
mathematics

Article

Three-Dimensional Numerical Study of the Effect of Protective
Barrier on the Dispersion of the Contaminant in a Building

Chemseddine Maatki 1,2

����������
�������

Citation: Maatki, C.

Three-Dimensional Numerical Study

of the Effect of Protective Barrier on

the Dispersion of the Contaminant in

a Building. Mathematics 2021, 9, 1125.

https://doi.org/10.3390/

math9101125

Academic Editors: Theodore E. Simos

and Charampos Tsitouras

Received: 3 April 2021

Accepted: 13 May 2021

Published: 16 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical and Industrial Engineering, College of Engineering, Imam Mohammad Ibn Saud
Islamic University, Riyadh 11432, Saudi Arabia; casmaatki@imamu.edu.sa

2 Laboratory of Metrology and Energy System, University of Monastir, Monastir City 5000, Tunisia

Abstract: The finite volume method and potential-vorticity vector formalism in their three-dimensional
form were used to numerically study the impact of an adiabatic and impermeable vertical barrier on
the dispersion of a local aero-contaminant due to the double-diffusive Rayleigh–Benard convection
inside a cubic container. Different governing parameters such as the Rayleigh number, buoyancy ratio
and barrier height were analyzed for Le = 1.2 and Pr = 0.7, representing an air-contaminant mixture.
The potential-vector-vorticity formalism in the three-dimensional form allowed the elimination of
the pressure terms appearing in the Navier–Stokes equations. It was found that the heat and mass
transfer as well as the effectiveness of the barrier in reducing contaminant dispersion are strongly
influenced by the buoyancy ratio, the barrier size and the Rayleigh number. In addition, the barrier
effectiveness is more than 70% for a height of half the building height.

Keywords: numerical study; finite volume method; 3D vorticity-potential vector; double diffusive-
convection; Rayleigh–Benard; protective barrier; aero-contaminant dispersion

1. Introduction

Improving air quality has been one of the most important objectives of scientific
research in recent years, particularly in view of the spread of viruses. The assessment of
air quality is based on the measurement and identification of all types of air pollutants,
without attempting to distinguish between pollutants of natural origin and those resulting
from human activity or virus circulation. An air monitoring system or solution can be used
to manage exposure to air pollutants when the source strength is local and moderate, such
as smoke, dust or sprays. Several researchers have investigated air quality monitoring
using analytical, experimental and numerical models.

Many dangerous chemical pollutants are present in the indoor environment that
adversely affect people’s comfort and health [1]. Formaldehyde and volatile organic com-
pounds (VOCs) are the main pollutants emitted from building materials that humans may
be exposed to through inhalation [2,3]. Several authors have investigated the emission
characteristics of formaldehyde and volatile organic compounds from building materials
and the associated health risks in order to achieve an effective source control and create a
sustainable built environment. The researchers focused on creating analytical or numeri-
cal solutions to predict the concentration of pollutants in a room or indoor environment
based on the mass transfer analysis [4–8]. Wiglusz et al. [9] examined an experimental
study of the effect of temperatures on emissions of formaldehyde and volatile organic
compounds (VOCs) from relevant plates. They showed that at 23 and 29 ◦C, there are no
formaldehyde emissions and they observed very low emissions of VOCs. But at 50 ◦C,
the authors noticed high initial emissions of formaldehyde and VOCs, which decreased
over time. Xiong et al. [10] theoretically studied the overall effect of temperature and
relative humidity on the emission rate of pollutants from building materials. In addition,
the authors proposed a new approach to assess the impact on human health due to pollu-
tants emitted at varying temperatures and relative humidity and concluded that there is
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a correlation between the likelihood of human cancer (HCP) and environmental factors.
Deng et al. [11] numerically examined the double diffusive mixed convection in a bidi-
mensional cavity with contaminant. They noticed that the flow structure due to a double-
diffusive convection can detect indoor airflow, heat transfer structures and pollutants.
Yu-Shu et al. [12] numerically studied the forced and mixed convection in a cavity filled
with a porous medium with a local contaminant source. They found a critical factor in
terms of the Reynolds number and Darcy number for a flow structure transition from
vortex-free to multi-vortexes. Zhao et al. [13] numerically studied the double diffusive con-
vection in the cavity saturated by porous media with local heat and a contaminant source.
The authors concluded that the permeability of porous medium strongly affects the heat
and mass transfer in the cavity. A numerical investigation of double diffusive convection
in the enclosure with local CO2 source was studied by Arellano et al. [14]. The authors
noted that the Nusselt number is directly affected by the location of the contaminant’s
source. Li et al. [15] numerically studied the double diffusive convection and radiation
effect on the dispersion of gas contaminant in a cavity. They noticed that surface radiation
represents about 37–71% of the heat transfer from the heat sources. They also remarked
that the diffusion of the contaminants is dependent on the temperature. Consequently, the
contaminants exhibit different distribution patterns in the air.

Several numerical and mathematical methods have been used in recent years to solve
the convection-diffusion differential equation. Abolhasani et al. [16] introduced a resolution
method based on the variational iteration method (VIM). Geiser et al. [17] applied parallel
iterative splitting methods, allowing an acceleration of the solver and subsequently a
reduction of the computation time.

Emissions and dispersion of viruses or other volatile organic compounds (VOCs)
inside buildings is a major problem that has needed to be addressed in recent years.
This is because airflow near walls and under the influence of thermal gradient plays an
important role in the transport of pollutants from the emitting source to the ambient air and
because recirculating air in forced convection can be dangerous in terms of increasing the
dispersion of pollutants. Therefore, for these reasons, an effective prediction of the manner
in which contaminants are emitted and dispersed in natural convection allows us to control
their hazards.

The main objective of this work is to analyze the flow pattern of the natural 3D double-
diffusive convection in an air-filled building with a local source of contaminants, using the
finite volume method and the vector potential-vorticity formalism in three-dimensional
form, to analyze the mode of dispersion of the contaminants, and to examine the efficiency
of the placement of a barrier to avoid contamination of the whole building volume for
different Rayleigh numbers and buoyancy ratios.

2. Physical Configuration and Governing Equations

In this section, the physical configuration, the assumptions and the governing equa-
tions are described. The studied configuration, illustrated in Figure 1, represents an
air-filled cavity with a local source of contamination located at the bottom surface. The
air-contaminant mixture in the cavity is characterized by the Lewis and Prandtl numbers
Le = 1.2 and Pr = 0.72, respectively. The bottom wall is hot (T′H) and the top wall is cold
(T′c). However, the source of contamination is located in half of the surface of the bottom
wall with a high concentration (C′h). The other half of the bottom wall and the top wall
have a zero concentration (C′l). The remaining walls (vertical lateral sides) are considered
adiabatic, impermeable. The cavity is a cubic of width L. The impact of the insertion of an
adiabatic, impermeable vertical barrier, positioned in the middle of the bottom wall, on the
dispersion of the contaminant in the whole cavity was investigated. The effect of the height
(H’) of this wall as well as the ratio of the volume forces (N) and the Rayleigh number (Ra)
were studied, while the thickness of the barrier was fixed at 0.05 × L.
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Figure 1. Physical model of the building: (a) Reference model without barrier; (b) Building with barrier. 
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Figure 1. Physical model of the building: (a) Reference model without barrier; (b) Building with barrier.

In this study, the following assumptions were adopted to simplify the formulation of
the mathematical model:

• The fluid in the cavity is assumed to be Newtonian and incompressible.
• The flow is assumed to be laminar.
• Heat transfer by radiation is negligible.
• There is no heat or mass source and no chemical reaction
• Soret and Dufour effects are negligible
• The thermo-physical properties of the fluid are assumed to be constant and the

Boussinesq approximation is adopted.

The last approximation assumes that the density is constant in all terms of the transfer
equations except in the gravitational term, where it varies linearly with temperature and
concentration by the following relation:

ρ = ρ0
[
1− βT

(
T′ − T0

)
− βC

(
C′ − C0

)]
(1)

where T′ is the temperature of the fluid mixture and C′ is the concentration of the contam-
inant at a given point in the cavity. ρ0, T0 and C0 are respectively the reference density,
temperature and concentration. βT and βC represent the thermal and solutal expansion
coefficients of the fluid. They are defined by:

βT = − 1
ρ0

(
∂ρ

∂T′

)
P′ ,C′

and βC = − 1
ρ0

(
∂ρ

∂C′

)
P′ ,T′

. (2)

The fluid motion in the cavity is induced by density variations due to temperature and
concentration gradients. Considering the simplifying assumptions, the general equations
governing the fluid flow in double diffusion convection are, respectively, the continuity
equation, the conservation of momentum, the conservation of energy and the conservation
of mass, which can be written in the following vector form:

Continuity ∇
→
V ′ = 0 (3)

Momentum
∂
→
V
′

∂t′
+

(→
V × ′

→
∇
)→

V
′
= − 1

ρ0

→
∇P′ + ν∆

→
V
′
+
[
1− βT

(
T′ − T0

)
− βC

(
C′ − C0

)]→
g (4)

Energy
∂T′

∂t′
+
→
V
′
×∇T′ = α∆T′ (5)

Mass
∂C′

∂t′
+
→
V
′
×∇C′ = D∆C′. (6)
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3. Resolution Method Based on the Vorticity-Potential Vector Formalism and
Non-Dimensioning of Equations

To solve the Navier–Stokes equations, vector potential-vorticity formalism is used,
which in a three-dimensional configuration eliminates the pressure term from the momen-
tum equation. This method of resolution was adopted by Mallinson and de Vahl Davis [18]
and Wakashima and Saitoh [19]. The vector potential and vorticity are defined by the
following two relations, respectively:

→
ω
′
=
→
∇×

→
V
′

and
→
V
′
=
→
∇×

→
ψ
′
. (7)

The dimensionless formulation of the problem is performed by defining a dimension-
less space variable, dimensionless time, dimensionless velocity, vector potential, vorticity,
dimensionless temperature and concentration as:

X = x/L Y = y/L Z = z/L H = H′/L
ω = αω′/L2 t = αt′/L2 V = LV′/α ψ = ψ′/α

T = T′−T′c
T′H−T′c

C = C′−C′ l
C′h−C′ l

.
(8)

After using the dimensionless variables, the system of equations governing the prob-
lem becomes:

∂Vx

∂X
+

∂Vy

∂Y
+

∂Vz

∂Z
= 0 (9)

−→ω = ∇2→ψ (10)

∂
→
ω

∂t
+

(→
V ×

→
∇
)
→
ω −

(
→
ω ×

→
∇
)→

V = Pr×∇2→ω + RaPr
[

∂T
∂z

, 0,−∂T
∂x

]
− RaPrN

[
∂C
∂z

, 0,−∂C
∂x

]
(11)

∂T
∂t

+
→
V ×∇T = ∇2T (12)

∂C
∂t

+
→
V ×

→
∇C =

1
Le

→
∇

2
C. (13)

The dimensionless parameters appearing in the equations are:

N =
βC(C′h − C′ l)
βT(T′H − T′c)

Ra =
gβT(T′h − T′c)L3

να
Pr =

ν

α
Le =

α

D
. (14)

N represents the ratio of the solutal volume forces to the thermal volume forces, also
called the buoyancy ratio. Ra, Pr and Le represent the thermal Rayleigh number, Prandtl
number and Lewis number, respectively.

The local Nusselt and Sherwood numbers are written as follows:

Nu =
∂T
∂x

∣∣∣∣
x=0,1

Sh =
∂C
∂x

∣∣∣∣
x=0,1

. (15)

The average Nusselt and Sherwood numbers on the walls are:

Nu =
∫ 1

0

∫ 1

0
Nu× ∂y∂z Sh =

∫ 1

0

∫ 1

0
Sh× ∂y∂z. (16)

The boundary conditions are as follows:

Temperature : T = 1 at X = 0, T = 0 at x = 1,
∂T
∂n

= 0 on the remaining walls (adiabatic) (17)
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Concentration : C = 1 at X = 0, Y > 0.5, C = 0 at X = 1 and X = 0, Y < 0.5, ∂C
∂n = 0 on the other walls

(impermeable)
(18)

Vorticity :
ωx = 0, ωy = − ∂Vz

∂X , ωz =
∂Vy
∂X at X = 0 and 1

ωx = ∂Vz
∂Y , ωy = 0, ωz = − ∂Vx

∂Y at Y = 0 and 1
ωx = − ∂Vy

∂Z , ωy = ∂Vx
∂Z , ωz = 0 at Z = 0 and 1

(19)

Vector potential :

∂ψx
∂X = ψy = ψz = 0 at X = 0 and 1
ψx =

∂ψy
∂Y = ψz = 0 at Y = 0 and 1

ψx = ψy = ∂ψz
∂Z = 0 at Z = 0 and 1

(20)

Velocity : Vx = Vy = Vz = 0 On all walls. (21)

The boundary conditions of the adiabatic and impermeable barrier are:

Vx = Vy = Vz = 0,
∂T
∂n

= 0,
∂C
∂n

= 0. (22)

4. Numerical Modeling, Discretization, Grid Sensitivity Study and Code Verification
4.1. Finite Volume Method

The numerical code developed during this work was based on the finite volume
method. This method consists of subdividing the three-dimensional computational domain
into a number of control volumes [20]. The dependent variable considered is calculated
at each of these points. The algebraic equations defined at these nodes are obtained by
integrating the conservation equations through the control volumes for each node.

4.2. Meshing

As shown in Figure 2, a rectangular mesh was considered with Nx nodes on the (x)
axis, Ny nodes on the (y) axis and Nz nodes on the (z) axis.
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Figure 2. Schematic view of the mesh.

The discrete variables t, x and y are written as follows:

• i: node index on the (x) axis
• j: node index on the (y) axis
• k: node index on the (z) axis
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x1 = 0, x2 = 0 +
∆x
2

, i = 3, Nx− 1, xi = 0 + (i− 1)∆x and xNx = 1 (23)

y1 = 0, y2 = 0 +
∆y
2

, j = 3, Ny− 1, yj = 0 + (j− 1)∆y and yNy = 1 (24)

z1 = 0, z2 = 0 +
∆z
2

, k = 3, Nz− 1, zk = 0 + (k− 1)∆z and zNz = 1 (25)

• ∆x is the space step size on the (x) axis
• ∆y is the space step size on the (y) axis
• ∆z is the space step size on the (z) axis
• And ∆t is the time step

∆x, ∆y and ∆z were defined by the following relations:

∆x =
1

Nx− 1
, ∆y =

1
Ny− 1

and ∆z =
1

Nz− 1
. (26)

4.3. Equations Discretization

The transfer Equations (11)–(13) can be written in the following general form:

∂Φ
∂t

+
∂

∂x

(
Vx·Φ− ΓΦ

∂Φ
∂x

)
+

∂

∂y

(
Vy·Φ− ΓΦ

∂Φ
∂y

)
+

∂

∂z

(
Vz·Φ− ΓΦ

∂Φ
∂z

)
= SΦ (27)

with Φ: T, C, ωx, ωy or ωz, ΓΦ: dimensionless coefficient and SΦ: source term.
Table 1 summarizes all the transfer equations, momentum, energy and mass.

Table 1. Overview of the dimensionless equations.

Φ ΓΦ SΦ

ωx Pr ωx
∂Vx
∂X + ωy

∂Vx
∂Y + ωz

∂Vx
∂Z + RaPr ∂T

∂Z
ωy Pr ωx

∂Vy
∂X + ωy

∂Vy
∂Y + ωz

∂Vy
∂Z

ωz Pr ωx
∂Vz
∂X + ωy

∂Vz
∂Y + ωz

∂Vz
∂Z − RaPr ∂T

∂Z
T 1 0
C 1

Le 0

Equation (27) can be written as:

∂Φ
∂t

+
∂Lx

∂X
+

∂Ly

∂Y
+

∂Lz

∂Z
= SΦ (28)

where Lx, Ly and Lz are the total convection and diffusion fluxes in the x, y and z directions,
respectively, and are defined by:

Lx = VxΦ− ΓΦ
∂Φ
∂X

, Ly = VyΦ− ΓΦ
∂Φ
∂Y

and Lz = VzΦ− ΓΦ
∂Φ
∂Z

. (29)

The integration of Equation (27) on a control volume gives (Patankar [21]):

(
Φp −Φ

◦
p

)
∆x∆y∆z + (Lxe − Lxw)∆y∆z∆t +

(
Lyn − Lys

)
∆x∆z∆t + (Lzh − Lzb)∆x∆y∆t = S∆x∆y∆z∆t. (30)

The superscript ◦ indicates that it is the previous time (according to the explicit
scheme).

Equation (29) can be written as:(
Φp −Φ

◦
p

)∆x∆y∆z
∆t

+ (Le − Lw) + (Ln − Ls) + (Lh − Lb) = S∆x∆y∆z (31)
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where:

Le = Lxe∆y∆z, Lw = Lxw∆y∆z, Ln = Lyn∆x∆z,Ls = Lys∆x∆z, Lh = Lzh∆x∆y and Lb = Lzb∆x∆y. (32)

The source term S is linearized as:

S = Sc + SpΦp (33)

Notably, Sp must be negative to provide stability for numerical simulations.
Integrating the continuity of Equation (9) written in a dimensionless form on to the

same control volume, we obtained:

(Vxe∆y∆z−Vxw∆y∆z) +
(
Vyn∆x∆z−Vys∆x∆z

)
+ (Vzh∆x∆y−Vzb∆x∆y) = 0. (34)

We considered:

Fe = Vxe∆y∆z and Fw = Vxw∆y∆z; Fn = Vyn∆x∆z and Fs = Vys∆x∆z; Fh = Vzs∆x∆y and Fb = Vzb∆x∆y (35)

Equation (34) becomes:

(Fe − Fw) + (Fn − Fs) + (Fh − Fb) = 0 (36)

where Fe, Fw, Fn, Fs, Fh and Fb represent the mass flow rates through the faces of the
control volume.

Multiplying the discretized continuity Equation (36) by Φp and subtracting it from
the general discretized Equation (31) then gives:

Φp

(
∆x∆y∆z

∆t − Sp∆x∆y∆z
)
+
(

Le − FeΦp
)
−
(

Lw − FwΦp
)
+
(

Ln − FnΦp
)
−
(

Ls − FsΦp
)
+
(

Lh − FhΦp
)

−
(

Lb − FbΦp
)
=
(

Sc∆x∆y∆z + Φ
◦
p

∆x∆y∆z
∆t

)
.

(37)

We considered the following expressions [21]:(
Ln − FnΦp

)
= aN

(
Φp −ΦN

)
,
(

Ls − FsΦp
)
= aS

(
ΦS −Φp

)
,
(

Le − FeΦp
)
= aE

(
Φp −ΦE

)
,(

Lw − FwΦp
)
= aW

(
ΦW −Φp

)
,
(

Lh − FhΦp
)
= aH

(
Φp −ΦH

)
,
(

Lb − FbΦp
)
= aB

(
ΦB −Φp

)
.

(38)

Equation (37) becomes:

apΦp = aEΦE + aWΦW + aNΦN + aSΦS + aHΦH + aBΦB + bp (39)

where:

ap = aE + aW + aN + aS + aH + aB +
∆x∆y∆z

∆t
− Sp∆x∆y∆z and bp = Sc∆x∆y∆z + Φ

◦
p

∆x∆y∆z
∆t

. (40)

By substituting the function Φp with the temperature T in the general discretized
Equation (39), we obtained the discretized energy equation:

apTp = aETE + aW TW + aNTN + aSTS + aHTH + aBTB + bp with bp = T
◦
p

∆x∆y∆z
∆t

(41)

By substituting the function Φp with the concentration C in the general discretized
Equation (39), we obtained the discretized mass equation:

apCp = aECE + aWCW + aNCN + aSCS + aHCH + aBCB + bp with bp = C
◦
p

∆x∆y∆z
∆t

. (42)

To develop the vorticity equation, we replaced the function Φp for each component
ωx, ωy and ωz, respectively, and obtained the following equations:
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• According to x-direction, Φp = ωx:

apωxp = aEωxE + aWωxW + aNωxN + aSωxS + aHωxH + aBωxB + bp (43)

with

bp = ω
◦
xp

∆x∆y∆z
∆t + ωxp

(
VxE−Vxw

2

)
∆y∆z + ωyp

(
VxS−VxN

2

)
∆x∆z + ωzp

(
VxH−VxB

2

)
∆x∆y

+RaPr
(

TH−TB
2

)
∆x∆y− RaPrN

(
CH−CB

2

)
∆x∆y.

(44)

• According to y-direction, Φp = ωy:

apωxp = aEωyE + aWωyW + aNωyN + aSωyS + aHωyH + aBωyB + bp (45)

with

bp = ω
◦
yp

∆x∆y∆z
∆t

+ ωyp

(
VyE −Vyw

2

)
∆y∆z + ωyp

(VyS −VyN

2

)
∆x∆z + ωzp

(
VyH −VyB

2

)
∆x∆y. (46)

• According to z-direction, Φp = ωz:

apωzp = aEωzE + aWωzW + aNωzN + aSωzS + aHωzH + aBωzB + bp (47)

with

bp = ω
◦
zp

∆x∆y∆z
∆t + ωzp

(
VzE−Vzw

2

)
∆y∆z + ωzp

(
VzS−VzN

2

)
∆x∆z + ωzp

(
VzH−VzB

2

)
∆x∆y

−RaPr
(

TE−TW
2

)
∆y∆z + RaPrN

(
CE−CW

2

)
∆y∆z.

(48)

The potential vector Equation (10) was discretized using centered differences, and
three equations were obtained for each component: x, y and z.

Ψxp =
1

2
(

1
∆x2 +

1
∆y2 +

1
∆z2

)(ΨxE + ΨxW
∆x2 +

ΨxN + ΨxS
∆y2 +

ΨxH + ΨxB

∆z2 + ωxp

)
(49)

Ψyp =
1

2
(

1
∆x2 +

1
∆y2 +

1
∆z2

)(ΨyE + ΨyW

∆x2 +
ΨyN + ΨyS

∆y2 +
ΨyH + ΨyB

∆z2 + ωyp

)
(50)

Ψzp =
1

2
(

1
∆x2 +

1
∆y2 +

1
∆z2

)(ΨzE + ΨzW
∆x2 +

ΨzN + ΨzS
∆y2 +

ΨzH + ΨzB

∆z2 + ωzp

)
(51)

4.4. Algorithm Solving Steps

The equations system obtained was solved by an iterative method with successive
relaxations [22]. The power law scheme was used to treat the convection-diffusion terms
and the time step was taken to 10−4.

A numerical code was developed using the FORTRAN programming language. In
this numerical code, the following steps were followed:

1. Initialization;
2. Solving the Energy equation;
3. Solving the mass equation
4. Solving the vorticity equation and calculating the boundary vorticity;
5. Solving the velocity potential-vector equation.

Steps 2 to 5 were repeated until a convergence criterion was satisfied. The solution
was considered to be acceptable when the maximum residuals of the mass, momentum,
energy and diffusion equations of the control volume of the network are less than 10−5.
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The following convergence criterion was achieved for each time step and for each
dependent variable (∆):

max
∣∣∆m − ∆m−1

∣∣
max|∆m| ≤ 10−5, where the exponent (m) refers to the temporal iteration. (52)

4.5. Grid Dependency Study and Code Verification

A grid sensitivity test was conducted (Table 2) for N = 0 and Ra = 5× 104. Four distinct
grid sizes were investigated (413, 513, 613 and 713). The average Nusselt number was taken
as the sensitive variable. The incremental rise in the average Nusselt number from grid size
613 to grid size 713 was approximately 0.15%. Thus, considering the computing efficiency
and reliability, a grid size of 613 was retained.

Table 2. Grid sensitivity test for reference case (a), N = 0 and Ra = 5 × 104.

Grid Size Nu Percentage Increase Incremental Increase

413 2.8199911 - -
513 2.9932441 6.143743 -
613 3.0344111 7.60357 1.459827
713 3.0385622 7.750773 0.147203

The numerical code was then verified by comparing the results with those obtained
in two different simulation cases: the first case concerns a three-dimensional cavity with
a horizontal gradient of temperature and concentration filled with an aqueous solution
Pr = 10, Le = 10 and Ra = 105 developed by Sezai and Mohamad [23], and the second one is
related to a square cavity of dimension L filled with nanofluids containing a square hot
obstacle centered in the cavity with a width W. The Prandtl number is equal to 6.2 and the
Rayleigh number is equal to 106. The nanofluid is water-Cu with a fraction of 0.04 [24]
(Table 3). It is clear that the results of our code are in good agreement with those proposed
by Rahmati and Tahery [24]. Indeed, the maximum deviation is of the order of 1.8%. The
flow structure, iso-concentration and iso-temperature obtained by our code are similar to
those obtained by Sezai and Mohamad [23] in the two planes z = 0.5 and x = 0.5 (Figure 3).

Table 3. Comparison of the obtained average Nusselt number with the results of Rahmati et al. [24]
at Ra = 106.

W/L Nusselt Average,
Rahmati et al. Works

Nusselt Average,
Present Works Error %

0.2 13 12.883 0.9
0.3 13.5 13.316 1.36
0.4 14 13.732 1.91
0.5 14.25 13.974 1.93
0.6 13.8 13.675 0.91
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Figure 3. Comparison of the present results (bottom) of Streamlines, iso-temperature and iso-concentration with the results 
of Sezai and Mohamad [23] (top) at Ra = 105, Pr = 10 and Le = 10, (a): X-Y-mid-plane, (z = 0.5) and (b): Y-Z -mid plane (x = 
0.5). 
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Figure 3. Comparison of the present results (bottom) of Streamlines, iso-temperature and iso-concentration with the results
of Sezai and Mohamad [23] (top) at Ra = 105, Pr = 10 and Le = 10, (a): X-Y-mid-plane, (z = 0.5) and (b): Y-Z-mid-plane
(x = 0.5).

5. Results and Discussion

The results presented in this paper were obtained for ranges of governing parameters:
Rayleigh numbers (103 to 105), buoyancy (−2 to 2) and a barrier height (0.1 to 0.75). The
Prandtl number was fixed at Pr = 0.7 and the Lewis number was Le = 1.2. Iso-concentration,
iso-temperature and particle trajectories are presented to illustrate the dispersion of the
contaminant, the effectiveness of the barrier and the heat and mass transfer in the building.
Interesting results were seen for fluid flow and heat and mass transfer through the cavity,
depending on the chosen values of the governing parameters, the sign of the buoyancy
ratio and the height of the barrier.
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5.1. Flow Patterns in Reference Case

The flow patterns in the reference case are studied in this subsection. The reference
case is the case involving the building without a barrier.

Figure 4 presents the particles trajectories, iso-concentrations and iso-temperatures
at N = 0 for Ra = 103 and 105. The flow structure is characterized by a single clockwise
rotating vortex. The contaminant particles move from the part at high concentration in
the right bottom wall to the whole of the cavity due to the buoyancy forces. The increase
of Rayleigh numbers increases the magnitude of fluid velocity without tangible variation
of the flow structure. The distribution of iso concentration shows a diffusive dispersion
on contaminant when Ra = 103 is localized in the right side of the cavity due to the
high concentration of the contaminant in the right building floor. The dispersion of the
contaminant becomes convective when Ra = 105. The dispersion of the contaminant is
mainly directed upwards at the corners of the building and to the left in the core of the
building. The iso-temperature structure shows that the conductive mode is dominant in
case of Ra = 103. When Ra = 105, the thermal gradient increases and the convective mode
becomes dominant.
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Figure 4. Particles’ trajectories, iso-concentration and iso-temperature in the building without a barrier for N = 0, Ra = 103

and 105.

5.2. Effect of Rayleigh, Barrier Height and Boyancy Ratio on the Dispersion of the Contaminant
5.2.1. Effect of Rayleigh and Barrier Height for N = 0

Figures 5–7 presents the effect of barrier height on the contaminant flow dispersion,
iso-concentrations and the iso-temperatures, respectively, for different Rayleigh numbers
and N = 0. When the barrier is placed in the base wall of the cavity, the flow of fluid in
the area to the right of the barrier is governed by thermal and solutal buoyancy forces.
However, in the area to the left of the barrier, only thermal buoyancy forces govern the
flow. Two heights of the barrier were studied in this work. The first height is 0.25 of the
height of the cavity and the second is 0.5.
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Figure 5. Particles’ trajectories of the fluid in the building for different Ra, effect of two barriers’ heights for N = 0.

Figure 5 shows the effect of Rayleigh numbers on the flow structure in the building
in three cases when N = 0; the first case represented in the first column is the barrier-free
case (the reference case), the second case with the first height (0.25) whose results are
presented in the middle column and the third case with the second height (0.5) in the
third column. When Ra = 103, it can be noticed that the presence of the barrier limited the
dispersal of the contaminant throughout the cavity and that the magnitude of the velocity
decreased remarkably compared to the case without the barrier (the reference case). It
is also noticed that parallel flow rollers in the X-Y plane appeared when the barrier is
installed. Additionally, at this Ra number, the effect of the barrier height cannot observed
at the flow structure. However, a slight decrease in velocity can be observed when the
barrier height is at its maximum. For Ra = 104, there is a noticeable change in the flow
structure for the first obstacle height, and the flow structure is characterized by parallel
rotating vortices in the X-Z plane. The flow structure is almost similar on both sides of
the obstacle with slight differences, which is represented by the presence of small vortices
positioned at the bottom in the right side of the cavity. On the other hand, for the second
height of the obstacle, the flow structure is not changed, and only a slight increase in the
velocity can be noticed.
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Figure 6. Contaminant iso-surfaces of concentration for different Ra, effect of two barriers’ heights for N = 0.

When Ra = 5 × 104, it can be observed that the velocity of the flow is further increased
and in the absence of the barrier, the contaminant is dispersed in the whole cavity. Thus,
the main flow always comprises of a single central vortex that encloses the entire volume
with a spiral flow. The increase in the Rayleigh number for the case of the first barrier
height induced a second change in the flow structure compared to the Ra = 104. In this
case, the flow pattern is recognized by two vortices rotating in opposite directions in the
X-Z plane. The flow structure is similar on both sides of the barrier. The increase in the
Rayleigh number in the cavity with the second height of the barrier also induced a change
in the flow structure compared to Ra = 103 and Ra = 104. In this case too, the flow structure
is characterized by two counter-rotating vortices in the X-Z plane on the right side of the
barrier, while it is a single vortex on the left side. Such differences in the flow structure
between the two sides of the barrier may be related to the combined effects of the thermal
and solutal volume forces on the right side compared to the single thermal effect on the
left side.
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Figure 6 illustrates the effect of Rayleigh numbers on the iso-surfaces of contaminant
concentration in the building in the three cases studied. When Ra = 103, the concentration
iso-surfaces are distributed from the contaminant emitting area. They are parallel and
located in the right part of the cavity. The solutal gradient is low and the diffusive regime
is dominant. The diffusion of the contaminant is mainly directed towards the top of the
cavity by migration under the influence of the side walls. For Rayleigh numbers equal 104

and 5 × 104, on the one hand an increase in the solutal gradient can be noticed while on
the other hand a convective effect appears. The contaminant starts to disperse horizontally
towards the left part of the cavity and contaminates the remaining parts of the cavity too.
The implementation of the barrier shows an effect limiting the horizontal dispersion of the
contaminant. For both Rayleigh numbers i.e., 104 and 5 × 104, it can be concluded that the
second height strongly opposes the dispersion of the contaminant. The convective effect
is attenuated by the presence of the barrier and pushes the contaminant to only migrate
vertically near the side walls.

Figure 7 shows the effect of Rayleigh numbers on temperature iso-surfaces. In the
absence of a barrier and when Ra = 103, it can be noticed that the temperature iso-surfaces
are parallel and that the conductive regime is dominant. The thermal convective regime
appears from the value of Ra = 104, as evidenced by the distribution of the temperature
iso-surfaces that start to deform from the side in the cavity that has a higher thermal
gradient with the source of contamination. For Ra = 5 × 104, the temperature iso-surfaces
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form an S-shape, indicating the complete development of the thermal convective mode. In
the presence of the barrier and for both Rayleigh numbers 103 and 104, it can be noticed
that the distribution of temperature iso-surfaces is similar and characterized by a dominant
conductive thermal regime. Also, the thermal gradient is weak on both sides of the barrier.
When Ra = 5 × 104, complete development of the thermally convective mode can be seen.
It can further be observed that the structure of the temperature iso-surfaces depends on
the height of the barrier. Indeed, for the first height of the barrier, the thermal gradients
are high at the corners of the cavity and low in the middle part. However, for the second
height, it can be noticed that they are low at the corners and high in the middle.

5.2.2. Effect of Rayleigh and Barrier Height for N = −0.2

The nature of the contaminant and its characteristics have a major effect on the manner
of its dispersal. For the case where the contaminant is in a liquid sprayed phase loaded
with viruses or bacteria and is bound to its environment during its emission and dispersion,
the dispersion of this existing viral load in the pulverized liquid phase is then governed by
gravity having a descending effect, which is opposed to the effect of natural convection. In
this case, the effects of the forces of solutal and thermal volumes are then opposed. This
situation can be modeled with the negative buoyancy ratio.

Figure 8 presents the effect of Rayleigh numbers on the flow structure represented by
particles’ trajectories in the building in the three cases of this study when N = −0.2. For
all Rayleigh numbers, the flow structure in the reference case is characterized by a single
vortex in the X-Y plane rotating in a clockwise direction. Increasing the Rayleigh number
increases the flow velocity. When the building is equipped with the barrier, it is noticed
that the variation of the Rayleigh number has a double effect on the flow structure as well
as on the flow velocity.

When Ra = 104, the flow structure is similar in both cases, as shown by barrier height
1 and 2. Indeed, the flow is then characterized by two vortexes rotating in opposite
directions: one on left of the barrier and the other on the right. The one on the right, where
the contaminant’s emitting surface is, the vortex rotates in a counterclockwise direction.
On the other hand, the vortex on the left rotates in a clockwise direction. The increase in
the Rayleigh number to 1.5 × 104 causes a change in the flow structure in the case of height
1 of the barrier, and this flow structure remains unchanged in the case of height 2. The
flow structure is characterized by a vortex rotating in the core of the X-Z plane, turning
counterclockwise. It is from Ra = 2 × 104 that the flow structure in the second height of
the barrier has this new structure. It can also be noticed that the magnitude of the particle
velocity is lower on the right side of the barrier, on the side of the contaminant emitting
surface when compared to the left side.

When Ra = 5 × 104, the flow structure changes again in both cases and becomes
characterized by two oppositely rotating vortexes carried by rollers in the Y-Z plane along
the entire cavity. It can be noticed that the intensity of the velocity is lower on the side of
the contaminant emitting surface compared to the region to the left of the barrier. This
result can be explained by the competition between the thermal and solutal volume forces
in the zone on the right side of the barrier, as the negative buoyancy ratio. In contrast, only
the thermal volume forces govern the flow in the zone on the left side of the barrier. When
Rayleigh number is equal to 105, it can be noticed that the flow structure for the first case
becomes multicellular. The flow velocity has increased in both cases and the maximum
velocities are observed in the zone to the left of the barrier where only the forces of thermal
volumes govern the flow.
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Figure 9 presents the effect of Rayleigh numbers for N = −0.2 on the iso-surface of
contaminant concentration in the building for the three cases in this study. The increase
of the Rayleigh number in the reference case, the building without barriers, increases
the concentration gradient close to the contaminant emitting surface. The structure of
the iso-surfaces shows that the solutal convective effect is predominant. The increase of
the Rayleigh number also increases the dispersal effect of the contaminant mainly in a
horizontal way at the bottom of the building. It can be noticed that the placement of the
barrier with height 1 reduces the dispersion of the contaminant towards the left zone. For
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the low Rayleigh number, the dispersion is horizontal, under the effect of diffusion, which
is the dominant regime. For Ra = 5 × 104, it can be noticed that the dispersion of the
contaminant becomes governed by the solutal convection. It can be noticed that the second
height of the barrier is more effective in terms of limiting the dispersion of the contaminant
towards the left zone. However, it can be observed that this case has led to an increase in
the vertical dispersion of the contaminant compared to the other studied cases.
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Figure 10 shows the effect of Rayleigh numbers on temperature iso-surfaces. In the
absence of a barrier, the thermal convective regime appears from the value of Ra = 104,
while increasing the Rayleigh number increases the thermal gradient. In the presence of
barrier height 1, the convective regime appears from Rayleigh 1.5 × 104, while for barrier
height 2, the convective regime is observed for Ra = 5 × 104.
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5.2.3. Effect of Rayleigh and Barrier Height for N = 0.2

When the contaminant is a volatile organic compound (VOCs), then its emission and
dispersion are caused by its volatilization having an ascendant effect. In this case, the
thermal and solutal volume forces act in the same direction. This situation is modeled by
a positive volume force ratio, which is the subject of this section. In this section, the flow
structure, iso-concentration and iso-temperatures in the case of N = 0.2 are presented.

Figure 11 shows the effect of the barrier on the particle trajectory for three Rayleigh
values. When the cavity is barrier-free, the flow structure is characterized by a vortex
encompassing the cavity in the X-Y plane and rotating counterclockwise. Increasing
the Rayleigh number increases the magnitude of the flow velocity. In general, and for
all Rayleigh number values, the installation of the barrier decreases the flow velocity
in the cavity. It can also be noticed that barrier 2 has a more pronounced effect on the
flow attenuation. For Ra = 103, for both cases of barrier height, the flow structure is
characterized by two vortexes in the X-Y plane separated by the barrier and turning in the
opposite direction.
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A modification of the flow structure is observed for barrier 1 (the barrier with a height
equal to H1) from Ra = 104 and for barrier 2 when Ra = 2 × 104. In fact, the flow structure
is characterized by a vortex with spiral character carried in the X-Z plane and turning
counterclockwise.

It can also be noticed that in the presence of the barrier, the increase of the Rayleigh
number has a double effect on the change of the flow structure and on the velocity magni-
tude. However, the increase of the velocity intensity is correlated to the direction and the
plane of the vortex rotation. For barrier 1, it can be noticed that when Ra increases from
103 to 104, there is a change in the flow structure where the vortexes become located in the
X-Y plane and a high increase in the velocity magnitude of up to 100 times occurs. The
velocity magnitude is only 10 times in the case of barrier 2 where the flow structure has not
undergone a great change. As Ra increases from 104 to 2 × 104, the change in the plane of
rotation of the vortexes can be observed for barrier 2 and is associated with an increase in
the velocity magnitude by 30 times. However, this increase is only by 2 times in the case of
barrier 1 where the flow structure has not changed.

This correlation between the change of the plane carrying the vortices and the velocity
magnitude can also be observed in the case of N =−0.2 (Figure 8) where the impact of the ve-
locity increase is of the order of 15 times. This correlation can be observed for Ra = 1.5× 104
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in barrier 1 and Ra = 2 × 104 in barrier 2. These observations show that the flow has a
strong three-dimensional character.

Figure 12 shows the effect of the barrier and Rayleigh number on the contaminant
iso-surfaces of concentration. For Ra = 103, the iso-concentrations are parallel, showing a
dominant diffusive regime. The barrier has no significant effect on the solutal gradient.
The height 2 allows an isolation of the dispersion of the concentration towards the left zone.
The last finding is also observed when Ra = 104. However, from this number of Ra = 104, a
convective solutal regime is noticed for the reference case, and the variation of the height
of the barrier only affects the solutal gradient for Ra = 104.
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Figure 13 shows the isotherms for the case N = 0.2. It can be seen that the thermal
convective effect appears in the cavity from Ra = 104. The presence of the barrier has caused
a change in the isotherm structure. Indeed, the variation of the thermal gradient is initially
a function of y, though it becomes a variable according to z. It can also be observed that
the thermal gradient is weaker on the side of the contaminant source compared to the
other side.
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5.3. Efficiency of Protective Barrier and Heat-Mass Transfer Ratios
5.3.1. Barrier Efficiency

To study the efficiency of the barrier in reducing the dispersion of the contaminant
from the region containing the contaminant source to the region on the left, the analysis
focused on the evaluation of the concentration of the contaminant in the plane y = 0.45,
where the plane is very close to the limit of the contamination surface (Figure 14). In
this plane, we looked for the maximum contaminant concentration observed in the case
of a building with and without a barrier. It can be noticed that the coordinates of the
maximum concentration depend on the buoyancy ratio, Rayleigh number and time. For
the positive buoyancy ratio, the maximum concentration is located at the top, but for
the negative value, it is located at the bottom, and the concentration distributions have a
three-dimensional character.
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N = −0.5 N = 0.2 

N = 0 N = −2 N = 1 

Figure 14. Iso-contours of the contaminant concentration in the building without a barrier, with the y = 0.45 plane for Ra
= 2 × 104 and a different buoyancy ratio.

The barrier efficiency is defined by this relation ܧ௙௙ = 1 − ௖೘ೌೣ
஼೘ೌೣబ

, where ܿ௠௔௫ is the
maximum contaminant concentration in the plane y = 0.45, for the building with a barrier. 
Also, ܿ௠௔௫଴ is the maximum contaminant concentration in the plane y = 0.45, for the ref-
erence building without a barrier. 

Figure 15 shows the effect of the Rayleigh number on the efficiency of the barrier for 
two heights H1 = 0.25 and H2 = 0.5. A minimum efficiency equal to 36.22% can be observed 
for height 1, Ra = 104 and N = 0.2. Meanwhile, the maximum efficiency (85.18%) can be
observed for height 2, Ra = 1.5 × 104 and N = −0.2. For height 1 and when N = 0.2, the
increase in Ra decreases the efficiency up to Ra = 104, reaching a minimum, then the in-
crease in efficiency takes on a positive slope, and the percentages increase with the in-
crease of Ra. When N = −0.2, it can be observed that going from Ra = 103 to 104, the effi-
ciency increases from 50% to 60% and then decreases to 52% for Ra = 1.5 × 104 before it
resumes its positive slope and reaches more than 75% for Ra = 105. 

For height 2 and when N = 0.2, the increase of Ra from 103 to 104 has no effect on the 
efficiency of the barrier and it is starting from Ra = 1.5 × 104 that we can observe a decrease 
reaching a minimum equal to 64%, which was observed for Ra = 2 × 104. From this value,
an increase in Ra increases the efficiency. When N = −0.2, a slight increase in efficiency is 
observed from Ra = 103 to 1.5 × 104, reaching a maximum equal to 85.18%. From this value, 
the increase in Ra values decreases the efficiency.

Figure 14. Iso-contours of the contaminant concentration in the building without a barrier, with the y = 0.45 plane for
Ra = 2 × 104 and a different buoyancy ratio.

The barrier efficiency is defined by this relation E f f = 1− cmax
Cmax0

, where cmax is the
maximum contaminant concentration in the plane y = 0.45, for the building with a barrier.
Also, cmax0 is the maximum contaminant concentration in the plane y = 0.45, for the
reference building without a barrier.

Figure 15 shows the effect of the Rayleigh number on the efficiency of the barrier for
two heights H1 = 0.25 and H2 = 0.5. A minimum efficiency equal to 36.22% can be observed
for height 1, Ra = 104 and N = 0.2. Meanwhile, the maximum efficiency (85.18%) can be ob-
served for height 2, Ra = 1.5× 104 and N =−0.2. For height 1 and when N = 0.2, the increase
in Ra decreases the efficiency up to Ra = 104, reaching a minimum, then the increase in effi-
ciency takes on a positive slope, and the percentages increase with the increase of Ra. When
N = −0.2, it can be observed that going from Ra = 103 to 104, the efficiency increases from
50% to 60% and then decreases to 52% for Ra = 1.5 × 104 before it resumes its positive slope
and reaches more than 75% for Ra = 105.

For height 2 and when N = 0.2, the increase of Ra from 103 to 104 has no effect on the
efficiency of the barrier and it is starting from Ra = 1.5 × 104 that we can observe a decrease
reaching a minimum equal to 64%, which was observed for Ra = 2 × 104. From this value,
an increase in Ra increases the efficiency. When N = −0.2, a slight increase in efficiency
is observed from Ra = 103 to 1.5 × 104, reaching a maximum equal to 85.18%. From this
value, the increase in Ra values decreases the efficiency.
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Figure 15. Effect of the Rayleigh number on the efficiency of the barrier for N = 0.2 and N = −0.2; Eff1 and Eff2 are the
barrier efficiencies for H1 = 0.25 and H2 = 0.5, respectively.

Figure 16 shows the effect of the buoyancy ratio on the efficiency of the barrier when
Ra = 104. It can be observed that the increase in the efficiency as a function of N is similar
for the two heights of the barrier H1 and H2. The efficiency is 85% for H2 and all negative
values of N under −0.5, and it is 57% for H1. From this value of N = −0.5, a decrease in the
efficiency can be noticed, reaching a minimum equal to 41.67% at N = 0 for H1 and 62.96%
at N = 0.5 for H2. Then the increase in the efficiency takes on a positive slope with the
increase of N. The barrier efficiency percentages are higher for negative buoyancy ratios
than for positive ones.
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Figure 16. Effect of the buoyancy ratio on the efficiency of the barrier for Ra = 2 × 104; Eff1 and Eff2 are the efficiencies for
H1 = 0.25 and H2 = 0.5, respectively.
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Figure 17a shows the effect of the barrier height on efficiency for Ra = 2 × 104,
N = 0.2 and N = −0.2. For all values of H, the efficiencies for N=−0.2 are higher than those
for N = 0.2. For N = 0.2, the trajectory can be divided into two parts; from H = 0.12 to
H = 0.35, the slope of the curve is 111.61, but from H = 0.35 to 0.75, the slope decreases and
becomes 81.96.
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Figure 17. (a) Effect of the barrier height on the efficiency for Ra = 2 × 104, N = 0.2 and N = −0.2; (b) Linear trendline to
efficiency variation with the barrier height; (c) Polynomial trendline to efficiency variation with the barrier height, blue
color equation for N = 0.2 and red color equation for N = −0.2.
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For N = −0.2, the efficiency pattern follows three slopes: the highest one is from
H = 0.12 to 0.35, and it is 112.02, the second one is from 0.35 to 0.62 and it is 76.15 and the
third one is the lowest one of 42.19 from 0.62 to 0.75. In this latest range, the efficiency goes
from 90% to 96%.

To further analyze the efficiency variation as a function of height, the two curves
for N = 0.2 and N = −0.2 are treated by adding a trendline (Figure 17b,c). Two forms
of equations are examined: linear (Figure 17b) and polynomial (Figure 17c) and the R2

trendline reliability for each equation is compared. It can be found that the polynomial
variation of order 3 gives a better reliability trendline, closer to 1. So, we can conclude
that the efficiency increases following a polynomial evolution of order 3 as E f f = C1H3 +

C2H2 + C3H + C4 and that the constants C1, C2, C3 and C4 depend on the Rayleigh and N
numbers.

5.3.2. Heat and Mass Transfer Ratios

Figure 18 shows the effect of the buoyancy ratio on the heat and mass transfer ratio for
Ra = 2× 104 for three cases: (0) considered as a reference without a barrier, (1) case of barrier
height H1 and (2) for H2. It can be noticed that the presence of the barrier decreases the
heat and mass transfer rates. The average Nusselt number in the reference case increases
with two slopes. An increase in the slope of the average Nusselt number is observed from
N = 0. For a barrier of height H1, the variation is parabolic with a maximum at N = 0.5. The
average Nusselt number for the case of height 2 with a minimum variation is observed at
N = −0.5 while the maximum occurs at N = 0.5. For a negative buoyancy ratio values, the
increase in N has no significant effect on the average Sherwood number for the different
cases studied. From N = −0.2 onwards, an increase in the mass transfer rate is noticed.
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Figure 18. Effect of the buoyancy ratio on the average heat and mass transfer ratios for Ra = 2 × 104, (0): reference case, (1):
H1 = 0.25 and (2) for H2 = 0.5.

Figure 19 presents the effect of the Rayleigh number on the average Sherwood number
for N = 0.2 and N = −0.2. When N = 0.2, there is a linear increase in the average Sherwood
number as a function of Ra for the reference case. When the barrier is placed, the average
Sherwood number changes in two incremental steps. When Ra is less than 104, a slight
increase in the mass transfer rate is observed. From this value, the increase of average
Sherwood number is more than double when Ra = 105.
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Figure 19. Effect of the Rayleigh number on the average mass transfer ratios for N = 0.2 and N = −0.2, (0): reference case,
(1): H1 = 0.25 and (2) for H2 = 0.5.

When N = −0.2, the trajectory of the average Sherwood number variation is similar
for the different cases studied. From Ra = 103 to 104, the mass transfer rate is almost
constant with a slight increase observed for the reference case. From Ra = 104, the increase
in Ra significantly increases the average Sherwood number for the three cases studied. For
Ra = 5 × 104, it can be observed that the average Sherwood number for the reference case
is nearly equal to that for the H1.

Figure 20 shows the effect of the Rayleigh number on the average heat transfer rate.
The increase in Ra increases the average Nusselt number almost linearly in the reference
case for both buoyancy ratio cases. For the cavity with barriers, the Ra increases from
103 to 104, and the average Nusselt is almost constant. From Ra = 104, the increase in Ra,
significantly increases the heat transfer ratio for both heights of the barrier studied when
N = 0.2. For N = −0.2, the case of the barrier of height 1 is characterized by a maximum
average Nusselt number observed at Ra = 5 × 104. For the case of the barrier of height 1,
the increase of the Nusselt number is observed from Ra = 1.5 × 104.

Figure 21 presents the effect of barrier height on the average mass and heat transfer
ratios for Ra = 2 × 104, N = 0.2 and N = −0.2. Two phases can be observed for the decrease
of the average Sherwood number when N = 0.2. A decrease of 180% is detected from
H = 0 to 0.12, then the curve takes a lower negative slope and the decrease is of the order of
50% from 0.12 to 0.75. When N = −0.2, there is a slight increase in the average Sherwood
number from H = 0 to H = 0.12 and as the height of the barrier increases, the average mass
transfer rate decreases as well.

It can also be noticed that the increase in the height of the barrier decreases the average
Nusselt number. Starting from 0 to 0.35, the average Nusselt number decreases by 250%.
Then by passing from H = 0.35 to 0.75, the decrease becomes about 50%.
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Figure 20. Effect of the Rayleigh number on the average heat transfer ratios for N = 0.2 and N = −0.2, (0): reference case, (1):
H1 = 0.25 and (2) for H2 = 0.5.
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Figure 21. Effect of the barrier height on the average heat and mass transfer ratios for Ra = 2 × 104, N = 0.2 and N = −0.2.

6. Conclusions

The study presented in this paper focuses on the impact of placing an adiabatic imper-
meable barrier on the local dispersion of an aero-contaminant inside a three-dimensional
cavity subjected to the Rayleigh–Benard conditions.

In the first part of this paper, the effect of different parameters on the dispersion of the
contaminant in the case of a cavity without a barrier is analyzed. In the second part, the
effect of the Rayleigh number and barrier height on the flow structure is studied through
iso-concentration and iso-temperature plots for different values of N: 0, −0.2 and 0.2.

In the third part, a parametric study on the effects of the Rayleigh number, the
buoyancy ratio and the barrier height on the effectiveness of the barrier in the reduction of
the cavity contamination, as well as the heat and mass transfer rates, is performed.

The most important findings can be summarized as follows:
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• In the absence of a barrier, the dispersion of the contaminant is mainly directed
upwards at the corners of the building and to the left in the core of the building to the
initially uncontaminated region, in the cases of N = 0 and N positive. Otherwise, when
N is negative, the dispersal effect of the contaminant mainly occurs in a horizontal
way at the bottom of the building.

• The effectiveness of the protective barrier is greater in the case of negative buoyancy
ratios compared to positive values, for the same Rayleigh number and the same barrier
height.

• The efficiency increases linearly with the height of the barrier.
• In the presence of the barrier, the Rayleigh number increase causes the heat and mass

transfer rates to increase from Ra = 104 and higher.
• The placement of the barrier strongly diminishes the heat transfer rate for all values of

N. However, noticeable decrease in the mass transfer rate is only observed for positive
values of N.
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