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Abstract: A hybrid model for the time series of complex structure (HMTS) was proposed. It is
based on the combination of function expansions in a wavelet series with ARIMA models. HMTS
has regular and anomalous components. The time series components, obtained after expansion,
have a simpler structure that makes it possible to identify the ARIMA model if the components are
stationary. This allows us to obtain a more accurate ARIMA model for a time series of complicated
structure and to extend the area for application. To identify the HMTS anomalous component,
threshold functions are applied. This paper describes a technique to identify HMTS and proposes
operations to detect anomalies. With the example of an ionospheric parameter time series, we show
the HMTS efficiency, describe the results and their application in detecting ionospheric anomalies.
The HMTS was compared with the nonlinear autoregression neural network NARX, which confirmed
HMTS efficiency.

Keywords: time series model; wavelet transform; ARIMA model; neural network NARX; iono-
spheric parameters

1. Introduction

Time series modeling and analysis are important bases for the methods of studying
the processes and phenomena of different natures. They are used in various spheres of
human activity (physics, biology, medicine, economics, etc.). Methods of data modeling
and analysis aimed at detecting and identifying anomalies are of special actuality. The
examples are the problems of the recognition of anomalies in geophysical monitoring
data, such as the detection of magnetic and ionospheric storms [1–4], earthquakes [5,6],
tsunamis [7,8], geological anomalies [9] and other catastrophic natural phenomena. The
need to detect anomalies often arises in the medical field, for example, to detect and to
identify clinical conditions of patients [10]. An important property of such methods is their
ability to adapt, providing the possibility to detect and identify rapid changes in the system
or object state, indicating anomaly occurrences.

As a rule, time series of empirical data have a complex non-stationary structure
and contain local features of various forms. The methods for the time series analy-
sis include deterministic [11], stochastic [12–14] approaches and their various combina-
tions [15–19]. Traditional methods for data time series modeling and analysis (AR models,
ARMA [20,21], exponential smoothing [22], stochastic approximation [13], etc.) do not
allow us to describe the time series of complex structure adequately [23]. At present, hybrid
approaches [16,17,19,23–28] are widely applied. They make it possible to improve the effi-
ciency of the procedure of data analysis in case of its complicated structure. For example,
in [19], on the basis of wavelet decomposition, a technique was developed to estimate the
coefficients of turbulent diffusion and power exponents from single Lagrangian trajectories
of particles. Wavelet transform is a flexible tool and was applied in the paper [29] to study
the relationship between vegetation and climate in India. The 2D empirical wavelet filters
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developed by the authors of [30] are effective in image processing applications. Currently,
neural network methods are also widely used [4,15,23,31]. They allow us to approximate
complex nonlinear relationships in data and are easily automated. However, the reliability
and accuracy of neural networks depend on data representativity and it is very laborious
to adapt them. For example, the authors of the paper [31] proposed a neural network
structure, based on the LSTM paradigm, which allowed them to obtain an accurate forecast
of time series for web traffic on a limited data set. The authors of the paper [23] considered
combinations of wavelet transform with neural networks to analyze hydrological data.

Due to these aspects and despite the intensive development of machine learning
methods and their active application in various fields of artificial intelligence, classical
models of time series, in particular, ARIMA models [4,15,32,33], are popular. The obvious
advantages of ARIMA models are their mathematical validity, a formalized methodology
for model identification and verification for its adequacy. However, the ARIMA model
construction is based on the assumption that the process has a normal distribution and is
stationary (or stationary in differences). If these assumptions are not satisfied, the model
accuracy is significantly reduced. In order to improve the ARIMA efficiency, a number
of papers [16,17,26,27,34,35] suggested a hybrid approach to the time series analysis. For
example, the paper [17] proposed to apply ARIMA together with discrete wavelet transform
and neural network LSTM. The authors of the paper [17] showed that the combination of
ARIMA and LSTM with a discrete wavelet transform allowed them to improve the accuracy
of ARIMA and LSTM models in order to make forecasts of a monthly precipitation time
series. A combination of the discrete wavelet transform with ARIMA and neural network
was also proposed in [35] to forecast a hydrological time series.

In this paper, we propose a hybrid model for a time series of complex structure (HMTS).
The model includes regular and anomalous components. The HMTS identification is based
on the combination of function expansion in a wavelet series [36] with ARIMA models [20].
The time series components obtained after expansion have a simpler structure allowing us
to identify ARIMA models in the case of components stationarity. This makes it possible
to obtain a more accurate ARIMA model for the time series of a complex structure and
expands the field of its application. The HMTS anomalous component describes irregular
(sporadic) changes in time series. It is identified on the basis of threshold functions.
A large dictionary of wavelet bases allows us to identify models for the time series of
complex structure [9,36,37], including local features of various forms. The paper describes
a method of HMTS identification and suggests algorithms for anomaly detection. The
HMTS efficiency is illustrated on the example of an ionospheric parameter time series. The
results and their application in detecting ionospheric anomalies of different intensities are
presented. The paper also compares the HMTS with the nonlinear autoregressive neural
network NARX, which also confirmed the HMTS efficiency.

2. Materials and Methods
2.1. Description of the Method

The time series of a complex structure may be represented as

f (t) = AREG(t) + U(t) + e(t) = ∑
µ=1,T

αµ(t) + U(t) + e(t), (1)

where AREG(t) = ∑
µ=1,T

αµ(t) is a regular component, which is a linear combination of

the components αµ(t), µ is the component number; U(t) is the anomalous component
including local features of various forms occurring at random times, e(t) is the noise
component, t is time.
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2.2. Wavelet Series Expansion and Determination of the Model Regular Components

It is assumed that f ∈ L2(R)(L2(R) is Lebesgue space) there is a unique representa-
tion [36]

f (t) = . . . + g−1(t) + g0(t) + g1(t) + . . . ,

where gj ∈Wj, j ∈ Z (Z is the set of integers), gj(t) = ∑
k

dj,kΨj,k(t), Ψj,k =
{

Ψj,k

}
k∈Z

is the

basis of the space Wj, the coefficients dj,k =
〈

f , Ψj,k

〉
, Ψj,k = 2j/2Ψ

(
2jt− k

)
are considered

as a result of mapping f into the space Wj with resolution j. If Ψ ∈ L2(R) is R-function

and the sequence
{

Ψj,k

}
is a Riesz basis [37] in L2(R), space L2(R) expansion structure

generated by the wavelet Ψ ∈ L2(R) is

L2(R) =
•

∑
j∈Z

Wj := . . .
•
+ W−1

•
+ W0

•
+ W1

•
+ . . . , (2)

where Wj := closL2(R)

(
Ψj,k; k ∈ Z

)
, the dots above the summation sign and above the plus

signs denote the direct sum.
Using expansion (2), we obtain a sequence of nested and closed subspaces Vj ∈

L2(R), j ∈ Z defined as

Vj = . . .
•
+ Wj−2

•
+ Wj−1 (3)

where the space Vj = closL2(R)
(
φ
(
2jt− k

))
, φ is the scaling function. Based on (2) and (3),

we obtain space L2(R) expansion:

L2(R) = Vj
•
+ Wj

•
+ Wj+1

•
+ . . . ,

in case of an orthogonal wavelet Ψ, we have

L2(R) = Vj ⊕Wj ⊕Wj+1 ⊕ . . . , (4)

where ⊕ is the orthogonal sum.
Considering the space Vj = closL2(R)

(
φ
(
2jt− k

))
with j = 0 as the base space f , and

using (4) m times, we obtain the following expansion [36]:

V0 = W−1 ⊕W−2 ⊕ . . .⊕W−m ⊕V−m.

In this case, for f0 we have the following representation:

f0(t) = g−1(t) + g−2(t) + . . . + g−m(t) + f−m(t) =
−m

∑
j=−1

gj(t) + f−m(t) (5)

where f−m ∈ V−m, gj ∈Wj, f−m(t) = ∑
k

c−m,kφ−m,k(t) is the smoothed component, c−m,k =〈
f0, φ−m,k

〉
, φ−m,k(t) = 2−m/2φ(2−mt− k) is the scaling function, gj(t) = ∑

k
dj,kΨj,k(t) are

the detailing components, dj,k =
〈

f0, Ψj,k

〉
, Ψj,k(t) = 2

j
2 Ψ
(
2jt− k

)
is the wavelet.

Note that, when the scaling function φ has L zero moments, i.e.,
+∞∫
−∞

tϑφ(t)dt = 0, ϑ =

_____
1, L and f ∈ CL (CL is the space of functions continuously differentiable by L times), then
for t near 2mk [38]:

c−m,k =
〈

f , φ−m,k
〉 ∼= 2−m/2 f (2mk) (6)

It follows from (6) that the component f−m ∈ V−m gives approximation f with
resolution 2m (it approximates the trend). The detailing component gj has the resolution
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2−j, and approximates the local features of the scale j. Figure 1 shows the amplitude–
frequency characteristics (AFC) of the scaling function (solid line) and the wavelet (dashed
line) for different m, obtained for the 3rd-order Daubechies wavelet.
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Figure 1. AFC of the scaling function and the wavelet for m = 1, 2, 3, 4 obtained for the 3rd-order
Daubechies wavelet.

Thus, we can obtain different representations of f0 in the form (5) for different m.
Obviously, it is necessary to determine the level of expansion mr, for which the component
f−mr is regular. It is natural to assume that the component f−m is regular if it is strictly
stationary. In this case, the problem of determining regular components is reduced to the
problem of obtaining representation (5) for which the component f−m is strictly stationary.
The condition of stationarity of the component f−m will allow us to identify the ARIMA
model for it. Following the theory by Box and Jenkins [20], a time series is strictly stationary
if its autocorrelation function (ACF) damps rapidly during average and large delays. To
determine the model type (AR, MA, ARMA) and the order, ACF and partial ACF (PACF)
are studied [20]. Taking into account the fact that the f resolution decreases with the m
increase, we define mr sequentially:

The components f−mr and gjr obtained on the basis of Algorithm 1 describe the regular
changes of the time series. Then from (1) and (5), we have the representation:

f0(t) = ∑
µ=1,T

αµ(t) + U(t) + e(t) = f−mr (t) + ∑
jr

gjr (t) + ∑
j∈Pj

gj(t), (7)

where AREG(t) = ∑
µ=1,T

αµ(t) = f−mr (t) + ∑
jr

gjr (t), and we assume that f−mr (t) = α1(t), gjr (t)

= αµ(t), µ = 2, T, T is the number of regular components; Pj =
{

j = −1,−(mr − 1)
∣∣∣j 6= jr

}
.
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Algorithm 1:

1. We map (5) for the expansion level m = 1 for f0: f−m(t) = ∑
k

c−m,kφ−m,k(t), m = 1;

2. We check the condition of strict stationarity for the component f−m by estimating the
numerical characteristics (analysis of ACF and PACF [20]);

3. In the case of strict stationarity of the component f−m, we assume that it describes regular
data changes (m = mr) and go to step 5, otherwise go to step 4;

4. If m < M, where M is the maximum level of expansion: M ≤ log2 N (N is the time series
length), we increase the expansion level by 1: m = m + 1 and return to step 2; if, m ≥ M we
terminate the algorithm execution;

5. We check the condition of strict stationarity for the detailing components
gj(t) = ∑

k
dj,kΨj,k(t), j = −1,−mr by estimating the numerical characteristics (analysis of

ACF and PACF [20]). If the condition of strict stationarity is satisfied for the component gj,
we take j = jr and assume that the component gjr is regular.

2.3. Estimation of the Parameters for the Model Regular Component

The components f−mr and gjr are strictly stationary, thus, we can estimate ARIMA
models of order (p, ν, h) for them [20]. Then for the component f−mr (t) = ∑

k
c−mr ,kφ−mr ,k(t)

for brevity, we omit index r and obtain

ω−m,k = γm
1 ω−m,k−1 + . . . + γm

p ω−m,k−p − θm
1 a−m,k−1 − . . .− θm

h a−m,k−h (8)

where ω−m,k = ∇νc−m,k, ∇ν is the difference operator of order ν; p, γm
1 , . . . , γm

p are the
order and the parameters of autoregression, respectively; h, θm

1 , . . . , θm
h are the order and

parameters of the moving average, respectively; a−m,k are residual errors.
In a similar way, for the component gjr (t) = ∑

k
djr ,kΨjr ,k(t) we omit index r and obtain

ωj,k(t) = γ
j
1ωj,k−1 + . . . + γ

j
zωj,k−z − θ

j
1aj,k−1 − . . .− θ

j
uaj,k−u (9)

where ωj,k = ∇νj dj,k, ∇νj is the difference operator of order νj, z,, γ
j
1, . . . , γ

j
z are the order

and the parameters of autoregression, respectively; u,, θ
j
1, . . . , θ

j
u are the order and the

parameters of the moving average, respectively; aj,k are residual errors.
From (7) to (9) we obtain the representation:

AREG(t) = ∑
µ=1,T

∑
k=1,Nµ

sµ
j,kbµ

j,k(t) , (10)

where sµ
j,k =

pµ

∑
l=1

γ
µ
l ω

µ
j,k−l −

hµ

∑
n=1

θ
µ
n aµ

j,k−n is the estimated value of the parameters of a regular

µ-th component, pµ, γ
µ
l are the order and the parameters of autoregression of the µ-th

component, hµ, θ
µ
n are the order and the parameters of the moving average of the µ-th

component, ω
µ
j,k = ∇

νµ δ
µ
j,k, νµ is the order of the µ-th component difference, δ1

j,k = c−m,k,

δ
µ
j,k = dj,k, µ = 2, T, T is the number of modeled components, aµ

j,k are the residual errors

for the µ-th component model, Nµ is the µ-th component length, b1
j,k = φ−m,k, φ is the

scaling function, bµ
j,k = Ψj,k?,µ = 2, T, Ψ is the wavelet.

The identification of the ARIMA model for the µ-th component requires the deter-
mination of the different order νµ and the identification of the resulting ARMA process
(model order and parameter estimation). The ARIMA model identification is described in
detail in [20] and is not presented in the paper.

The diagnostic verification of each of the components f−mr and gjr models can be
based on the analysis of the model residual errors. Commonly used tests based on the
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analysis of model residual errors are the cumulative fitting criterion [20] and the cumulative
periodogram test [20].

2.4. Anomalous Component of the Model

The anomalous component U(t) of model (1) includes local features of various shapes
occurring at random times. Therefore, the application of the parametric approach to
identify it is ineffective.

2.4.1. Application of Threshold Functions

In the case of a nonparametric approach, following the results of [37], the function U
can be approximated by threshold functions:

U(t) = ∑
j,k

Pj

(
dj,k

)
Ψj,k(t), (11)

Pj

(
dj,k

)
=

 0, i f
∣∣∣dj,k

∣∣∣ ≤ Tj

dj,k, i f
∣∣∣dj,k

∣∣∣ > Tj

In this case, from (7) and (10), we obtain the hybrid model of time series (HMTS)

f0(t) = AREG(t) + U(t) + e(t) = ∑
µ=1,T

∑
k=1,Nµ

sµ
j,kbµ

j,k(t) + ∑
j,k

Pj

(
dj,k

)
Ψj,k(t) + e(t) , (12)

It was shown in [37] that the mappings (11) allow us to obtain approximations close
to optimal ones (by minimizing the minimax risk) for a complex structure function. More-
over, the equivalence of discrete and continuous wavelet expansions [36,38] provides
the opportunity to analyze a function on any resolution. In its turn, the increase in the
amplitudes of the wavelet coefficients

∣∣∣dj,k

∣∣∣ in the vicinity of local features of a function
(Jaffard’s theorem [39]) will provide, based on (11), their mapping into the component U of
model (12).

Obviously, by applying different orthogonal wavelets Ψ we can obtain different
representations (12).

We should note that due to the random nature of U, application of any thresholds Tj
(see (11)) is inevitably associated with erroneous decisions. In this case, the thresholds can
be chosen by minimizing the posteriori risk [40].

The threshold divides the F value space of the function under analysis into two
nonintersecting domains F1 and F2 determining anomalous and non-anomalous states,
respectively. For the specific state hb, the loss average can be estimated as [40]

Rb( f ) =
2

∑
z=1

∏
bz

P{ f ∈ Fz|hb}, (13)

where ∏bz is the loss function, P{ f ∈ Fz|hb} is the conditional probability of falling within
the domain Fz if the state hb actually exists, b 6= z, b, z are the state indices (“|” denotes
conditional probability).

Averaging the conditional function of the risk over all the states hb we obtain the
average risk

R =
2

∑
b=1

pbRb, (14)

where pb is a priori probability of the state hb.
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If we do not know priori probabilities of the states pb, then having statistical (priori)
data, we can determine posteriori probabilities P{hb| f }, b = 1, 2. Then, applying a simple
loss function

∏
bz

=

{
1, b 6= z,
0, b = z,

from (13) and (14), a posteriori risk equals

R = ∑
b 6=z

P{hb| f ∈ Fz}. (15)

2.4.2. Analysis of the Model’s Regular Component Errors and Detection of Anomalies

Obviously, during anomalous periods, the residual errors of the model regular compo-
nent AREG (see (10)) increase. Then anomaly detection can be based on the conditional test

ε
µ
j =

Qµ

∑
q=1

∣∣∣aµ
j,k+q

∣∣∣ > Hµ,

where q ≥ 1 is the data lead step, aµ
j,k are the residual errors of the µ-th component model,

Qµ is the data lead length.
We can estimate the confidence interval of the predicted data [20], which is why it is

logical to define the thresholds Hµ as

Hµ

(
Qµ

)
=

{
1 +

Qµ−1

∑
q=1

(
ψ

µ
q

)2
}1/2

σaµ

where σ2
aµ is the variance of residual errors of the µ-th component model; ψ

µ
q are the

weighting coefficients of the µ-th component model, they are determined from the equa-
tion [20] (

1− ϕ
µ
1 B− ϕ

µ
2 B2 − . . .− ϕ

µ
pµ+νµ

Bpµ+νµ

)(
1 + ψ

µ
1 B + ψ

µ
2 B2 + . . .

)
=

=
(

1− θ
µ
1 B− θ

µ
2 B2 − . . .− θ

µ
hµ Bhµ

)
,

where ϕ
µ
j = γµ(B)(1− B)νµ is the generalized autoregressive operator, B is the back shift

operator: Blω
µ
j,k = ω

µ
j,k−l .

It is also possible to use the following probability limits:

Hµ

(
Qµ

)
= uξ/2

{
1 +

Qµ−1

∑
q=1

(
ψ

µ
q

)2
}1/2

σaµ ,

where uε/2 is the quantile of the level (1− ε/2) of standard normal distribution.

3. Results of the Model Application
3.1. Modeling of Ionospheric Parameter Time Series

The ionosphere is the upper region of the earth’s atmosphere. It is located at heights
from 70 to 1000 km and higher, and affects radio wave propagation [41]. Ionospheric
anomalies occur during extreme solar events (solar flares and particle ejections) and mag-
netic storms. They cause serious malfunctions in the operation of modern ground and
space technical equipment [42]. An important parameter characterizing the state of the
ionosphere is the critical frequency of the ionospheric F2-layer (foF2). The foF2 time series
have a complex structure and contain seasonal and diurnal components, as well as local
features of various shapes and durations occurring during ionospheric anomalies. Intense
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ionospheric anomalies can cause failures in the operation of technical systems. Therefore,
their timely detection is an important applied problem.

In the experiments, we used hourly (1969–2019) and 15-min (2015–2019) foF2 data
obtained by the method of vertical radiosonding of the ionosphere at Paratunka station
(53.0◦ N and 158.7◦ E, Kamchatka, Russia, IKIR FEB RAS). The proposed HMTS was
identified separately for foF2 hourly and 15-min data.

To identify HMTS regular components, we used the foF2 data recorded during the
periods of absence of ionospheric anomalies. The application of Algorithm 1 showed that
the components f−3 and g−3 are stationary (having damping ACF), thus ARIMA models
can be identified for them. Figures 2 and 3 show ACF and PACF of foF2 initial time series,
as well as the components f−3 and g−3. The results confirm stationarity of the components
f−3 and g−3. An analysis of PACF shows the possibility to identify the AR models of
orders 2 and 3 for the first differences of these components. The results in Figures 2 and 3
also illustrate that foF2 initial time series are non-stationary and, therefore, it is impossible
to approximate them by ARIMA model without wavelet decomposition operation.
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According to ratio (10) and based on the PACF of the first differences of the components
f−3 and g−3 (Figure 3e,f), we obtain the HMTS regular component

AREG(t) = f−3(t)+ g−3(t) = ∑
k

c−3,kφ−3,k(t)+∑
k

d−3,kΨ−3,k(t) = ∑
µ=1,2

∑
k=1,Nµ

sµ
−3,kbµ

−3,k(t),
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where sµ
−3,k =

pµ

∑
l=1

γ
µ
l ω

µ
−3,k−l, µ = 1, 2, ω1

−3,k = ∇c−3,k, ω2
−3,k = ∇d−3,k, b1

−3,k = φ−3,k,

b2
−3,k = Ψ−3,k. Estimated parameters for s1

−3,k and s2
−3,k are presented in Table 1. The parame-

ters were estimated separately for different seasons and different levels of solar activity.

Table 1. HMTS regular component parameters.

Period Solar Activity Parameters of s1
−3,k Parameters of s2

−3,k

γ1
1 γ1

2 γ1
3 γ2

1 γ2
2

winter low and high −0.6 −0.6 0.4 −0.9 −0.9

summer low −0.8 −0.7 − −0.9 −0.9
high −0.5 −0.6 − −0.9 −0.8

Based on the data from Table 1 we obtain

(1) for wintertime:
s1
−3,k = −0.6ω1

−3,k−1 − 0.6ω1
−3,k−2 + 0.4ω1

−3,k−3 + a1
−3,k,

s2
−3,k = −0.9ω2

−3,k−1 − 0.9ω2
−3,k−2 + a2

−3,k,
(2) for summertime and high solar activity:

s1
−3,k = −0.5ω1

−3,k−1 − 0.6ω1
−3,k−2 + a1

−3,k,
s2
−3,k = −0.9ω2

−3,k−1 − 0.8ω2
−3,k−2 + a2

−3,k,
(3) for summertime and low solar activity:

s1
−3,k = −0.8ω1

−3,k−1 − 0.7ω1
−3,k−2 + a1

−3,k,
s2
−3,k = −0.9ω2

−3,k−1 − 0.9ω2
−3,k−2 + a2

−3,k.

Figure 4 shows the modeling results for HMTS regular components ( f−3 and g−3) dur-
ing the absence of ionospheric anomalies. The model errors do not exceed the confidence
interval that indicates their adequacy.
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Figure 4. Modeling of the components f−3 and g−3: (a) foF2 data (8 February 2011–12 February
2011); (b) component f−3 (black) and its model values s1

−3,k (blue dashed line); (c) component g−3

(black) and its model values s2
−3,k (blue dashed line); (d) errors of s1

−3,k; (e) errors of s2
−3,k. On the

graphs (d,e) the dashed lines show 70% confidence intervals.
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Tables 2 and 3, and Figure 5 show the results of validation tests for the obtained
models. The tests were carried out for the foF2 data that were not used at the stage of
model identification. In order to verify the models, we used the cumulative fitting criterion
(Tables 2 and 3), analysis of model residual error ACF (Figure 5a,b) and normalized
cumulative periodogram (Figure 5c,d).

Table 2. Cumulative fitting criterion for the winter season.

Periods Y for s1
−3 Table Value χ0.1

2/χ0.05
2 Y for s2

−3 Table Value χ0.1
2/χ0.05

2

12.15.1970–12.29.1970 18.36

24.8/27.6

28.44

26.0/28.9
02.07.2002–02.25.2002 22.08 26.40
01.30.2012–02.11.2012 16.20 13.50
02.04.2013–02.18.2013 25.90 23.76
02.19.2016–03.05.2016 19.50 21.06

Table 3. Cumulative fitting criterion for the summer season.

Periods Y for s1
−3 Table Value χ0.1

2/χ0.05
2 Y for s2

−3 Table Value χ0.1
2/χ0.05

2

06.03.1971–06.22.1971 27.26

26.0/28.9

17.39

26.0/28.9
07.11.1990–07.27.1990 16.92 18.33
08.03.2002–08.17.2002 24.84 23.76
06.15.2016–06.27.2016 20.70 21.90
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−3,k.

Based on the cumulative fitting criterion [20], the fitted model is satisfactory if

Y = n
Z

∑
z=1

y2
z(a)

is distributed approximately as χ2(Z− p− h), where Z are the considered first autocorre-
lations of model errors, p is the AR model order, h is the MA model order, yz(a) are the
autocorrelations of model error series, n = N − ν, N is the series length, ν is the model
difference order.

According to the criterion, if the model is inadequate, the average Y grows. Conse-
quently, the model adequacy can be verified by comparing Y with the table of χ2 distri-
bution. The results in Tables 2 and 3 show that the Y values of the estimated models, at
a significance level α = 0.05, do not exceed the table χ2 values. The model adequacy is
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also confirmed by the analysis of residual error ACF (Figure 5a,b) and the normalized
cumulative periodogram (Figure 5c,d).

Figure 6a,b shows the results of modeling of the hourly foF2 data during the magnetic
storm on 18 and 19 December 2019. Figure 6c shows the geomagnetic activity index K
(K-index), which characterizes geomagnetic disturbance intensity. The K-index represents
the values from 0 to 9, estimated for the three-hour interval. It is known that during
increased geomagnetic activity (K > 3), anomalous changes are observed in ionospheric
parameters [43]. The analysis of the results in Figure 6 shows an increase in the model
errors during the increase in K-index and magnetic storm occurrence (Figure 6b). This
indicates ionospheric anomaly occurrences. The results show that the HMTS allows us to
detect ionospheric anomalies successfully.
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Figure 7 shows the results of the application of operation (11) to 15-min foF2 data
during the same magnetic storm. Based on operation (11), ionospheric anomaly occurrences
are determined by the threshold function Pj

(
dj,k

)
with the thresholds Tj.

In this paper, we used the thresholds

Tj = V ∗

√√√√ 1
Φ− 1

Φ

∑
k=1

(
dj,k − dj,k

)2

where the coefficient V = 2.3 was estimated by minimizing a posteriori risk (ratio (15)),
dj,k is the average value calculated in a moving time window with the length Φ = 480 (it
corresponds to the interval of 5 days).
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Positive (Pj

(
dj,k

)
> 0) and negative (Pj

(
dj,k

)
< 0) anomalies were considered

separately. Positive anomalies (shown in red in Figure 7b) characterize the anomalous
increase in foF2 values. Negative anomalies (shown in blue in Figure 7b) characterize
anomalous decrease in foF2 values. To evaluate the intensity of ionospheric anomalies we
used the value

Ik = ∑
j

Pj

(
dj,k

)
Assessment of the intensity of positive I+k (Pj

(
dj,k

)
> 0) and negative I−k (Pj

(
dj,k

)
< 0)

ionospheric anomalies is shown in Figure 7c, positive anomalies are shown in red, negative
ones are shown in blue. Figure 7d shows the K-index values. The results show the
occurrence of a negative ionospheric anomaly during the initial and the main phases of
the magnetic storm (18 December 2019), and a positive ionospheric anomaly during the
recovery phase of the storm (19 December 2019). The observed dynamics of the ionospheric
parameters are characteristic of the periods of magnetic storms [43]. The results show the
efficiency of HMTS application for detecting ionospheric anomalies of different intensities.

3.2. Comparison of HMTS with NARX Neural Network

To evaluate the HMTS efficiency, we compared it with the NARX neural network [44].
The NARX network is a non-linear autoregressive neural network, and it is often used to
forecast time series [44–47]. The architectural structure of recurrent neural networks can
take different forms. There are NARX with a Series-Parallel Architecture (NARX SPA) and
NARX with a Parallel Architecture (NARX PA) [44,45].

The dynamics of the NARX SPA model is described by the equation

y(k + 1) = F
[
x(k), x(k− 1), . . . , x(k− lx), y(k), y(k− 1), . . . , y

(
k− ly

)]
,
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where F(·) is the neural network display function, y(k + 1) is the neural network output,
x(k), x(k− 1), . . . , x(k− lx) are neural network inputs, y(k), y(k− 1), . . . , y

(
k− ly

)
are past

values of the time series.
In NARX PA, the network input takes the network outputs ŷi = ŷ(i) instead of the

past values of the time series yi = y(i), i = k, k− ly.
The neural networks were trained separately for different seasons and different levels

of solar activity. During the training, we used the data for the periods without ionospheric
anomalies. We obtained the networks with delays lx = ly = 2 and lx = ly = 5 for each
season. The results of the networks are shown in Figure 8. Table 4 shows the standard
deviations of errors (SD) of networks, which were determined as

S =

√
1
n

n

∑
i=1

(yi − ŷi)
2.
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Table 4. Standard deviations of neural network errors.

SD of NARX SPA SD of NARX PA

Season Delays:
lx=ly=2

Delays:
lx=ly=5

Delays:
lx=ly=2

Delays:
lx=ly=5

Winter (low solar activity) 0.48 0.43 0.57 0.49
Summer (low solar activity) 0.41 0.36 0.46 0.39
Winter (high solar activity) 0.49 0.48 0.78 0.74

Summer (high solar activity) 0.42 0.36 0.45 0.36

The analysis of the results (Figure 8, Table 4) shows that the NARX SPA predicts
the data with fewer errors than the NARX PA. Sending the past time series values to the
NARX SPA network input (rather than network outputs) made it possible to obtain a more
accurate data prediction. The comparison results of the NARX SPA with the HMTS are
presented below.

Figure 9 shows the results of ionospheric data modeling based on HMTS and NARX
SPA during the periods of absence of ionospheric anomalies. The results show that the
model errors have similar values for the winter and summer seasons, and vary within the
interval of [−1,1], both for HMTS and NARX SPA.
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Figure 9. Errors of HMTS and NARX SPA for summer (from 6 June 2019 to 16 June 2019) and winter (from 15 February
2019 to 23 February 2019) seasons: (a,e) foF2 data; (b,f) HMTS errors; (c,g) NARX SPA errors (network delays lx = ly = 2);
(d,h) NARX SPA errors (network delays lx = ly = 5).

Figure 10 shows the results of the application of HMTS and NARX SPA for hourly
foF2 data during magnetic storms that occurred on 21–22 November 2017 and 5–6 August

2019. NARX SPA errors were calculated in a 3-h moving time window: εi =
i+1
∑

i=i−1
|yi − ŷi|.

Figure 10e,j shows the geomagnetic activity Dst-index, which characterizes geomagnetic
disturbance intensity during magnetic storms. Dst-index takes negative values during
magnetic storms. The increases in HMTS and NARX SPA errors during the analyzed
magnetic storms (Figure 10b–d,g–i) indicate ionospheric anomaly occurrences. The results
show that HMTS and NARX SPA allow us to detect ionospheric anomalies successfully.
However, an increase in NARX SPA errors is also observed in wintertime on the eve and
after the magnetic storm (Figure 10c,d). This shows the presence of false alarms.
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SPA errors (network delays lx = ly = 5); (e,j) Dst-index of geomagnetic activity.
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The results of detecting ionospheric anomalies based on HMTS and NARX SPA are
shown in Tables 5–8. The estimates were based on statistical modeling. The HMTS results
are shown for the 90% confidence interval. The analysis of the results shows that NARX
SPA efficiency exceeds that for HMTS during high solar activity. However, the frequency
of false alarms for HMTS is significantly less than that for NARX SPA.

Table 5. Results for wintertime and high solar activity.

HMTS NARX SPA

Signal/Noise
Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 95%/0% 78%/2% 86%/5% 96%/4%
1 92%/0% 74%/7% 76%/8% 94%/9%

0.8 85%/3% 74%/11% 75%/12% 84%/12%

Table 6. Results for wintertime and low solar activity.

HMTS NARX SPA

Signal/Noise
Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 97%/0% 90%/5% 81%/1% 89%/2%
1 96%/2% 89%/12% 73%/12% 84%/12%

0.8 85%/6% 89%/17% 70%/19% 82%/18%

Table 7. Results for summertime and high solar activity.

HMTS NARX SPA

Signal/Noise
Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 79%/0% 80%/2% 79%/5% 81%/7%
1 70%/0% 65%/4% 71%/15% 72%/14%

0.8 55%/1% 63%/10% 64%/18% 64%/17%

Table 8. Results for summertime and low solar activity.

HMTS NARX SPA

Signal/Noise
Detected/False Detected/False

Component f−3 Component g−3
Delays:
lx=ly=2

Delays:
lx=ly=5

1.3 94%/0% 83%/3% 92%/2% 93%/3%
1 90%/0% 80%/9% 90%/6% 91%/9%

0.8 86%/2% 80%/13% 85%/11% 84%/15%

4. Conclusions

The paper proposes a hybrid model of time series of complex structure. The model
is based on the combination of function expansions in a wavelet series with ARIMA
models. Ionospheric critical frequency data were used to estimate the HMTS efficiency.
The estimates showed:
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1. The HMTS regular component adequately describes ionospheric parameter time
series during the periods without ionospheric anomalies. Application of wavelet
decomposition allows us to detect regular components of ionospheric parameter time
series and to use the ARIMA model;

2. Analysis of HMTS regular component errors allows us to detect ionospheric anomalies
during a magnetic storm;

3. The HMTS anomalous component allows us to detect ionospheric anomalies of
different intensities by threshold functions.

Comparison of HMTS with NARX with Series-Parallel Architecture confirmed the
HMTS efficiency to detect anomalies in the ionospheric critical frequency data. The results
of the experiments showed that the efficiency of the NARX neural network slightly exceeds
that of HMTS (about 2–3%) during high solar activity. However, the frequency of false
alarms in NARX is significantly higher (about 15%). During the periods of low solar activity,
the efficiency of HMTS exceeds that of NARX.

The HMTS can be used for modeling and analysis of time series of complex structure,
including seasonal components and local features of various forms.
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