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Abstract: In the paper, for the first time, four distances for Circular Intuitionistic Fuzzy Sets (C-IFSs)
are defined. These sets are extensions of the standard IFS that are extensions of Zadeh’s fuzzy
sets. As it is shown, the distances for the C-IFS are different than those for the standard IFSs. At
the moment, they do not have analogues in fuzzy sets theory. Examples, comparing the proposed
distances, are given and some ideas for further research are formulated.
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1. Introduction

The concept of an Intuitionistic Fuzzy Set (IFS, see [1,2]) (introduced in 1983) was one
of the first in time extensions of L (Zadeh’s fuzzy set [3]) On the other hand, the IFS is also
an object of different extensions. One extensions is the Circular IFS (C-IFS, see [4]). It is
defined as follows.

Let us have a fixed universe E and its subset A. The set A∗r = {〈x, µA(x), νA(x); r〉 | x ∈ E},
where 0 ≤ µA(x) + νA(x) ≤ 1 and r ∈ [0,

√
2] is a radius of the circle around each element

x ∈ E, is called a C-IFS and functions µA : E → [0, 1] and νA : E → [0, 1] represent the
degree of membership (validity, etc.) and non-membership (non-validity, etc.) of element
x ∈ E to a fixed set A ⊆ E. Now, we can define also function πA : E→ [0, 1] by means of
πA(x) = 1− µA(x)− νA(x) and it corresponds to degree of indeterminacy (uncertainty,
etc.). Let us remark that in [4], the radius r was defined to take values from the interval
[0, 1]. Here, we extended the region of r values to be [0,

√
2] because we would like the

points with center 〈0, 1〉 and 〈1, 0〉 to be able to cover the whole IFS triangle, which can be
valid only if r ≥

√
2. In future, it would be appropriate using the herewith presented form

of the C-IFS definition.
When r = 0, the C-IFS is transformed to an IFS. On the other hand, when r > 0,

the C-IFS is an object that is different from the ordinary IFS. In reality, in ordinary IFS
theory, there is a way to represent the existance of circles around the elements of universe
E (see Figures 1 and 2).
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Figure 1. Geometrical interpretation of an element of an IFS.
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Figure 2. Geometric representation of different circular IFSs onto the IFS interpretation triangle.

A metric (topological) space can be thought of as a very basic space that satisfies a few
axioms. The ability to measure and compare distances between elements of a set is often
crucial, and it provides more structure than general topological space possesses (see, [5,6]).

When we refer to the elements or “points” of the underlying set, we do not neces-
sarily refer to geometrical points, although this is how most of us usually visualize them.
They may be objects of any type, such as sequences, functions, images, sounds, signals,
decisions, etc.

Definition 1 ([5,6]). A metric on a set X is a function d : X×X → R with the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X, and equality holds if and only if (iff) x = y.
2. d(x, y) = d(y, x) for all x, y ∈ X (symmetry).
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (the triangle inequality).

We call d(x, y) the distance between x and y, and the pair (X, d) a metric space.

It is evident that d has the properties we expect when we measure a distance between
points in rigid geometry. Let us now introduce two from the most popular metrics in Rn,
for any positive number n.

Definition 2 ([6,7]). Taking any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, let us define:

1. Euclidean metric:

d2(x, y) =

√
n

∑
i=1

(xi − yi)2

2. Manhattan (Hamming) metric:

d1(x, y) =
n

∑
i=1
|xi − yi|

In the present paper, for the first time, we will introduce distances over two C-IFSs.
Ideas for norms, metrics and distances over IFSs were originally introduced in [8] and
described in more details in [9], where the first two distances were given. The next two
distances, which are extensions of the first two, were introduced in [10] by E. Szmidt and
J. Kacprzyk. In [2], these two distances were called after their names. Later, a lot of other
distances were introduced over IFSs (see, e.g., [7,11–39]).

The first four distances over IFSs are the following.
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Let us have two Intuitionistic Fuzzy Sets (IFSs; see [2,9]) A and B:

A = {〈x, µA(x), νA(x)〉|x ∈ E},
B = {〈x, µB(x), νB(x)〉|x ∈ E},

where µA, νA, µB, νB : E→ [0, 1] and µA(x) + νA(x) ≤ 1, µB(x) + νB(x) ≤ 1 for each x ∈ E.
Let everywhere below CE be the cardinality of universe E. In [2,9] the following

distances are described:

H2(A, B) =
1

2CE
. ∑

x∈E
(|µA(x)− µB(x)|+ |νA(x)− νB(x)|), (1)

(intuitionistic fuzzy Hamming distance)

E2(A, B) =

√
1

2CE
. ∑

x∈E
((µA(x)− µB(x))2 + (νA(x)− νB(x))2), (2)

(intuitionistic fuzzy Euclidean distance)

H3(A, B) =
1

2CE
. ∑

x∈E
(|µA(x)− µB(x)|+ |νA(x)− νB(x)|+ |πA(x)− πB(x)|), (3)

(Szmidt and Kacprzyk’s form of intuitionistic fuzzy Hamming distance)

E3(A, B) =

√
1

2CE
. ∑

x∈E
((µA(x)− µB(x))2 + (νA(x)− νB(x))2) + (πA(x)− πB(x))2) (4)

(Szmidt and Kacprzyk’s form of intuitionistic fuzzy Euclidean distance).

2. Definitions of the First Four Distances over C-IFSs

Here, we introduce the following four distances for C-IFS that are modifications of
distances (1)–(4) as follows:

H2(A, B) =
1
2

(
|rA − rB|√

2
+

1
2CE

∑
x∈E

(|µA(x)− µB(x)|+ |νA(x)− νB(x)|)
)

(5)

(intuitionistic fuzzy Hamming distance),

E2(A, B) =
1
2

(
|rA − rB|√

2
+

√
1

2CE
.(∑

x∈E
(µA(x)− µB(x))2 + (νA(x)− νB(x))2)

)
(6)

(intuitionistic fuzzy Euclidean distance),

H3(A, B) =
1
2

(
|rA − rB|√

2
+

1
2CE

. ∑
x∈E

(|µA(x)− µB(x)|+ |νA(x)− νB(x)|+ |πA(x)− πB(x)|)
)

(7)

(Szmidt and Kacprzyk’s form of intuitionistic fuzzy Hamming distance),

E3(A, B)

1
2

(
|rA − rB|√

2
+

√
1

2CE
.(∑

x∈E
((µA(x)− µB(x))2 + (νA(x)− νB(x))2) + (πA(x)− πB(x))2)

)
(8)

(Szmidt and Kacprzyk’s form of intuitionistic fuzzy Euclidean distance).
Obviously, if A and B are standard IFS, i.e., rA = rB = 0, the new distances coincide

with (1)–(4).
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Let CI FS(E) and IFS(E) be the sets of all C-IFSs and of all IFSs over the universe E,
respectively. As we mentioned above, A ∈ IFS(E) iff A ∈ C-IFS(E) and ra = 0.

Theorem 1. For any ArA , BrB ∈ C-IFS(E), that is A, B ∈ IFS(E) where rA, rB ∈ [0,
√

2],
the expressions (5)–(8) are well-defined metrics (distances).

Proof. We need to show that the formulas H2(ArA , BrB), H3(ArA , BrB), E2(ArA , BrB),
E3(ArA , BrB) stated in expressions (5)–(8) obey the three axioms for a metric from Definition 1.

As it has already been shown, the expressions stated in (1)–(4) are well-defined
distances in IFS(E). Let us take D to be any one of H2, H3, E2 or E3. Therefore, D is a
metric in IFS(E).

Since it is obvious from the definition of C-IFSs, ArA = BrB in C-IFS(E) iff A = B in
IFS(E) and rA = rB. But A = B in IFS(E) iff D(A, B) = 0 and the sum of two non-negative
numbers is 0 iff both numbers are equal to 0, therefore the validity of the first axiom for a
distance is proved.

The validity of the second axiom is obvious since D is symmetric.
In order to show the validity of the third axiom, let us take a third C-IFS CrC and show

that the triangle property

D(ArA , CrC ) ≤ D(ArA , BrB) + D(BrB , CrC ) (9)

holds.
We know that

D(A, C) ≤ D(A, B) + D(B, C) (10)

holds for the IFSs A, B and C. From well-known inequality |x|+ |y| ≥ |x + y| for three real
numbers it follows that

|rC − rA| ≤ |rB − rA|+ |rC − rB| (11)

for all choices of rA, rB, rC ∈ [0,
√

2]. Therefore, summing up both sides of the last two
inequality expressions (10) and (11), the validity of (9), i.e., the third axiom for distance
holds.

Remark 1. From the definition of H2, H3 and E2, E3 and since for any two IFS, A, B and
x ∈ E : |πB(x)− πA(x)| ≥ 0, the following inequalities are valid.

• H2(A, B) ≤ H3(A, B)
• E2(A, B) ≤ E3(A, B)

3. Numerical Example

A numerical example of an IFS with E = {0, 1, 2}, CE = 3 and ArA , BrB ∈ C− IFS(E)
is depicted on Figure 3. For these IFSs, A and B, we have that rA = 0.1 and rB = 0.06 and
the degrees of the corresponding elements x from the universe E are given in Table 1.

Table 1. Degrees of the element x.

x ∈ E µA(x) νA(x) πA(x) µB(x) νB(x) πB(x)

0 0.321 0.070 0.609 0.241 0.049 0.710
1 0.099 0.102 0.799 0.075 0.071 0.854
2 0.200 0.699 0.101 0.150 0.489 0.361



Mathematics 2021, 9, 1121 5 of 8

Figure 3. Triangular representation of ArA , BrB ∈ C-IFS(E) with E = {0, 1, 2}, CE = 3 and rA = 0.1,
rB = 0.06.

Let us consider the example of the two IFS, ArA and BrB from the previous section.
A simple computation applying the corresponding formulas and the concrete values for
the arbitrary chosen ArA , BrB shows that

|rA − rB|√
2

=
|0.1− 0.06|√

2
= 0.0283,

H2(A, B) = 0.069 and E2(A, B) = 0.096,

H3(A, B) = 0.092 and E3(A, B) = 0.123.

Hence we conclude that,

H2(ArA , BrB) =
1
2

(
|rA − rB|√

2
+ H2(A, B)

)
= 0.049,

E2(ArA , BrB) =
1
2

(
|rA − rB|√

2
+ E2(A, B)

)
= 0.062,

and

H3(ArA , BrB) =
1
2

(
|rA − rB|√

2
+ H3(A, B)

)
= 0.083,

E3(ArA , BrB) =
1
2

(
|rA − rB|√

2
+ E3(A, B)

)
= 0.089.

The results from the comparison of the four different distances are shown in Table 2.
the following tabular form.

Table 2. Comparison of the four different distances.

D H2(ArA , BrB) E2(ArA , BrB) H3(ArA , BrB) E3(ArA , BrB)

D(ArA , BrB) 0.049 0.062 0.083 0.089
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The reader may compare the values of the different distances from A and B with
Remark 1. The plot from Figure 3 is taken from a software implementation for compu-
tation and visualization in an interactive mode of C-IFS and different distances for them.
In a future research, the authors will go into more detail introducing multiple distances
of C-IFSs and presenting a software implementation about them. Figure 3 was created
with the Python’s library Matplotlib and it shows what happens if we fix A, B and rA and
change the length of rB. In future, new distances for C-IFS will be introduced. Each distance
over ordinary IFSs can be transformed for the case of C-IFS by the method discussed in
Section 2.

4. Result and Discussion

Below we show that each one of the distances satisfies the triangular inequality for
three arbitrary C-IFS. Let us consider ArA , BrB ∈ C-IFS(E) from Section 3 and take another
CrC ∈ C-IFS(E) with degrees of the corresponding elements x from the universe E given in
Table 3.

Table 3. Degrees of the element x in CrC .

x ∈ E µC(x) νC(x) πC(x)

0 0.2411 0.2523 0.5069
1 0.0746 0.3413 0.584
2 0.1501 0.7293 0.120

Applying the formulas from Section 2 as in the previous Section we obtain the val-
ues for the different distances between all combinations of pairs from {ArA , BrB , CrC}
∈ C-IFS(E) given in Table 4.

Table 4. Values of the distances H2, E2, H3, E3.

D H2 E2 H3 E3

D(ArA , CrC ) 0.058 0.072 0.086 0.088

D(ArA , BrB) 0.049 0.062 0.083 0.089

D(BrB , CrC ) 0.067 0.092 0.126 0.127

For the above table if for any of the columns if we pick up an arbitrary permutation
of the row indices let the corresponding values be a, b, c. Then it can be easily checked
that a ≤ b + c which exactly shows the validity of the triangular inequality of any of the
proposed distances for the C-IFSs ArA , BrB , CrC . As an example, let us take the column H3
and the permutation of the row indices 3, 1, 2, then a = 0.126, b = 0.086, c = 0.083 and
0.126 < 0.086 + 0.083 = 0.169.

5. Conclusions

The present paper is the second one devoted to C-IFS. Here, for the first time, distances
for C-IFS were introduced. The introduced distances could be applied in diverse areas
where objects and processes can be evaluated in more detail compared to an ordinary IFS.
In future, new distances over C-IFSs will be introduced and some of their properties will be
studied. In the meantime, the concept of an C-IFS was extended to Elliptic IFS (E-IFS) [40].
The present and other distances will be re-formulated for the E-IFSs.
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