`)

(log t
T`−1

)u`−1
∫ T`

T`−1
(logs)−δ(K‖xn(s)− x(s)‖) ds

s

≤ 2K
Γ(u`)
‖xn − x‖E`

(log t
T`−1

)u`−1
∫ T`

T`−1
(log s)−δ ds

s

≤ 2K[(log T`)1−δ−(log T`−1)
1−δ ]

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1‖xn − x‖E`

,

i.e., we obtain
‖(Wxn)− (Wx)‖E`

→ 0 as n→ ∞.

Ergo, the operator W is continuous on E`.
Step 3: Claim: W is bounded and equicontinuous.
By Step 2, we have W(BR`

) = {W(x) : x ∈ BR`
} ⊂ BR`

. Thus, for each x ∈ BR`
, we

have ‖W(x)‖E`
≤ R`. Hence, W(BR`

) is bounded. It remains to indicate that W(BR`
) is

equicontinuous.
For t1, t2 ∈ J`, t1 < t2 and x ∈ BR`

, we have

‖(Wx)(t2)− (Wx)(t1)‖

=
∥∥∥− 1

Γ(u`)
(log

T`

T`−1
)1−u`(log

t2

T`−1
)u`−1

∫ T`

T`−1

(log
T`

s
)u`−1 f1(s, x(s))

ds
s

+
1

Γ(u`)
(log

T`

T`−1
)1−u`(log

t1

T`−1
)u`−1

∫ T`

T`−1

(log
T`

s
)u`−1 f1(s, x(s))

ds
s

+
1

Γ(u`)

∫ t2

T`−1

(log
t2

s
)u`−1 f1(s, x(s))

ds
s
− 1

Γ(u`)

∫ t1

T`−1

(log
t1

s
)u`−1 f1(s, x(s))

ds
s

∥∥∥
≤ 1

Γ(u`)
(log

T`

T`−1
)1−u`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

) ∫ T`

T`−1

(log
T`

s
)u`−1‖ f1(s, x(s))‖ds

s

+
1

Γ(u`)

∫ t1

T`−1

(
(log

t2

s
)u`−1 − (log

t1

s
)u`−1

)
‖ f1(s, x(s))‖ds

s
+

1
Γ(u`)

∫ t2

t1

(log
t2

s
)u`−1‖ f1(s, x(s))‖ds

s

≤ 1
Γ(u`)

(log
T`

T`−1
)1−u`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

) ∫ T`

T`−1

(log
T`

s
)u`−1‖ f1(s, x(s))− f1(s, 0)‖ds

s
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+
1

Γ(u`)
(log

T`

T`−1
)1−u`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

) ∫ T`

T`−1

(log
T`

s
)u`−1‖ f1(s, 0)‖ds

s

+
1

Γ(u`)

∫ t1

T`−1

(log
t2

t1
)u`−1‖ f1(s, x(s))− f1(s, 0)‖ds

s
+

1
Γ(u`)

∫ t1

T`−1

(log
t2

t1
)u`−1‖ f1(s, 0)‖ds

s

+
1

Γ(u`)

∫ t2

t1

(log
t2

s
)u`−1‖ f1(s, x(s))− f1(s, 0)‖ds

s
+

1
Γ(u`)

∫ t2

t1

(log
t2

s
)u`−1‖ f1(s, 0)‖ds

s

≤ 1
Γ(u`)

(log
T`

T`−1
)1−u`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

) ∫ T`

T`−1

(log
T`

s
)u`−1(log s)−δ(K‖x(s)‖)ds

s

+
f ?

Γ(u`)
(log

T`

T`−1
)1−u`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

) ∫ T`

T`−1

(log
T`

s
)u`−1 ds

s

+
1

Γ(u`)

∫ t1

T`−1

(log
t2

t1
)u`−1(log s)−δ(K‖x(s)‖)ds

s
+

f ?

Γ(u`)

∫ t1

T`−1

(log
t2

t1
)u`−1 ds

s

+
1

Γ(u`)

∫ t2

t1

(log
t2

s
)u`−1(log s)−δ(K‖x(s)‖)ds

s
+

f ?

Γ(u`)

∫ t2

t1

(log
t2

s
)u`−1 ds

s

≤ K
Γ(u`)

(log
T`

T`−1
)1−u`(log

T`

T`−1
)u`−1

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

)
‖x‖E`

∫ T`

T`−1

(log s)−δ ds
s

+
f ?

Γ(u` + 1)
(log

T`

T`−1
)1−u`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

)
(log

T`

T`−1
)u`

+
K((log t2)

1−δ − (log t1)
1−δ)

(1− δ)Γ(u`)
(log

t2

t1
)u`−1‖x‖E`

+
f ?

Γ(u`)
(log

t2

t1
)u`−1(log t1 − log T`−1)

+
K((log t2)

1−δ − (log t1)
1−δ)

(1− δ)Γ(u`)
(log

t2

t1
)u`−1‖x‖E`

+
f ?

Γ(u` + 1)
(log

t2

t1
)u`

≤ K((log T`)
1−δ − (log T`−1)

1−δ)

(1− δ)Γ(u`)
‖x‖E`

(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

)
+

f ?

Γ(u` + 1)
(log

T`

T`−1
)
(
(log

t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

)
+

2K((log t2)
1−δ − (log t1)

1−δ)

(1− δ)Γ(u`)
(log

t2

t1
)u`−1‖x‖E`

+
f ?

Γ(u`)
(log

t2

t1
)u`−1(log t1 − log T`−1) +

f ?

Γ(u` + 1)
(log

t2

t1
)u`

≤
[K((log T`)

1−δ − (log T`−1)
1−δ)

(1− δ)Γ(u`)
‖x‖E`

+
f ?

Γ(u` + 1)
(log

T`

T`−1
)
](

(log
t2

T`−1
)u`−1 − (log

t1

T`−1
)u`−1

)
+

[2K((log t2)
1−δ − (log t1)

1−δ)

(1− δ)Γ(u`)
‖x‖E`

+
f ?

Γ(u`)
(log t1 − logT`−1)

]
(log

t2

t1
)u`−1 +

f ?

Γ(u` + 1)
(log

t2

t1
)u`

Therefore, ‖(Wx)(t2)− (Wx)(t1)‖ → 0 as |t2 − t1| → 0. It implies that W(BR`
) is equicon-

tinuous.
Step 4: Claim: W is a k-set contraction.
For U ∈ BR`

, t ∈ J`, we get

ζ(W(U)(t)) = ζ((Wy)(t), y ∈ U)

≤
{

1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1ζ f (s, x(s))ds

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1ζ f (s, x(s))ds, y ∈ U
}

.

Then, Remark 2 implies that, for each s ∈ J`,
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ζ(W(U)(t)) ≤
{

1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1[Kζ̂(U)s−δ]ds

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1[Kζ̂(U)s−δ]ds, y ∈ U
}

.

≤
{

1
Γ(u`)

(log T`
T`−1

)u`−1
∫ T`

T`−1
[Kζ̂(U)s−δ]ds

+ 1
Γ(u`)

(log T`
T`−1

)u`−1
∫ t

T`−1
[Kζ̂(U)s−δ]ds, y ∈ U

}
.

≤ K(log T`)1−δ−(log T`−1)
1−δ

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1ζ̂(U) +

K(log t)1−δ−(log T`−1)
1−δ

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1ζ̂(U)

≤ 2K[(log T`)1−δ−(log T`−1)
1−δ ]

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1ζ̂(U)

Thus,

ζ̂(WU) ≤ 2K[(log T`)
1−δ − (log T`−1)

1−δ]

(1− δ)Γ(u`)
(log

T`

T`−1
)u`−1ζ̂(U).

From inequality (9), it follows that W is a k-set contraction.

Remark 3. Variable-order problems constitute a very important class of problems regarding their
applications [20,37]. Existence results for such problems are reported in [30–34]. Theorem 1 offers
a new existence result for two points BVPs of Hadamard-type fractional differential equations of
variable order using DFPT together with KMNC. Our results complement the existing ones and
contribute to the development of the fundamental theory of variable-order Hadamard fractional
differential equations.

4. UHR Stability

In this section, we will offer a UHR stability result for the BVP (1).

Theorem 3. Assume that:
(i) Assumptions (H1) and (H2) and (9) hold.
(ii) The function ϕ ∈ C(J`,R+) is increasing and there exists λϕ > 0, such that, for each

t ∈ J`, we have
H Iu`

T`−1
+ ϕ(t) ≤ λϕ(t)ϕ(t).

Then, the Equation (1) is UHR stable with respect to ϕ.

Proof. Let z ∈ C(J`,R) satisfies the following inequality:

‖H Du`

T`−1
+z(t)− f1(t, z(t),H Iu`

T+
`−1

z(t))‖ ≤ εϕ(t), t ∈ J`. (11)

Let y ∈ C(J`,R) be a solution of the problem{
H Du`

T`−1
+x(t) = f1(t, x(t)), t ∈ J`

x(T`−1) = 0, x(T`) = 0.

By using Lemma (5), we have

x(t) = − 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1 f1(s,x(s))

s ds

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1 f1(s,x(s))
s ds.
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By integration of (11) and from (H3), we obtain

‖z(t) + 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1

f1(s,z(s),H I
u`
T+
`−1

z(s))

s ds

− 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1
f1(s,z(s),H I

u`
T+
`−1

z(s))

s ds‖
≤ ε 1

Γ(u`)

∫ t
T`−1

1
s (log t

s )
u`−1 ϕ(s)ds

≤ ελϕ(t)ϕ(t).

On the other hand, for every t ∈ J`, we have

‖z(t)− x(t)‖ = ‖z(t) + 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1 f1(s,x(s))

s ds

− 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1 f1(s,x(s))
s ds‖

≤ ‖z(t) + 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1

f1(s,z(s),H I
u`
T+
`−1

z(s))

s ds

− 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1
f1(s,z(s),H I

u`
T+
`−1

z(s))

s ds‖

+ 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1
∫ T`

T`−1
(log T`

s )
u`−1

‖ f1(s,z(s),H I
u`
T+
`−1

z(s))− f1(s,x(s))‖

s ds

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1
‖ f1(s,z(s),H I

u`
T+
`−1

z(s))− f1(s,x(s))‖

s ds

≤ λϕ(t)εϕ(t) + 1
Γ(u`)

(log T`
T`−1

)1−u`(log t
T`−1

)u`−1∫ T`
T`−1

(log T`
s )

u`−1 1
s (log s)−δ(K‖z(s)− x(s)‖)ds

+ 1
Γ(u`)

∫ t
T`−1

(log t
s )

u`−1 1
s (log s)−δ(K‖z(s)− x(s)‖)ds

≤ λϕ(t)εϕ(t) + 1
Γ(u`)

(log t
T`−1

)u`−1
∫ T`

T`−1

1
s (log s)−δ(K‖z(s)− x(s)‖)ds

+ 1
Γ(u`)

(log t
T`−1

)u`−1
∫ t

T`−1

1
s (log s)−δ(K‖z(s)− x(s)‖)ds

≤ λϕ(t)εϕ(t) + K((log T`)1−δ−(log T`−1)
1−δ)

(1−δ)Γ(u`)
(log t

T`−1
)u`−1‖z− x‖E`

+
K((log t)1−δ−(log T`−1)

1−δ)
(1−δ)Γ(u`)

(log t
T`−1

)u`−1‖z− x‖E`

≤ λϕ(t)εϕ(t) + 2K[(log T`)1−δ−(log T`−1)
1−δ ]

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1‖z− x‖E`

.

Then,

‖z− y‖E`

(
1− 2K[(log T`)1−δ−(log T`−1)

1−δ ]
(1−δ)Γ(u`)

(log T`
T`−1

)u`−1
)
≤ λϕ(t)εϕ(t).

We obtain, for each t ∈ J`, that

‖z− y‖E`
≤ λϕ(t)εϕ(t)

1− 2K[(log T`)
1−δ−(log T`−1)

1−δ ]

(1−δ)Γ(u`)
(log

T`
T`−1

)u`−1

= [1− 2K[(log T`)1−δ−(log T`−1)
1−δ ]

(1−δ)Γ(u`)
(log T`

T`−1
)u`−1]−1λϕ(t)εϕ(t)

:= c f εϕ(t).

Hence, Equation (7) is UHR stable with respect to ϕ for each ` ∈ {1, 2, . . . , n}, which
implies that Equation (1) is UHR stable with respect to ϕ.

5. An Example

To demonstrate our results, we will present the following example. We deal with the
following fractional boundary value problem: Du(t)

1+ x(t) = 7
5
√

π
(log t)u(t) + (logt)−

1
3

t+3 x(t), t ∈ J := [1, e],
x(1) = 0, x(e) = 0.

(12)
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Let

f1(t, x) =
7

5
√

π
(log t)u(t) +

(log t)−
1
3

t + 3
x(t), (t, x) ∈ [1, e]× [0,+∞).

u(t) =
{

1.3, t ∈ J1 := [1, 2],
1.7, t ∈ J2 :=]2, e].

(13)

Then, we have

(log t)
1
3 | f1(t, x1)− f1(t, x2)| =

∣∣∣∣ 1
t + 3

x1(t)−
1

t + 3
x2(t)

∣∣∣∣
≤ 1

t + 3
|x1(t)− x2(t)|

≤ 1
4
|x1(t)− x2(t)|.

Ergo, (H2) holds with δ = 1
3 , K = 1

4 .

By (13), the equation in the problem (12) is divided into two expressions as follows: D1.3
1+ x(t) = 7

5
√

π
(log t)1.3 +

(log t)−
1
3

t+3 x(t), t ∈ J1,

D1.7
2+ x(t) = 7

5
√

π
(log t)1.7 +

(log t)−
1
3

t+3 x(t), t ∈ J2.

For t ∈ J1, the problem (12) is equivalent to the following problem: D1.3
1+ x(t) = 7

5
√

π
(log t)1.3 + (logt)−

1
3

t+3 x(t), t ∈ J1,
x(1) = 0, x(2) = 0.

(14)

Next, we will prove that the condition (9) is fulfilled. We have that

K[(log T1)
1−δ − (log T0)

1−δ]

(1− δ)Γ(u1)
(log

T1

T0
)u1−1 =

1
4

(log 2)
2
3

( 2
3 )Γ(1.3)

(log 2)0.3 ' 0.2935 <
1
2

.

Let ϕ(t) = (log t)
1
2

H Iu1
1+ ϕ(t) =

1
Γ(1.3)

∫ t

1
(log

t
s
)1.3−1 (log s)

1
2

s
ds

≤ 1
Γ(1.3)

∫ t

1
(log

t
s
)0.3 1

s
ds

≤ 0.75
Γ(2.3)

(log t)
1
2 := λϕ(t)ϕ(t).

Thus, condition (H3) is satisfied for ϕ(t) = (log t)
1
2 and λϕ(t) =

0.75
Γ(2.3) .

By Theorem 2, the problem (14) has a unique solution x1 ∈ E1, and, from Theorem 3,
Equation (14) is UHR stable with respect to ϕ(t).

For t ∈ J2, the problem (12) can been written as follows: D1.7
2+ x(t) = 7

5
√

π
(log t)1.7 +

(log t)−
1
3

t+3 x(t), t ∈ J2,
x(2) = 0, x(e) = 0.

(15)
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We see that

K[(log T2)
1−δ − (log T1)

1−δ]

(1− δ)Γ(u2)
(log

T2

T1
)u2−1 =

1
4

1− (log 2)
2
3

( 2
3 )Γ(1.7)

(log
e
2
)0.7 ' 0.0391 <

1
2

.

Accordingly, condition (9) is achieved. Moreover,

H Iu2
2+ ϕ(t) =

1
Γ(1.7)

∫ t

2
(log

t
s
)1.7−1 (log s)

1
2

s
ds

≤ 1
Γ(1.7)

∫ t

2
(log

t
s
)0.7 1

s
ds

≤ 1
Γ(2.7)

(log t)
1
2 := λϕ(t)ϕ(t).

Thus, condition (H3) is fulfilled for ϕ(t) = (log t)
1
2 and λϕ(t) =

1
Γ(2.7) .

On the account of Theorem 2, problem (15) possesses a solution x̃2 ∈ E2. Furthermore,
Theorem 3 yields that (15) is UHR stable with respect to ϕ(t).

It is known that

x2(t) =
{

0, t ∈ J1
x̃2(t), t ∈ J2.

As a result, by definition (6), the BVP (12) has a solution

x(t) =


x1(t), t ∈ J1,

x2(t) =
{

0, t ∈ J1,
x̃2(t), t ∈ J2.

In addition, by Theorem 3, Equation (12) is UHR stable.

6. Conclusions

With this paper, we contribute to the development of the existence theory of boundary
value problems with variable-order Hadamard derivatives. The main existence results
offered here are based on the Darbo’s fixed point theorem and Kuratowski’s measure
of noncompactness. Ulam–Hyers–Rassias stability results are also established for the
problem under consideration. Since equations with variable-order Hadamard derivative
are of importance for the theory and applications, our results can be of interest to many
researchers in the field. An example is also presented to illustrate the observed results.
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