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Abstract: The extended dynamic mode decomposition algorithm is a tool for accurately approximat-
ing the point spectrum of the Koopman operator. This algorithm provides an approximate linear
expansion of non-linear discrete-time systems, which can be useful for system analysis and controller
design. The accuracy of this algorithm depends heavily on the availability of a set of basis functions
that provide the ability to capture the nonlinear dynamics of the underlying system. Recently, the use
of orthogonal polynomials, along with reduction techniques for the dimension and maximum order
of the polynomial basis, have been successfully used to approximate nonlinear systems with the
additional benefit of using smaller datasets. This paper expands the current methods for selecting the
set of observables for nonlinear systems with periodic behavior, which is prone to a representation in
terms of trigonometric functions. The benefit of working with orthogonal polynomials is preserved
by embedding the trigonometric functions into the orthogonal basis. The algorithm is illustrated
with the data-driven modelling of an inverted pendulum in simulation and real-life experiments.

Keywords: extended dynamic mode decomposition; Koopman operator; orthogonal polynomials;
mathematical modeling; dynamic systems

1. Introduction

Recent developments for the analysis and control of nonlinear systems focus on the
properties of linear transformations of these systems [1], such as the Koopman opera-
tor [2]. Although this latter transformation is infinite dimensional, there are approximation
methods that allow for capturing the point spectrum of the operator based on datasets
that were collected from the nonlinear system. The prevalent technique to perform this
finite dimensional approximation is the dynamic mode decomposition (DMD) [3], and its
generalization, the extended dynamic mode decomposition (EDMD) [4,5], which can make
use of a variety of dictionaries of observable functions spanning subspaces over which
the Koopman operator can be approximated. The main advantage of these techniques is
the ability to analyze the spectral decomposition of the regression matrix or Koopman
matrix [6–13]. An additional advantage is the possibility to include the forcing signals
of the system into the transformation in view of its control [14–17]. These latter develop-
ments make use of model predictive control (MPC), but the availability of the Koopman
matrix and its spectral decomposition should allow the extension of classical linear control
techniques to the linear evolution of observables.

A key aspect is the selection of the observables to capture complex dynamics and
avoid excessive data requirement. For example, the sparse identification on the non-linear
dynamics (SINDY) algorithm [18] starts with a dictionary of observables and performs a
sparse regression by regularized least squares on the original state variables of the system
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to identify the ones that best describe the dynamics. An alternative is the EDMD algorithm
with dictionary learning [19] (EDMD-DL), where, instead of starting with a predefined
set of observables, the algorithm iterates between learning a dictionary via an artificial
neural network, and the approximation of the Koopman matrix via traditional EDMD.
These techniques have the advantage of reducing the dimension of the set of observables,
and possibly the requirement for data to approximate the dynamics. In addition to these
techniques, a common practice is to use norm-based expansions, radial-basis functions,
kernel-based [20], orthogonal polynomials, and their variations [16]. Conversely, these
methods have some numerical stability problems when dealing with the set of observables.
All of these must deal with the problem of recovering the state, and, for this purpose,
a common practice is to include the state in the set of observables, at the cost of the
possibility of not having a basis that spans the function space that is necessary for an
accurate approximation. When the inclusion of the state is not the case, the solution is
to solve a second optimization problem that finds the best projection matrix of the state
onto the set of observables. The problem of this approach is the addition of an additional
algebraic step that relies on the accuracy of a pseudo inverse, again, at the cost of the
possibility of this matrix not spanning the state space.

In a previous work of the authors [12], an improvement of the EDMD algorithm is
proposed through the use of orthogonal polynomials and a p-q-quasi norm reduction
method, coupled with a selection procedure for the best p-q values. This algorithm allows
for a set of observables that is a basis and, therefore, solves the drawbacks of traditional
methods and does not require the solution of a second optimization problem to recover the
state. The basis reduction and the preservation of the spectrum can be achieved based on a
small dataset. Even though the technique achieves good performance for systems that have
a polynomial structure in the underlying dynamics, or systems with periodic behavior,
where the evolution of states has trigonometric components, the polynomial methods offer
room for improvement.

The main contribution of this study is to embed trigonometric functions [21], or any
particular functions, into the orthogonal polynomial basis in order to better represent
systems with cyclic behavior, respectively, any particular behavior. These embeddings
improve the accuracy of the algorithm, while preserving the advantage of the reduction
method previously introduced in [12]. The performance of the approach is demonstrated
in simulation and real-life experiments with an inverted pendulum on a cart.

This paper is organized, as follows. The next section introduces the EDMD algorithm
along with some recent improvements that allow the use of reduced orthogonal basis for
its computation. Section 3 describes the concept of embedding trigonometric functions, or
any kind of function into the state space of the system to exploit the a priori knowledge of
a variable behavior. Section 4 illustrates how these embeddings perform by modeling a
pendulum on a cart. Finally, Section 5 gives some analysis and conclusions.

Notation C denotes the field of complex numbers. R and R+ denote the field of
real and nonnegative real numbers, respectively. For any matrix A ∈ Rn×n, A> denotes
transpose, A+ denotes its pseudoinverse, and ||x|| represents the Euclidean norm. For a
complex number λ, |λ| represents its absolute value. For any set A, Ā denotes the closure
of A. The vector exponentiation M±η is defined term by term. A level set of an arbitrary
function h(x) for any constant c is Γ(h(x)) = {x ∈ Rn : h(x) = c}.

2. Preliminaries

The extended dynamic mode decomposition (EDMD) algorithm [5] is a numerical pro-
cedure closely related to modern data-driven and machine learning techniques, where the
information comes either from the numerical integration of a nonlinear differential equation
system or from the measurements of real system variables. This has to be contrasted with
traditional system identification techniques that rely upon both the explicit knowledge of
the differential equation model [22–24] and gathered experimental data. Because EDMD
is the backbone of the linear predictors developed in this study, this section presents a
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description of the algorithm along with its improvements and shows via simulations of the
pendulum on a cart its advantages over the current alternative methods.

Consider the non-autonomous nonlinear system (M,U , T(x, u), k) in discrete time,
with state variables x ∈ M, whereM⊆ Rn is the nonempty compact state space, forcing
signals u ∈ U , where U ⊆ Rr is the nonempty compact input space, k ∈ Z+

0 is the discrete
time, and T : M×U →M is the differentiable vector-valued evolution map, i.e.,

x(k + 1) = T(x(k), u(k)), (1)

where a trajectory, or an orbit of the system is the sequence of states (xi)
k
i=0 that come from

the solution of (1), which is the successive application of the non-linear mapping T from an
initial condition x0 ∈ M at k = 0 and a specific sequence of forcing signals u , (ui)

k−1
i=0 .

For example, consider the experimental set-up that will be used later on in this study
for the validation of the trigonometric embeddings. The system consists of a pendulum
and a moving cart attached by a swivel that allows the pendulum to rotate freely. The
cart wheels rotate on a rail and a DC motor drives the whole system. The available
information from two encoders are the displacement of the cart and angular rotation of the
pendulum. Figure 1 depicts the experimental set-up, where x is the horizontal displacement
of the cart and θ is the angle of the pendulum with respect to the vertical axis. Mass and
energy balances give a set of ordinary differential equations that describe the dynamics of
the system.

Figure 1. Pendulum on a cart.

The system equations, which depend on the masses of the cart and pendulum, the
length of the pendulum rod, the linear damping of the cart wheels with the rails, and the
gravitational constant, are given by

ẋ = v

v̇ =
Gu− µxv−mlθ2

v sin(θ)
M + m sin2(θ)

θ̇ = θv

θ̇v =
Gu− µxv−mlθ2

v sin(θ) cos(θ) + (M + m)g sin(θ)
l −ml cos2(θ)

, (2)

where the states are the cart displacement x, the cart velocity v, the rod angle θ, and
the angular velocity θv. The model also considers a gain G between the voltage of the
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motor u and the resulting force on the cart. The parameter of the model come either
from the available data from the manufacturer (Feedback Instruments Ltd. Crowborough,
UK) or from an identification of the parameter from a set of data collected in preliminary
experiments with the system. Table 1 lists the value of these parameters.

Table 1. Parameters of the inverted pendulum on a cart.

Description Value Units

M Cart Mass 1.12 [kg]
m Pendulum Mass 0.0905 [kg]
g Gravity 9.81 [m · s−2]
l Pendulum length 0.365 [m]

µx Cart Friction 6.65 [·]
G Tension-Force Gain 7.5 [·]

Let us now consider a set of seven orbits or trajectories that were obtained by the
numerical integration of (2) with the assumption that all of the state variables of the system
are available. For the accuracy of the algorithm, it is necessary that the trajectory samples
are collected at a constant rate, which is chosen equal to 0.01 s, in both the numerical
simulation and experimental study. This set of orbits sampled at a constant ∆t correspond
to the solution of the non-linear discrete-time mapping (1).

Figure 2 depicts the discrete-time evolution of some of these trajectories with their
respective forcing signals. These trajectories serve as the available data to approximate the
non-linear dynamics via the EDMD algorithm.
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Figure 2. Model trajectories with sinusoidal input.

Because EDMD is a data-driven approach, the set of trajectories is divided into training
and testing sets for the approximation and validation of the algorithm. In our case study,
the selection is five orbits for training the linear predictor, and two for testing (Figure 2).
Finally, the snapshot data are defined as a set of tuples {(xi, yi, ui)}, where yi = T(xi, ui).
From these tuples, the snapshot matrices are given by:

X =
[
x1 · · · xN

]
, Y =

[
y1 · · · yN

]
, U =

[
u1 · · · uN

]
, (3)

according to the traditional EDMD algorithm [5] and the extension for including the inputs
of the system [17]. The rationale behind the approach is to obtain linear predictors of the
state evaluated on a vector-valued function of observables Ψ(x) = [ψ1(x), . . . , ψd(x)]> :
M → Cd×1 where d is the dimension of the set of observables that must satisfy the
condition

Ψ(y) = Ud,xΨ(x) + Ud,uu + r(x, u) (4)
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r(x, u) ∈ F is the residual term that has to be minimized in order to find matrices Ud,x and
Ud,u. This leads to the least squares problem

‖r(x, u)‖2 =
1
N

N

∑
i=1

1
2

∥∥Ψ(yi)−Ud,xΨ(xi)−Ud,uu
∥∥2

2, (5)

which as a closed-form solution

[
Ud,x Ud,u

]
= Ψ(Y)

[
Ψ(X)

U

]>([Ψ(X)
U

][
Ψ(X)

U

]>)−1

. (6)

Because the purpose of these predictors is the synthesis of controllers, it is necessary to
recover the state from the observable functions. Thus, an additional least squares problem
for the best projection matrix of x onto the span of Ψ has to be solved. The projection must
satisfy the condition

x̄ = Ud,cΨ(x) + rc(x), (7)

where rc(x) is the residual term to be minimized to find Ud,c, which accepts a pseudo-
inverse based least squares solution

Ud,c = XΨ(X)+. (8)

Instead of solving (8) to recover the state, a common practice is to include the state in
the set of observables, so that matrix Ud,c = [In, 0n×(d−n)] after reordering the observables,
such that the state vector forms the first n elements.

The EDMD formulation (6) and (8) can be used with a basis of Jacobi type monomi-
als for the approximation of the pendulum dynamics (2), i.e., a sequence of orthogonal
polynomials {πα(x)}p

α=0 where πα(x) is a univariate polynomial (i.e., a polynomial in only
one of the state variables xi, i = 1, . . . , n) of degree α ∈ N+ up to order p. This sequence is
defined over a range [a, b], where some inner product between distinct elements is zero,
i.e., 〈πi(x), πj(x)〉 = 0 for i 6= j, and it satisfies a particular ordinary differential equation.
Each element of the observable basis is the tensor product of n univariate polynomials,

ψl(x) =
n

∏
j=1

παj(xj) l = 1, . . . , d. (9)

For the approximation of the pendulum dynamics, the order p = 1 can be chosen,
giving a set of observables of dimension d = 17 (16 for the state and 1 for the input) with
maximum order 4, i.e., the last observable of the state is the product of all the univariate
monomials ψ16 = ∏4

i=1 5xi + 1 for parameters a = 5 and b = 3 of a Jacobi type monomial of
order one in the variable x, J(1, a, b, x) = a/2− b/2+ x(a/2+ b/2+ 1). When considering
the pendulum states, Table 2 shows the set of indices α for each of the observables of
the state.

Table 2. Indices for the state observables.

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10 ψ11 ψ12 ψ13 ψ14 ψ15 ψ16

x 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
v 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
θ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
θv 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
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Note that Table 2 shows a base p + 1 counting solution with n significant figures, so
that the base 10 digits from zero up to (p + 1)n − 1 in a p + 1 = 2 base is given by

(
0, 1, . . . , (p + 1)n − 1

)
basep+1 =

(
0, 1, . . . , 15

)
base2

=
(
0000, 0001, · · · , 1111

)
.

This set of indices has a simple computational solution using Matlab, not only for
generating it, but also as an input for the subsequent reductions. Along with the set of
indices, and the method for generating the basis as a tensor product of the univariate
polynomials from (9), the orthogonal basis is
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dimension d = 81 with a maximum order of eight, which shows that these two numbers
grow exponentially with the maximum univariate order p. Moreover, in this particular
case the mean absolute error increases to 1.77, which is also a sign of numerical issues due
to the maximum order, even though the maximum absolute error decreases to 8.43.

-0.2

0

0.2

0.4

-1

0

1

0

5

0 0.5 1 1.5 2 2.5

-10

-5

0

5

-0.1

0

0.1

0.2

-1

0

1

0

5

10

0 1 2 3

-5

0

5

Figure 3. Testing trajectories of the traditional computation of the EDMD algorithm with a Jacobi
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integration of the ODE and dashed lines the approximation by the EDMD algorithm.

Indeed, there are some inherent numerical instabilities with the method. First, the
EDMD algorithm is a linear map on the function space that the set of observables span,
and the accuracy of the solution depends on the characteristics of this set. Choosing an
orthogonal basis with an observable that corresponds to a constant generally improves the
performance of the approximation. In contrast, adding the state to the set of observables is
prone to breaking the orthogonality of the observables, depending on their actual choice.
As a consequence, the square matrix [Ψ(X), U]>[Ψ(X), U] in (6) becomes singular or
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Indeed, there are some inherent numerical instabilities with the method. First, the
EDMD algorithm is a linear map on the function space that the set of observables span,
and the accuracy of the solution depends on the characteristics of this set. Choosing an
orthogonal basis with an observable that corresponds to a constant generally improves the
performance of the approximation. In contrast, adding the state to the set of observables is
prone to breaking the orthogonality of the observables, depending on their actual choice.
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As a consequence, the square matrix [Ψ(X), U]>[Ψ(X), U] in (6) becomes singular or
close to singular and, while replacing the inverse by a Moore–Penrose pseudo inverse
can partly alleviate this issue, the result can still be inaccurate. Second, preserving an
orthogonal basis, without explicitly including the states as observables poses a similar
matrix inversion problem, when there is no solution to the projection of the state space
onto the set of observables.

The way out of this dilemma is the selection of order-one, univariate, injective, poly-
nomial elements for the recovery of the state [13], which implies that there is no need for
breaking the orthogonality of the set while still being able to recover the state as a linear
function of the observables, completely avoiding the burden of a matrix inversion.

Besides, the exponential growth of the maximum order and dimension of the set
of observables based on orthogonal polynomial has a solution via p-q-quasi norms and
polynomial accuracy methods.

The reduction by p-q-quasi norms (the quantity ‖ · ‖q is not a norm because it does
not satisfy the triangle inequality) [25] is the truncation of higher order elements from the
basis by defining the q-quasi norm

‖α‖q =

(
n

∑
i=1

α
q
i

) 1
q

, (10)

and by defining a maximum degree p ∈ N and a quasi norm q ∈ R+ to obtain a set
of indexes α = {α ∈ Nn : ‖α‖q < p}, which defines the order of each of the univariate
polynomial elements whose products form the elements of the observables. With this
truncated set of indices, every element of the vector valued function of observables is
the tensor product of n univariate polynomials, as in (9). When considering the previous
Matlab code example, the necessary modification consists in the addition of one line of
code that performs the truncation before calculating the univariate polynomials.
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The vector valued function of observables can be further reduced by considering the
polynomial accuracy

εl =
1
N

N

∑
i=1

|ψl(yi)−Udl
ψl(xi)|

|ψl(yi)|
, l = 1, . . . , n (11)

where Udl
is the l-th row of the EDMD matrix.

Because the n injective order-one univariate elements have to remain in the basis, so
as to be able to recover the state later on, the threshold ε̄ for the elimination of elements is
the maximum of the errors with an alpha index equal to one

ε̄ = max(ε : ‖αl‖1 = 1), (12)

and the multivariate polynomial elements that stay in the reduced vector-valued function
of observables ΨR(x) are

ΨR(x) = {Ψ(x) : ε ≤ ε̄}. (13)

Above this threshold, the corresponding observables are discarded. Consequently, a
reduction of the mean absolute error is expected.

In our case study of the inverted pendulum, we can consider the same orthogonal
basis of Jacobi polynomials with a sweep of p-q parameters corresponding to: p = [2, 3, 5, ]
and q = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3]. Although there are 18 possible combinations, some
p-q parametrizations produce equal basis. There are only 12 distinct sets of observables,
ranging from six elements of maximum order 2 to 173 elements of maximum order 5.
The result of the reduction gives a sub-optimal basis of 33 elements of maximum order
3 that achieves a mean absolute error of 0.62 and a maximum absolute error of 4.85, as
compared to 1.31 and 11.79 for the traditional EDMD. Note that the reduction provides the
possibility to test higher-order polynomial basis than in the traditional form, where a basis
of maximum order 5 would count 625 elements. In addition to the versatile selection of
higher order polynomial basis, the p-q-EDMD also reduces the necessary amount of data
for producing accurate linear predictors (in our case study, the algorithm needs 1110 data
points for the training set). This reduction allows the implementation of the algorithm in
real systems, where it is expensive and time consuming to acquire big data-sets. Figure 4
shows the performance of the sub-optimal basis of the p-q-EDMD in comparison to the
traditional EDMD.
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Figure 4. The testing trajectories of the traditional EDMD computation against the p-q-EDMD of
polynomial elements up to order two. Solid lines are the orbits from the numerical integration of
the ODE, dash-dotted lines are the approximation of the EDMD algorithm, and dashes lines are the
approximation by the p-q-EDMD algorithm.
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Although the use of reduced orthogonal polynomials for the p-q-EDMD provides a
method for improving the accuracy of the algorithm while avoiding computationally heavy
high-order and dimensional solutions, the accuracy of the algorithm for systems that have
trigonometric components or an arbitrary behavior, like exponentials or logarithms, is not
enough. Therefore, the next section introduces the concept of trigonometric embeddings.

3. Trigonometric Embeddings

In this section, we consider the problem of representing dynamic systems with oscil-
latory behavior by polynomial expansions and the possibility to increase the parsimony
of the approximation by the inclusion of trigonometric functions as elementary units of
the polynomial expansion. Similar embeddings could be used for any particular behavior,
using associated functions. Similar to the idea that took the dynamic mode decomposition
algorithm to the extended version, where, instead of performing a regression on the states,
the extended method considers a set of functions of the state (the so-called observables),
the trigonometric embeddings, or more generally function embeddings, provide specific
functions of the state conveying particular information.

Consider the discrete-time dynamical system (1) and assume that a subset m of the
state xtg ⊆ x has trigonometric components in the difference equation T(x, u). For each of
these state variables, an extension of the state vector is achieved with 2 additional variables,
leading to

xe =




x1
...

xn
xe1
...

xe2m




, (14)

where m ≤ n and xe belongs to some extended space, i.e., xe ∈ Me whereMe ⊆ Rn+2m.
In this extended space, a set of observables Ψ(xe) = [ψ1(xe), . . . , ψd(xe)]

> :Me → Cd×1 is
defined, where each element comes from (9), with the same p-q-quasi norm reduction (10)
of the p-q-EDMD algorithm. Therefore, preserving the advantages of working with a
reduced orthogonal basis.

Consider, for example, an arbitrary discrete-time dynamical system (M,U , T(x, u), k),
where n = 2, r = 2 and xtg = x2, i.e., the system has two state variables where the second
one has a trigonometric component and two inputs within the non-linear mapping T(x, u).
Moreover, a Hermite basis of orthogonal polynomials of univariate elements up to order 2,
i.e., πα=[0, 1, 2](x) = [1, 2x, 4x2 − 2], is used. For illustration purposes, assume an arbitrary
p-q parametrization p = 3 and q = 0.7. The resulting polynomial basis of the extended
space is

Ψ(xe) =




1
2x1

4x2
1 − 2
2x2

4x1x2
4x2

2 − 2
2xe1

4x1xe1

4x2xe1

4x2
e1
− 2

2xe2

4x1xe2

4x2xe2

4xe1 xe2

4x2
e2
− 2




. (15)
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To bring the set of observables from the extended space into the original state space of
the system, the following transformation has to be applied,

xei = cos xtg
i

xei+1 = sin xtg
i , (16)

for i = 1, . . . , m. In our case study, the set of observables of the state becomes

Ψ(x) =




1
2x1

4x2
1 − 2
2x2

4x1x2
4x2

2 − 2
2 cos(x2)

4x1 cos(x2)
4x2 cos(x2)

4 cos2(x2)− 2
2 sin(x2)

4x1 sin(x2)
4x2 sin(x2)

4 cos(x2) sin(x2)
4 sin2(x2)− 2




. (17)

Note that the embeddings are not restricted to trigonometric functions, but could, for
instance, include logarithmic, exponential, or hyperbolic functions, if the non-linear map-
ping T(x, u) has state variables with such a behavior. However, the functional embeddings
and, particularly the trigonometric embeddings, which add two more variables for each
trigonometric state, exponentially increases the dimension of the set of observables and it
is necessary to resort to the previous p-q-quasi norm reduction.

The application of trigonometric embeddings to the orbits of the pendulum problem,
when considering that only the angle θ has trigonometric components, reduces both
error metrics, the mean absolute error of the approximation, from the aforementioned
value of 0.62 (provided by p-q-EDMD) to 0.17 and the maximum absolute error from
4.85 to 2.46. To achieve these results, we consider a p-q sweep where p = [2, 3, 4, 5],
q = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3] and the available orthogonal polynomials in Matlab.
Table 3 shows the mean absolute errors and the maximum absolute errors for the best
sub-optimal solution for each polynomial basis. The sub-optimal solution is a Laguerre
polynomial basis with parameters p = 4 and q = 0.7. Although the approximation error
in the test set is reduced, the inclusion of the two extra trigonometric variables and the
increased p value produce a basis of 65 elements. Figure 5 depicts the result of the algorithm
in comparison with the benchmark EDMD.

Table 3. Mean and max absolute errors for each polynomial basis used in the p-q Trigonomet-
ric EDMD.

Polynomial Basis ε εM

Hermite 0.2008 2.6163
Legendre 0.2108 3.3836
Laguerre 0.1712 2.4686

ChebyshevT 0.2211 3.8535
ChebyshevU 0.2163 2.4432
Gegenbauer 0.1916 2.5652

Jacobi 0.2092 3.6033
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Figure 5. The testing Trajectories of the traditional EDMD against the p-q-EDMD with trigonometric
embeddings. Solid lines are the orbits from the numerical integration of the ODE, dash-dotted
lines are the approximation of the EDMD algorithm, and dashed lines are the approximation by the
p-q-Trigonometric EDMD algorithm.

4. Inverted Pendulum: Experimental Results

For illustration purposes, and to compare numerically various expansions, we consider
the real-life application that was provided by a Feedback Digital Pendulum 33-005-PCI
(Figure 6).

Figure 6. Feedback Digital Pendulum 33-005-PCI.

This pendulum is the same as that described in Section 2. A DC motor drives the cart
along the rail to which a pendulum is attached. The available experimental set-up provides,
through two encoders, the noisy measurements of the cart position, and the pendulum
angle every 0.01 [s]. Therefore, the output equation is given by:

y =

[
1 0 0 0
0 0 1 0

]



x
v
θ
θv


+ wn, (18)
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where wn ∼ N (0, σ2).
However, the knowledge of the cart velocity and the angular velocity are necessary

for computing an approximation through the EDMD algorithm. A simple differentiation of
the displacements gives an amplification of the noise, impeding the possibility of obtaining
accurate approximations of the dynamics. This can be alleviated by the design of two
Kalman filters based on simple kinematic expressions. The Kalman filter [26] is a model-
based technique that allows recovering on-line estimations by blending the prediction of a
mathematical model with the available on-line measurements. Here, the idea is to avoid
using a full differential equation model, such as (2), as this would be contradictory with
the objective of developing a data-driven EDMD model. Hence, the method relies on basic
kinematic relations

xk+1 = xk + vk · ∆t + ak · 0.5 · ∆t2

vk+1 = vk + ak ∗ ∆t

ak+1 = ak, (19)

where the acceleration is assumed constant. The basic model prediction is completed by a
correction (or state update) in the form




x̂k
v̂k
âk


 =




x̂k−1
v̂k−1
âk−1


+ Kk




xk − x̂k−1
xk−x̂k−1

∆t
xk−x̂k−1

0.5∆t2


, (20)

where ·̂ is the estimate of the corresponding variable, xk is the measurement of the cart
position or pendulum angle, and Kk is the Kalman gain that is based on the solution of
a Ricatti equation for the estimation covariance matrix [26]. Furthermore, each of the
position–velocity pairs has an independent filter with their corresponding parametrization.

For generating the experimental data, the pendulum starts at the stable point θ(0) = π
and it is exited with a sinusoidal signal at various frequencies and amplitudes, i.e.,




x0
v0
θ0

θv 0


 =




0
0
π
0


, u = A · sin(ωt + φ), (21)

where the ranges of the different parameters of the forcing signal are: A ∈ (0.1, 1),
ω ∈ (π, 3π), φ ∈ (0, 2π). The selection of these parameters ensures that the cart
movement does not exceed the track limits. Figure 7 depicts the result of gathering and
filtering the experimental data.
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Figure 7. The data filtering of the test set for the p-q-Trigonometric EDMD. Solid lines are the orbits
from the experimental set-up and dashed lines are the orbits from the Kalman filter.
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The application of the p-q trigonometric EDMD on the experimental data is a linear
predictor suitable for controller synthesis. To this end, we consider a p− q sweep where
p = [2, 3, 4], q = [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3], a trigonometric embedding over the
third state θ. Additionally, and for the consistency of the results, the training and testing
sets correspond with the ones that are used in the simulation results.

The chosen solution for the experimental case is a Chebyshev polynomial of the first
type with parameters p = 2, q = 1.1 and 18 observables that give a mean absolute error of
0.85 and a max absolute error of 11.79. For the experimental case, the max absolute error is
independent of the type of polynomial, i.e., all of the available orthogonal polynomial basis
in Matlab show the same error. Even though the maximum absolute error does not give a
suboptimal solution for the basis selection, it does give a better classification in terms of
p-q-quasi norm in contrast to the best approximation according to the mean absolute error,
where p = 4, q = 0.9, has a set of 85 observables, and ε = 0.57. Figure 8 shows the results
of the approximation in the test set.
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Figure 8. The testing trajectories of the experimental set-up with the p-q-Trigonometric EDMD.
Solid lines are the orbits from the filtered experimental set-up, dash-dotted lines are the approxi-
mation of the EDMD algorithm, and dashes lines are the approximation by the p-q-Trigonometric
EDMD algorithm.

The EDMD algorithm gives a linear predictor equivalent to a discrete-time dynamical
system. This predictor is suitable for the synthesis of controllers that drive the system to a
desired state. The reliability of such a controller depends on the ability of the predictor to
give accurate approximation of the dynamics for arbitrarily long time intervals. Therefore,
for testing the strength of the algorithm, an additional test trajectory is considered where
the simulation or experimental times are three times longer than the training and testing
sets used for the computation and validation of the method. The result of evaluating the
p-q-Trigonometric EDMD linear predictors on these additional long-term sets is depicted in
Figure 9, where the mean absolute error for the approximation of the numerical simulation
of the pendulum is 0.75 and the maximum absolute error is 6.05. For the experimental
trajectories, the mean absolute error is 0.72 and the maximum absolute error is 7.31. These
results show that, for these particular cases, the method is reliable enough for the prediction
of the long term dynamics of the system.
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Figure 9. The long-term testing trajectories of the numerical simulation and experimental setup with
the p-q-Trigonometric EDMD. Solid lines are the theoretical trajectories, and dashed lines are the
p-q-Trigonometric approximation.

5. Conclusions

This paper deals with extensions and improvements to the EDMD algorithm for
special cases where there is an a priori knowledge of the behavior of a subset of state
variables in terms of elemental function, such as trigonometric or logarithmic functions,
among others. This expansion of the state, coupled with the use of p-q-quasi norms, gives
an algorithmic advantage for the approximation of the dynamics of non-linear systems in
a data-driven way. Although this approach improves the accuracy of the approximation,
the expansion of the state has the risk of increasing the dimension of the set of observables
necessary to perform the approximation. As a consequence, the algorithm can fall into the
course of the dimensionality problem making solutions computationally unfeasible.

These embeddings represent an additional step for the formulation of observables
that better suit a particular system, depending on the ability to select proper embeddings
for the state variables. Consequently, they represent a contribution to the open problem of
the proper selection of observables for the EDMD algorithm.

On the subject matter of observable selection, there is still the open question of the
method to incorporate the knowledge of available models, in a similar fashion as traditional
modeling and identification techniques. A combination of the two paradigms, the black
box and solely data-driven methods, such as the EDMD, and the traditional identification
techniques, has the potential of reducing the necessary set of observables further while also
improving the accuracy even further.
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