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Abstract: Cameras are essential parts of portable devices, such as smartphones and tablets. Most
people have a smartphone and can take pictures anywhere and anytime to record their lives. How-
ever, these pictures captured by cameras may suffer from noise contamination, causing issues for
subsequent image analysis, such as image recognition, object tracking, and classification of an object
in the image. This paper develops an effective combinational denoising framework based on the
proposed Adaptive and Overlapped Average Filtering (AOAF) and Mixed-pooling Attention Refine-
ment Networks (MARNs). First, we apply AOAF to the noisy input image to obtain a preliminarily
denoised result, where noisy pixels are removed and recovered. Next, MARNs take the preliminary
result as the input and output a refined image where details and edges are better reconstructed.
The experimental results demonstrate that our method performs favorably against state-of-the-art
denoising methods.

Keywords: image denoising; overlapped averaging; mixed-pooling attention

1. Introduction

With the popularity of smartphones, the embedded cameras on phones have gradually
replaced traditional digital cameras. However, when the light passes through the camera
lens and is received by the image sensors, signals received through the analog to the digital
circuit may be tampered with due to the surge voltage or high temperature of the sensors,
resulting in signal errors and causing impulse noise. It severely degrades the visual quality
of the images taken [1] and harms the accuracy of subsequent computer vision applications,
such as object segmentation [2], detection, and tracking [3]. Therefore, it is critical to
develop an effective method to remove image noise.

There are many image noise types, including impulse noise, Gaussian noise, and
Poisson noise. Among the types of image noise, one of the most common impulse noises is
salt-and-pepper (SP) noise. SP noise usually presents a small black dot or white dot with
extreme intensities in the image. One of the most straightforward approaches to remove SP
noise is to apply median filtering [4]. However, it introduces artifacts and blurriness to the
denoised results since filtered pixels can be contaminated by noisy pixels. In addition, if
median filtering uses a larger kernel, including irrelevant pixels in filtering, the results can
be blurred. Hence, switching median filters [5–7] use multiple thresholds to switch among
different filters. Nevertheless, determining appropriate thresholds is difficult and could
affect the denoising performance.

Esakkirajan et al. [8] proposed the Modified Decision-Based Unsymmetrical Trimmed
Median Filter (MDBUTMF) to use median or average filtering selectively. Still, it only
works for low-density noisy images but often fails to deal with high-density noisy images.
Erkan et al. developed the Different Applied Median Filter (DAMF) [9], a two-pass median
filter with three different mask sizes (3× 3, 5× 5, 7× 7). Although filtering the input
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image containing high-level noise twice can generate better results, it may cause broken
and fake edges in the image. Fareed et al. [10] presented an alternative method, called Fast
Adaptive and Selective Mean Filter (FASMF), with a kernel whose size can grow from 3× 3
to 7× 7 based on the number of non-noise pixels around the noise ones, such as the DAMF.
The FASMF averages non-noise pixels to replace noisy pixels. Using mean filtering could
cause fewer fake edges but make the denoised result more blurred. Piyush Satti et al. [11]
proposed a multi-procedure Min–Max Average Pooling-based filter (MMAP) to remove SP
noise. However, it does not do well for images with high-density noise due to its small
kernel size (3× 3).

Other than pure filtering, image denoising using variational methods [12–14] is quite
common. However, these learning-based methods could fail when dealing with high-
density noisy images since the learned mapping from a few noise-free pixels to the entire
image is ill-posed and thus does not work well.

Deep learning has achieved great success in many image processing tasks. It has
also been applied to image denoising. Ulyanov et al. proposed Deep Image Prior [15]
based on self-supervised learning to use a deep autoencoder for removing image noise.
Xing et al. [16] proposed to remove SP noise from images using multiple denoisers based
on convolutional neural networks (CNN), each of which is for a different noise level.
Laine et al. [17] presented a high-quality deep image denoising method for Gaussian or
impulse noise. However, deep-learning-based denoising models often fail to handle images
with high-density noise directly.

This paper proposes a combinational denoising framework that can restore images
with high-density noise. The framework includes Adaptive and Overlapped Average
Filtering (AOAF) and Mixed-pooling Attention Refinement Networks (MARNs). The
proposed AOAF adopts average filtering with adaptive kernel size and smooths noisy
pixels in an overlapped manner to produce a preliminarily denoised result. The MARNs
can refine the preliminary result to reconstruct details and edges. Combining AOAF and
MARNs, we can effectively clean high-density noise and restore image texture and details.
The primary contributions of this work are two-fold:

1. We propose a combinational filtering framework that can successfully remove
high-density SP noise. The source code is made public here: https://github.com/
Sasebalballgit/-Image-Denoising-using-AOAF-and-MARNs (accessed on 12 May
2021) for academic purposes only.

2. We conduct extensive experiments to compare our method with state-of-the-art image
denoising methods using the DIV2k dataset [18] to demonstrate the superiority and
effectiveness of the proposed denoising framework qualitatively and quantitatively.

The rest of the paper is organized as follows. In Section 2, the related work will be
discussed. The proposed method is described in detail in Section 3. Section 4 introduces
the experimental environment and analyzes the results. Section 5 concludes the paper.

2. Related Work
2.1. Denoising with Conventional Linear or Nonlinear Filtering

Denoising using linear filtering [19] replaces a noisy pixel with the average of the
neighboring image pixels surrounding a noisy one. However, average filtering that includes
noise pixels creates artifacts in denoised results. Furthermore, it causes blurring since it
replaces a noisy pixel with the mean value of the filter kernel. For nonlinear filters, one of
the most commonly used ones for impulse noise is the median filter [4], which replaces
noisy pixels with the median value of the filter kernel. Median filtering can preserve more
edges and details than average filtering. However, it may also produce artifacts, such as
jagged edges. As the filter kernel size grows bigger due to higher-density noise, the image
would also be blurred. Therefore, weighted median filtering [20] was proposed to reduce
blurriness when using larger kernels. Since preserving image details while removing
noisy pixels is critical in denoising, bilateral filtering [21,22], which utilizes Gaussian-based
spatial and range kernels, considers pixel differences, meaning larger pixel differences

https://github.com/Sasebalballgit/-Image-Denoising-using-AOAF-and-MARNs
https://github.com/Sasebalballgit/-Image-Denoising-using-AOAF-and-MARNs
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result in small weights while smoothing to preserve possible edges. Nevertheless, it does
not work for impulse noise since noisy pixels usually are much more different from good
pixels, thus not filtered. Unlike these filters, we propose to use adaptive and overlapped
average filtering, which selects an appropriate kernel size based on the noise density and
smooth noisy pixels in an overlapped manner, performing exceptionally well for images
with high-density noise.

2.2. Denoising with Deep Neural Networks

In recent years, deep learning has achieved great success in image processing ap-
plications. In contrast to conventional filtering, deep learning has also been applied
to denoising. Zhang et al. [23] proposed feed-forward denoising convolutional neural
networks, which use residual learning and batch normalization to boost denoising perfor-
mance. Xing et al. [16] proposed to remove SP noise using multiple denoisers implemented
using convolutional neural networks, each of which is for a different noise scale. However,
it may introduce jagged edges in the denoised results, making the denoised images not
natural. Ulyanov et al. proposed Deep Image Prior [15], which uses a deep autoencoder
to restore images with noise through self-supervised learning, but it does not work for
impulse noise. Laine’s method [17] backbones a convolutional blind-spot network, where
the noisy center pixel in the receptive field is excluded for better denoising upon training.
In addition, it builds a Bayesian model that uses the posterior mean and variance estimation
to map a Gaussian approximation to the clean the prior based on noisy image observations.
However, it only works for images with low- or moderate-density Gaussian or impulse
noise but fails to repair images with high-density noise since there is no sufficient noise-free
information for the model to recover noisy pixels. In general, using deep neural networks
cannot perform well to remove high-density noise since it is difficult to learn random
sparse non-noisy pixels to recover other noisy ones through training. Thus, we adopt
deep neural networks to refine preliminary denoised results instead of dealing with noisy
images directly to circumvent this issue.

3. Proposed Method

In the following, we introduce the proposed denoising framework in detail in two
parts. First, we use the proposed AOAF to preliminarily smooth noisy pixels in an over-
lapped manner. Next, we design MARNs to refine the preliminary result and restore
image details and edges. The whole denoising process includes two stages. In the first
stage, we apply AOAF to the noisy image to eliminate all the noisy pixels and initially
restore the noisy pixels. In the second stage, the proposed MARNs refine the preliminarily
denoised result to recover image details and textures, making the denoised result natural
and distortion-free. Figure 1 shows the flowchart of the proposed framework.
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Figure 1. Flowchart of the proposed denoising framework.

3.1. Adaptive and Overlapped Average Filter (AOAF)

The AOAF is essentially used to determine the kernel size adaptively and to perform
average filtering in an overlapped fashion. We detail the proposed AOAF in Algorithm 1.
Let N be the total number of pixels, I is the noisy input image, IAOAF represents the de-
noised output image, and ⊗ and ./ represent the multiplication and division of individual
elements.



Mathematics 2021, 9, 1130 4 of 12

Algorithm 1 Adaptive and Overlapped Average Filter (AOAF)

Input: Noisy image I ∈ RN

Output: Denoised image IAOAF ∈ RN

1: C ← B

2: T ← B⊗ I

3: for each noisy pixel coordinate p in I do

4: r ← Find_Kernel_Radius(I, p)

5: pAvg equals the average of all the non-noise pixels in Ωp,r
I

6: for each pixel coordinate i in Ωp,r
I

7: if Ωp,r
I (i) is a noisy pixel then

8: C(i)← C(i) + 1

9: T(i)← T(i) + pAvg

10: end if

11: end for do

12: end for

13: IAOAF ← T./C

14: return IAOAF

For an image with SP noise, a noisy pixel has either the highest or lowest intensity,
normalized to be 1 and 0. We construct a non-noisy map B ∈ ZN for the input image
I ∈ RN as

B(i) =
{

0, I(i) = 0 or 1;
1, otherwise,

(1)

where i is a pixel coordinate. In Algorithm 1, C ← B means we assign B to C. In our
implementation, we declare both of them arrays. Thus, we can copy all the elements in
B to C. We declare a temporary array, denoted as T, to save accumulated filtered results,
initialized with B⊗ I to extract all the non-noisy pixels.

The function Find_Kernel_Radius determines the size of the filter kernel (2r + 1)2,
where r is the radius of the kernel, initially set to 1. For a noisy pixel with the coordinate of
p, if no non-noisy pixel is found in the (2r + 1)2 window centered at p, the radius r will
increase by 1. The window keeps enlarging until at least one non-noisy pixel is found in it.
The final window size determines the radius of the kernel. The average kernel with the
radius of r can be expressed as:

Kr
avg =

1
(2r + 1)2


1 1 · · · 1 1
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1
1 1 · · · 1 1

 ∈ R(2r+1)×(2r+1), (2)

where Kr
avg is a two-dimensional square matrix with all its elements the same as 1

(2r+1)2 ,
where 1 ≤ r ≤ 19. The kernel is convolved with the window centered at a pixel coordinate
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p in I, expressed as Ωp,r
I , meaning applying average filtering with Kr

avg to the image
window of the same size of the kernel. The convolution result pAvg can be derived by:

pAvg =
(Ωp,r

I ⊗Ωp,r
B )�Kr

avg

Ωp,r
B ⊗Kr

avg

=
∑∀i Ωp,r

I (i)×Ωp,r
B (i)×Kr

avg(i)

∑∀j Ωp,r
B (j)×Kr

avg(j)

=
∑∀i Ωp,r

I (i)×Ωp,r
B (i)

∑∀j Ωp,r
B (j)

,

(3)

where � represents the convolution operator, and Ωp,r
B is the window centered at the pixel

coordinate p in the non-noisy map B. To better understand these local windows center at
p, we use Figure 2 as an example of 7× 7 square windows (r = 3) centered at the pixel
coordinate of (4, 4) in a noisy image I and its corresponding non-noisy map B.

255 19 19 255 41 31 19

17 255 19 17 255 36 0

19 255 255 58 255 37 19

19 19 23 0 0 0 0

19 19 0 255 38 255 26

19 19 0 17 21 36 36

255 255 19 255 20 36 25

0 1 1 0 1 1 1

1 0 1 1 0 1 0

1 0 0 1 0 1 1

1 1 1 0 0 0 0

1 1 0 0 1 0 1

1 1 0 1 1 1 1

0 0 1 0 1 1 1

ΩI
p,3,p = (4,4)

Ω
B

p,3, p = (4,4)

I

B

Figure 2. An example of square windows centered at a pixel coordinate p in a noisy image I and the
corresponding non-noisy map B, denoted as Ωp,r

I and Ωp,r
B , respectively. Here, p = (4, 4) and r = 3.

Next, we consider pAvg as a denoised candidate for each noisy pixel in the window
Ωp,r

I and accumulate the average value in a temporary result T (as Algorithm 1 on the
line of T(i) ← T(i) + pAvg). We use the counter map C ∈ ZN corresponding to T(i)
to record the number of times the noisy pixels are accumulated (C(i) ← C(i) + 1). The
final denoised result IAOAF equals T divided element-wisely by the cumulative number of
denoised candidates C as IAOAF = T./C.

3.2. Mixed-pooling Attention Refinement Networks (MARNs)

Followed by AOAF, the proposed MTRNs refines the preliminary filtered result to
restore corrupted fine details in the denoised images. The MTRNs include five 3 × 3
convolutional layers (Conv) with the ReLU activation function and three mixed pooling
modules [24] that function as attention layers. For the five convolutional layers, except
for the first and last layers, the number of channels is 64. The number of channels in the
first and last layers equals the number of image channels (one for a grayscale image and
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three for a color image). The loss function is the mean square error between the estimated
denoised image and the noise-free ground-truth image. The detailed architecture is shown
in Figure 1.

To better restoring noisy images, we adopt the mixed pooling module (MPM) [24]
functioning as a self-attention model, consisting of two branches that simultaneously
capture short-range and long-range correlations between pixels across the entire image,
shown in Figure 3. For the short-range correlation branch, pyramid pooling is used to
collect short-distance dependencies. Let the input tensor be x ∈ RH×W×C, where H and W
represent the tensor height and width, and C is the number of channels. In pyramid pooling,
it stacks two adaptive average pooling layers in parallel to produce yKz ∈ RKz×Kz×C as:

yKz
i,j,c =

1
sz

v × sz
h

sz
v−1

∑
m=0

sz
h−1

∑
n=0

x(i×sz
v),(j×sz

h),c
, (4)

where z = 1 or 2, sz
v = bH+Kz−1

Kz
c, sz

h = bW+Kz−1
Kz

c. Here, we set K1 = 12 and K2 = 20.
Next, after applying a 3× 3 2D convolution, denoted as f3×3(·), to yK1 , yK2 , and x, we
obtain ỹK1 = f3×3(yK1), ỹK2 = f3×3(yK2), and x̃ = f3×3(x). Then, they are upsampled
and merged as:

ys
i,j,c = x̃i,j,c +

2

∑
z=1

ỹKz

b i+Kz−1
Kz c,b j+Kz−1

Kz c,c
, (5)

where ys ∈ RH×W×C.
The long-range correlation branch adopts strip pooling to collect long-distance depen-

dencies across the entire input. Applying horizontal and vertical strip pooling to the input
tensor x generates H × 1 and 1×W outputs, yv ∈ RH×C and yh ∈ RW×C as:

yv
i,c =

1
W

W−1

∑
j=0

xs
i,j,c, 1 ≤ i ≤ H; yh

j,c =
1
H

H−1

∑
i=0

xs
i,j,c, 1 ≤ j ≤W. (6)

Next, after applying a 3 × 1 1D convolution, denoted as f3×1(·), to yh and 1 × 3 1D
convolution f1×3(·) to yv, we obtain ỹh = f3×1(yh) and ỹv = f1×3(yv). Then, they are
upsampled and merged as yl

i,j,c = ỹv
i,c + ỹh

j,c, where yl ∈ RH×W×C.
In each branch, outputs are upsampled to the original input size H×W and merged by

summation, followed by the ReLU activation function σrelu and another 3× 3 convolution.
The output for the short-range correlation branches is denoted as Os = f3×3(σrelu(ys)), and
that for the long-range, Ol = f3×3(σrelu(yl)). The two branches’ outputs are concatenated
and convolved with a 3× 3 convolution and then passed through the sigmoid function σsig
to turn into attention maps. The final MPM output O is given as:

O = I ⊕
(

I ⊗ σsig( f3×3(Os ‖Ol))
)
, (7)

where ⊕, ⊗, and ‖ represent element-wise summation, element-wise multiplication, and
concatenation, respectively. Adopting MPMs in our model can emphasize the image details
more, such as edges, shapes, and textures, and make denoising results look more natural.
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H×W
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ReLU⊕

↑

↑
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K1×K1

K2×K2

1×W

Input

Short-range correlation branch

Long-range correlation branch

𝑂𝑠

𝑂𝑙

𝐱
𝑂

Output

𝐲𝐡

𝐲𝐯
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 𝐲𝐊𝟏

 𝐲𝐯

 𝐲𝐡

Figure 3. The Mixed Pooling Module (MPM) [24].

4. Experimental Results
4.1. Settings for Training and Testing

For training the MARNs and testing our denoising framework, we used the grayscale
version of the DIV2K dataset [18], where it contains 800 high-definition and high-resolution
images collected from the Internet. These images were divided into training and test
datasets, which contain 600 and 200 images, respectively. All images were resized to
512× 512. Since it is relatively easy for most existing methods to denoise images with
less than 50% SP noise, we tested denoising capacity with higher-density SP noise. Thus,
we simulated noisy images with various noise density levels by randomly adding 50%,
60%, 70%, 80%, and 90% SP noise to images. Note that our method works well for
lower-density SP noise, even though this was not included in our training dataset. There
were 3000 (600 images ×5 noise levels) images generated to train the MARNs and 1000
(200 images ×5 noise levels) for testing. Note that we used 1000 test images to generate all
the experimental results, including Figures 4–6 and Tables 1 and 2. We adopted the Adam
optimizer with a fixed learning rate of 1× 10−3 and ran 80 epochs to train our networks.
All the experiments were run on a desktop with Amd Ryzen 7 3700× 3.6 GHz CPU, 64GB
RAM, and an Nvidia GeForce RTX 3090 Ti with 24GB of VRAM.

4.2. Comparisons of Benchmark Methods

We conducted experiments to evaluate the performance with two full-reference metrics
(PSNR, SSIM) and one no-reference metric (NIQE). PSNR represents pixel similarity, SSIM
measures similarity of luminance, contrast, and structure, and NIQE could represent image
naturalness. For both PSNR and SSIM [25], a more significant value means a higher
similarity between a denoised image and its noise-free version. The Natural Image Quality
Evaluator (NIQE) [26] is an entirely blind image quality analyzer that uses space-domain
natural scene statistics to evaluate an image’s visual quality. A small value of the NIQE
represents a better quality.

We compared our proposed framework against four state-of-the-art SP denoising
methods, including MDBUTMF [8], DAMF [9], FASMF [10], and MMAP [11], quantita-
tively and qualitatively. Note that since MMAP [11] does not release code, we used our
implementation. As shown in Figure 4, we can see that denoising with MDBUTMF [8],
DAMF [9], FASMF [10], and MMAP [11] can remove 50–90% of SP noise. For the noise
level of 50%, all these methods can produce good denoising results. However, they did not
do well in restoring image details and even produced jagged edges. MMAP [11] denoises
images with a small kernel size, not working well for high-density noise. By contrast, the
proposed framework performs much better than the other compared methods, making the
denoising results look like original, noise-free, high-definition and high-resolution images.
Figure 5 shows the denoising results for color images. Since all the compared methods are
designed to work for images with a single channel, we apply a denoising method to each
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of the red, blue, and green channels individually for color image denoising. Again, our
method performs the best with degraded image edges and details reconstructed in color
image denoising. Figure 6 demonstrates more denoising results with the most challenging
cases (90% noise), where we can see the proposed method can restore noisy images with a
variety of contents.

  

       

PSNR/SSIM/NIQE 8.37/.0199/20.55 33.38/.94/4.46 35.82/.96/3.59 36.76/.97/4.43 34.74/.95/6.31 39.56/.98/3.50 

       

PSNR/SSIM/NIQE 7.79/.0126/21.64 33.09/.94/7.06 34.29/.95/4.38 34.84/.96/5.78 28.90/.85/6.92 37.86/.97/4.31 

       

PSNR/SSIM/NIQE 7.21/.0117/65.40 29.46/.88/6.60 30.82/.91/5.44 31.24/.92/6.22 22.17/.59/8.77 33.32/.94/5.09 

       

PSNR/SSIM/NIQE 6.48/.0121/89.54 24.79/.71/8.63 25.45/.74/5.54 25.90/.75/6.30 18.66/.45/12.00 27.71/.82/4.00 

       

PSNR/SSIM/NIQE 5.82/.0062/473.68 22.81/.69/7.02 24.50/.77/4.80 25.06/.77/5.94 16.35/.46/11.61 26.83/.82/4.34 

(a) (b) (c) (d) (e) (f) (g) 

 

Figure 4. Examples of denoising results for images with 50-90% noise added using different methods.
We show the corresponding objective scores below the measured images. The best scores are in red.
(a) Original image. (b) Images with 50%, 60%, 70%, 80%, 90% noise added (from the top to bottom
rows). Denoising results using (c) MDBUTMF [8], (d) DAMF [9] , (e) FASMF [10], (f) MMAP [11],
and (g) the proposed (AOAF+MARNs).

Table 1 shows the objective quality comparisons of all the compared methods, where
all the scores are averaged over the test dataset. As seen, denoising with the proposed
AOAF only achieves better results for images with over 70% noise than MDBUTMF [8],
DAMF [9], FASMF [10], and MMAP [11]. For images with 50% and 60% noise, AOAF
performs comparably against the second-best method, FASMF [10], in PSNR and SSIM
since most denoising methods work fine with less noise but not for more challenging
cases (more than 70% noise). AOAF can generate more smooth denoising results with
overlapping averaging. Note that since NIQE favors sharp images, AOAF does not have
the best score here. Even though the other methods [8–10] have better NIQE scores, they
generated fake edges, presenting unreal denoising images, as shown in Figures 4–6. Our
denoising framework that cascades AOAF and MARNs works best in PSNR, SSIM, and
NIQE on average. Table 2 shows an ablation study of the proposed framework, where
all the scores are averaged over the test dataset. As can be seen, denoising with AOAF
followed by only five convolutional layers without MPMs (AOAF+Conv) works better than
using AOAF only. Using MARNs with AOAF (AOAF+Conv+MPMs) performs even better,
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demonstrating that utilizing the attention mechanism in denoising leads to a significant
gain. Figure 7 shows that AOAF can remove SP noise and rudimentarily restore images.
AOAF’s results passing through five convolutional layers are a little sharper but still
blurred. Combining AOAF with the designed MARNs can further refine the results to
achieve higher visual quality. Therefore, AOAF plus MARNs can restore images with
high-density SP noise, making the denoising results look natural and as though the image
was never degraded. Cascading AOAF and MARNs has proven an effective framework in
denoising.

  

       

PSNR/SSIM/NIQE 7.38/.0754/30.65 30.99/.95/7.18 32.87/.97/4.17 33.94/.98/5.32 31.57/.96/6.92 34.58/.98/5.57 

       

PSNR/SSIM/NIQE 7.28/.0681/38.09 25.10/.88/4.90 27.27/.93/3.87 28.07/.94/4.08 22.18/.74/5.36 32.25/.96/3.07 

       

PSNR/SSIM/NIQE 6.82/.0359/67.05 26.74/.79/7.35 28.69/.89/5.35 29.12/.89/5.85 19.35/.61/8.55 31.28/.92/5.86 

       

PSNR/SSIM/NIQE 5.93/.0289/62.83 23.28/.77/7.21 25.01/.87/4.14 25.28/.86/5.45 15.27/.44/9.29 27.51/.90/3.50 

       

PSNR/SSIM/NIQE 5.96/.0174/63.94 23.31/.66/5.71 24.99/.77/4.78 25.52/.75/4.89 17.99/.53/9.66 26.62/.78/4.96 

(a) (b) (c) (d) (e) (f) (g) 

 

Figure 5. Examples of denoising results for color images with 50-90% noise added using different
methods. We show the corresponding objective scores below the measured images. The best scores
are in red. (a) Original image. (b) Images with 50%, 60%, 70%, 80%, 90% noise added (from the
top to bottom rows). Denoising results using (c) MDBUTMF [8], (d) DAMF [9] , (e) FASMF [10],
(f) MMAP [11], and (g) the proposed (AOAF+MARNs).
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Table 1. Objective quality comparisons of all the compared methods. All the scores are averaged over the test dataset. The
best score in each column is marked in red and the second-best in blue.

PSNR↑ SSIM↑ NIQE↓

Noise Level 50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

MDBUTMF [8] 27.85 26.87 25.91 24.84 22.04 0.86 0.82 0.78 0.73 0.61 5.77 6.95 8.05 8.23 7.55

DAMF [9] 29.90 28.54 27.18 25.67 23.49 0.91 0.88 0.84 0.78 0.69 4.90 5.21 5.31 5.34 5.66

FASMF [10] 30.49 29.11 27.68 26.08 24.05 0.92 0.89 0.84 0.78 0.68 5.18 5.74 6.34 6.46 5.99

MMAP [11] 29.94 23.71 19.34 17.49 15.78 0.90 0.68 0.49 0.41 0.35 7.15 7.97 8.97 10.92 14.69

AOAF 30.02 29.02 27.94 26.65 24.83 0.90 0.88 0.84 0.79 0.71 6.89 7.81 8.27 8.18 7.59

AOAF+MARNs 32.83 31.51 29.98 28.18 25.74 0.94 0.92 0.89 0.84 0.75 3.76 3.94 4.10 4.49 5.51

Table 2. Ablation study of the proposed framework. All the scores are averaged over the test dataset. The best score in each
column is marked in red and the second-best in blue.

PSNR↑ SSIM↑ NIQE↓

Noise Density 50% 60% 70% 80% 90% 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

AOAF 30.02 29.02 27.94 26.65 24.83 0.90 0.88 0.84 0.79 0.71 6.89 7.81 8.27 8.18 7.59

AOAF+Conv 31.96 30.76 29.31 27.56 25.25 0.93 0.91 0.88 0.83 0.74 4.34 4.74 5.28 6.16 7.59

AOAF+Conv+MPMs 32.83 31.51 29.98 28.18 25.74 0.94 0.92 0.89 0.84 0.75 3.76 3.94 4.10 4.49 5.51

  

       

PSNR/SSIM/NIQE 5.86/.0054/512.66 24.74/.67/6.76 26.67/.75/6.58 27.06/.75/5.75 16.59/.36/15.88 29.16/.83/6.66 

       

PSNR/SSIM/NIQE 5.81/.0073/487.72 20.87/.54/7.21 22.03/.60/5.19 22.60/.60/6.19 16.72/.42/12.47 24.22/.67/3.93 

       

PSNR/SSIM/NIQE 5.70/.0070/492.54 22.29/.57/7.35 23.79/.65/5.31 24.34/.64/5.10 15.34/.32/14.63 25.52/.70/5.50 

       

PSNR/SSIM/NIQE 5.90/.0066/485.72 23.19/.57/7.85 25.08/.64/5.18 25.63/.64/6.48 17.15/.38/12.69 27.08/.71/6.03 

       

PSNR/SSIM/NIQE 5.41/.0059/484.14 23.50/.68/6.49 24.73/.74/4.73 25.25/.74/5.36 16.86/.39/14.20 27.56/.83/4.77 

(a) (b) (c) (d) (e) (f) (g) 

 

Figure 6. More examples of denoising results for images with 90% noise added using different
methods. We show the corresponding objective scores below the measured images. The best scores
are in red. (a) Original image. (b) Noisy images. Denoising results using (c) MDBUTMF [8],
(d) DAMF [9] , (e) FASMF [10], (f) MMAP [11], and (g) the proposed (AOAF+MARNs).
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Figure 7. Ablation study of the proposed denoising framework based on subjective comparisons.
We show the corresponding objective scores below the measured images. The best scores are in
red. (a) Original image. (b) Image with 90% noise added. Denoising results using (c) AOAF,
(d) AOAF+Conv, and (e) AOAF+Conv+MPMs.

5. Conclusions

This paper proposed an effective denoising framework that cascades AOAF and
MARNs to remove high-density SP noise and restore image details. Applying AOAF
to the noisy input image produces the preliminarily denoised result with noisy pixels
removed and recovered, followed by MTRNs to refine the preliminary result to reconstruct
image details. The proposed method performs favorably against state-of-the-art denoising
methods for a wide range of high densities of SP noise in images.
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Abbreviations
Acronyms used in the paper:

AOAF Adaptive and Overlapped Average
MARNs Mixed-pooling Attention Refinement Network
MDBUTMF Modified Decision-Based Unsymmetrical Trimmed Median Filter
DAMF Different Applied Median Filter
FASMF Fast Adaptive and Selective Mean Filter
MMAP Min-Max Average Pooling
CNN convolutional neural networks
NIQE Natural Image Quality Evaluator
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