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Abstract: Average prices are popularly used in the literature on price modeling. Calculating daily or
weekly prices as an average over hourly or half-hourly trading periods assumes the same weight
ignoring demand or traded volumes during those periods. Analyzing demand weighted average
prices is important if producers may affect prices by decreasing them during low-demand periods and
increasing them during high-demand periods within a day. The prediction of this price manipulation
might have motivated the regulatory authority to introduce price caps not only on annual average
prices but also on annual demand weighted average prices in the England and Wales wholesale
electricity market. The dynamics of demand weighted average prices of electricity has been analyzed
little in the literature. We show that skew generalized error distribution (SGED) is the appropriate
assumption for model residuals. The estimated volatility model is used for evaluating the impact of
regulatory reforms on demand weighted average prices during the complete history of the England
and Wales wholesale electricity market.

Keywords: demand weighted average prices of electricity; volatility; asymmetry; heavy tails; SGED;
maximum likelihood estimation; Kullback–Leibler distance; regulation

1. Introduction

Defining daily or weekly prices as an arithmetic average of hourly or half-hourly
prices assumes the same weight for each period. However, demand or traded volume is not
the same during all periods. That is why, in this research, we consider demand weighted
average electricity prices during the complete history of the England and Wales wholesale
market, which have not been analyzed before. This is especially interesting given that
the regulatory authority in Great Britain introduced price caps on annual average and
annual demand weighted average prices of electricity. The motivation of introducing two
different price caps could have been related to the prediction by the regulatory authority
that producers may increase prices when demand is high and reduce prices when demand
is low. Later after price-cap regulation, in order to improve competition on the market
another kind of reform, divestment series, was introduced. The design of the England and
Wales electricity market has been adopted in several countries. Market reforms pursued by
the regulatory authority in Great Britain present the international gold standard for energy
market liberalization [1].

The dynamics of the wholesale price in the England and Wales electricity market has
not been extensively analyzed in the literature. We refer to the analyses of volatility of
weekly average prices in [2], monthly Lerner indices in [3], volatility of daily average prices
in [4] or volatility of prices from the peak demand period over days in [5].

In Figure 1, we present the empirical distribution of demand weighted average prices
(for short, we refer to as price). Pearson’s χ2 goodness of fit test concludes that prices
and log prices (for short, we refer to as lprice) are not normally distributed. Indeed,
the empirical distributions presented in Figure 1 are skewed to the right and have a peak
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higher than in the fitted normal distribution. The empirical distribution of lprice has also
heavy tails reflecting rare observations scattered farther from the mean.
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Figure 1. Distribution of demand weighted average price and log of demand weighted average price
over trading days (1 April 1990–26 March 2001). Author’s calculations.

For these reasons we do not consider normal distribution as done, for example, in [6–9].
Our decision is consistent with [10], which highlights that there is ample evidence that data
do not follow normal distribution. Replacing the assumption of normal distribution by a
heavy-tailed distribution might improve forecast results [11].

Heavy tails are usually modeled by Student’s t distribution introduced in [12] or
generalized error distribution (GED) introduced in [13]. According to [14], replacing normal
or Student’s t distributions by GED is considered as more encouraging. GED is heavy tailed
and has a higher peak compared to normal distribution. This distribution includes normal
distribution as a special case. Moreover, GED does not have an issue of possible infinite
unconditional moments as does Student’s t distribution. Some research (e.g., [15–18])
though consider normal or Student’s t distribution when applying the volatility model
of [14] that was originally based on GED.

In order to model the feature of heavy tails, instead of normal distribution [19] assumes
Student’s t distribution for model residuals. This approach however does not take into
account asymmetry and the observation that GED may be more heavy tailed than Student’s
t distribution.

Normal and Student’s t distributions have been recently used in volatility modeling
in, for example, [20,21] even if the analyzed time series data are asymmetric. Earlier, [22]
highlighted the importance of correctly modeling volatility of electricity prices in evaluating
the deregulation experience, in forecasting, and in pricing electricity futures and other
energy derivatives.

Other distributions applied in the literature are skew Student’s t distribution, skew
generalized error distribution (SGED), and generalized hyperbolic distribution (GHD).
In terms of accurately estimating the value at risk, [23] finds that a volatility model as-
suming skew Student’s t distribution outperforms volatility models based on normal and
Student’s t distributions. In terms of forecast performance, however, [24] finds that skew
Student’s t distribution does not outperform normal distribution. Forecasts of returns
based on the SGED assumption are found to be more accurate than those when assuming
normal and Student’s t distributions [25]. SGED is similarly used for modeling European
call option prices in [26], the dynamics of electricity prices of the peak demand period over
days in [5], and daily returns of carbon price time series in [27]. GHD and its special cases
have been applied in various areas. For example, [28] applies GHD for modeling grain size
distributions of wind blown sands, [29] applies for returns of daily prices of shares.
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The paper is structured as follows. First we describe the volatility model. Then we
verify in detail the two distributional assumptions (an i.i.d. and an assumed theoretical
distribution) for model residuals of the estimated volatility model. Next the sign bias test
is applied in order to verify the correctness of the estimated volatility model. Based on the
correctly estimated volatility model we discuss the impact of reforms on price level and
volatility. In the last section we draw our conclusions.

2. Methodology
2.1. Volatility Modeling

For modeling volatility of lpricet, representing the log of demand weighted average
price of electricity during day t, we extend the original autoregressive and autoregres-
sive conditional heteroscedasticity (AR–ARCH) volatility model introduced in [30] in the
following way:

Mean equation: lpricet = a0 +
P

∑
i=1

ai lpricet−i + w′t · b + εt (1)

Volatility equation: ht = α0 +
p

∑
i=1

αi ε2
t−i + w′t · δ (2)

Two distributional assumptions: νt =
εt√
ht

i.i.d. SGED(µ = 0, σ = 1, β, χ) (3)

The dependent variable lpricet in the mean equation may depend on its past values
through the AR process and exogenous variables. The AR process based on statistically
significant lags of lpricet allows taking into account partial adjustment effects and season-
ality features. Exogenous variables included in vector wt are periodic functions and regime
dummy variables corresponding to regulatory reforms. In modeling weekly seasonality,
using periodic functions may be preferred to using daily dummy variables for obtaining a
parsimonious model and for using dummy variables to denote regulatory regime periods.
We do not consider fuel prices because they are available as quarterly average prices.
Volatility ht, modeled using the ARCH process in the second equation, can also depend on
exogenous variables.

For the mean and volatility equations, we apply the maximum likelihood method,
which requires assuming a distribution for model residuals. We assume that standardized
residuals νt defined in the third equation are independent and identically distributed
(i.i.d.) and follow SGED. The density of SGED is defined based on [31] proposing a general
procedure for introducing skewness into a symmetric distribution in order to account for
the presence of asymmetry. We also verify two alternative distributional assumptions of
skew Student’s t introduced in [32] and GHD introduced in [28]. Details and statistical
features of these distributions are described in the next section.

2.2. Statistical Features of SGED, Skew Student’s t Distributions, and GHD

SGED includes many other distributions as its special or limiting cases. These are
GED, (skew) Laplace, (skew) normal, and uniform distributions.

SGED(µ, σ, β, χ) is characterized by four parameters: mean µ, standard deviation σ,
shape parameter β, and skewness parameter χ. The shape parameter β reflects the peak
and tails of a distribution. The skewness parameter χ reflects asymmetry of a distribution.
For example, when χ = 1, then the distribution is symmetric and we obtain GED(µ, σ, β)
as a special case of SGED. Further, when β = 2, then we obtain N (µ, σ).

Student’s t distribution is another popularly used distribution for volatility modeling.
Depending on the variance, there are two kinds of Student’s t distribution: with non-unit
variance (described in Figure 2a) and with unit variance (described in Figure 2b).
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Figure 2. Student’s t distribution with non-unit variances (a) and unit variances (b). Author’s illustration.
Notes: As the number of degrees of freedom ν increases, both kinds of Student’s t distribution approach
normal distribution. This holds true for the case of their skewed distributions, too.

Only in the non-unit variance case has Student’s t distribution noticeable heavy tails.
Even if Student’s t distribution with non-unit variance has the desired feature of heavy
tails, we cannot apply it because of two reasons. Firstly, its peak is lower than in normal
distribution, which is opposite to what we observed in Figure 1. Secondly, the distributional
assumption is needed for standardized residuals where we must have a unit variance as
described in Equation (3). As described in Figure 2b, Student’s t distribution with unit
variance does not have noticeable heavy tails. Figure 3 presents a comparison of tails of
Student’s t distribution of unit variance and GED. We observe that GED (a special case of
SGED) can be more heavy tailed.
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Figure 3. Student’s t distribution with σ = 1 and generalized error distribution (GED) with β < 2.
Author’s illustration. Notes: Heavy tails and a peak higher than in normal distribution can be
described by Student’s t distribution with σ = 1 and by generalized error distribution (GED) when
the shape parameter β is less than 2. However, for the same peak, we observe that GED can be more
heavy tailed than Student’s t distribution.

We consider skew Student’s t with unit variance as a possible alternative distribution
to SGED. Skew Student’s t distribution depends on four parameters: mean µ, standard
deviation σ, the number of degrees of freedom ν, and skewness parameter χ. The number
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of degrees of freedom affects the peak and tails of the distribution as illustrated for its
symmetric version (i.e., when χ = 1) in Figure 2b. Skew Student’s t distribution nests
Student’s t, (skew) Cauchy, (skew) Gaussian or normal as its special or limiting cases.

We also consider GHD, which nests the following distributions as its special or limiting
cases: hyperbolic, (variance, inverse) Gamma, (inverse, generalized inverse, normal inverse,
skew) Gaussian, (skew) Student’s t, (skew) Cauchy, (skew) Laplace, and exponential.

3. Estimation Results

During the liberalization process, the regulatory authority introduced several re-
forms in the England and Wales electricity market. The regulatory reforms are described,
for example, in [33,34]. In Figure 4, we summarize the timeline of those reforms.

                  

1 April 1990     1 July 1996      20 July 1999    

Creation of
Wholesale
Electricity
Market

End of Coal
Contracts

Restructure of
Wholesale
Electricity
Market

Start of
Price-Cap
Regulation

End of
Price-Cap
Regulation Divestment 1 Divestment 2

Regime 1 Regime 5Regime 2 Regime 3 Pre-Regime 4 Regime 4

1 April 1993 1 April 1994 1 April 1996 26 March 2001

Figure 4. Regulatory reforms in the electricity supply industry in Great Britain during 1990–2001.
Author’s illustration. Sources: [2,35–38].

Table 1 contains summary statistics of demand weighted average price over days.
The summary statistics show that during price-cap regulation, the average price level is
lower but variance is higher. However, after the second series of divestments the price
level and variance decreased. These findings are new and therefore motivate to analyze
in more detail the price dynamics in relation to the regulatory reforms. The concepts of
variance and volatility are not the same. The former corresponds to a sample variance and
the latter corresponds to the definition of ht provided in the volatility equation.

Table 1. Summary statistics of demand weighted average electricity price over days during
1 April 1990–26 March 2001.

Price Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5
Apr. 90–Mar. 93 Apr. 93–Mar. 94 Apr. 94–Mar. 96 Apr. 96–Jul. 96 Jul. 96–Jul. 99 Jul. 99–Mar. 01

Price-Cap Reg Divestment 1 Divestment 2

Mean 20.21 24.59 20.89 20.64 23.42 19.97
Min 11.80 11.02 7.20 12.65 10.87 11.72
Max 32.21 31.12 68.69 34.94 50.45 34.26

St Dev 2.91 3.67 7.36 4.72 7.94 3.80
Coef of Var 14.42 14.94 35.21 22.86 33.92 19.04

Obs 1096 365 731 91 1114 616

In volatility modeling, we consider the log of demand weighted average price during
day t (denoted as lpricet) because as presented in Figure 1b its empirical distribution is
closer to normal distribution, which is a special case of SGED. A logarithmic transformation
may also mitigate the effect of outliers observed in Figure 1a.

Prior to estimating the volatility model, we find that lpricet is stationary, which allows
applying the time and frequency domain analyses in order to determine the lag structure
and periodic functions with required frequencies. These are needed for modeling the
partial adjustment effects and seasonality pattern (i.e., daily, weekly, annual seasonalities)
of electricity prices.

Based on the methodology described in the previous section, we present estimation
results of the volatility model in Table 2.
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Table 2. Estimation results when assuming SGED.

Mean Equation Volatility Equation

lpricet = a0 +
P

∑
i=1

ai lpricet−i + w′t · b + εt ht = α0 +
p

∑
i=1

αi ε2
t−i + w′t · δ

Variable Coef Std Err Variable Coef Std Err

a0 0.0566 *** 0.0037 α0 0.0012 *** 0.0001
lpricet−1 0.5763 *** 0.0006 ε2

t−1 0.2041 *** 0.0286
lpricet−2 0.0799 *** 0.0020 ε2

t−3 0.0176 0.0114
lpricet−3 0.0579 *** 0.0013 ε2

t−4 0.0402 ** 0.0158
lpricet−4 0.0448 *** 0.0014 ε2

t−5 0.0814 *** 0.0217
lpricet−6 0.0658 *** 0.0015 ε2

t−6 0.0284 * 0.0157
lpricet−7 0.2302 *** 0.0011 ε2

t−7 0.1670 *** 0.0284
lpricet−8 −0.0735 *** 0.0019 cos(6πt/7) 0.0006 *** 0.0001
lpricet−9 −0.1125 *** 0.0017 sin(2πt/7) 0.0006 *** 0.0001
lpricet−14 0.0617 *** 0.0015 sin(6πt/7) −0.0008 *** 0.0001
lpricet−21 0.1213 *** 0.0016 Regime 2 0.0001 0.0002
lpricet−22 −0.0930 *** 0.0026 Regime 3 0.0060 *** 0.0009
lpricet−25 −0.0415 *** 0.0018 Pre-Regime 4 0.0109 *** 0.0042
lpricet−28 0.0861 *** 0.0024 Regime 4 0.0079 *** 0.0009
lpricet−29 −0.0602 *** 0.0014 Regime 5 0.0047 *** 0.0007
lpricet−35 0.0667 *** 0.0017
lpricet−36 −0.0750 *** 0.0019 SGED parameters
lpricet−42 0.0335 *** 0.0041 β̂ 1.2802 *** 0.0384
lpricet−49 0.0574 *** 0.0012 χ̂ 1.0458 *** 0.0179
lpricet−50 −0.0812 *** 0.0020
lpricet−56 0.0560 *** 0.0012
lpricet−61 −0.0444 *** 0.0014
lpricet−63 0.0365 *** 0.0032
lpricet−71 −0.0433 *** 0.0015
lpricet−108 −0.0209 *** 0.0014
lpricet−147 0.0228 *** 0.0014
lpricet−225 −0.0167 *** 0.0013
lpricet−364 0.0489 *** 0.0013
cos(2πt/7) −0.0041 *** 0.0015
sin(6πt/7) −0.0060 *** 0.0004
Regime 2 0.0010 0.0018
Regime 3 −0.0166 *** 0.0042

Pre-Regime 4 −0.0038 0.0165
Regime 4 −0.0033 0.0032
Regime 5 −0.0131 *** 0.0041

Notes: Even if the p-value ≈ 0.12 of ε2
t−3 is slightly above 10% in the estimated model, we keep this term in order

to satisfy the i.i.d. assumption. *, **, and *** stand for the 10%, 5%, and 1% significance levels, respectively.

In volatility modeling we assumed that standardized residuals νt =
εt√
ht

are i.i.d. and

follow SGED(µ = 0, σ = 1, β, χ). Using the Q-test proposed in [39] and BDS-test further
developed in [40], we find that the standardized residuals and standardized residuals
squared of the estimated volatility model are not serially correlated and are i.i.d. The results
are presented in Tables A1 and A2, respectively.

We estimated the volatility model under three distributional assumptions: SGED
(µ = 0, σ = 1, β, χ), skew Student’s t (µ = 0, σ = 1, ν, χ), and GHD(µ = 0, σ = 1, ᾱ, γ, λ).
In Figures 5a–c we present the empirical distributions of standardized residuals superim-
posed by the fitted SGED, skew Student’s t, and GHD, respectively. Visually, all theoretical
distributions provide a good match for the empirical distributions. This is also confirmed
statistically by the goodness of fit test.
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Figure 5. Empirical and fitted theoretical distributions of standardized residuals ν̂t. Note: We apply
the maximum likelihood method for standardized residuals ν̂t from volatility models assuming
SGED, skew Student’s t, and GHD in order to obtain parameter estimates of theoretical distributions.

The distributional parameters of SGED estimated through the volatility model pre-
sented in Table 2 and estimated through fitting of standardized residuals ν̂t presented in
Figure 5a are about the same. Both approaches are based on the maximum likelihood
estimation.

For the first estimated volatility model based on SGED we perform additional tests
for the shape parameter β and skewness parameter χ. When β = 2 and χ = 1, then
SGED narrows down to normal distribution. We reject H0 : β = 2, which suggests that
the empirical distribution of standardized residuals has a higher peak and heavy tails
compared to normal distribution (because β̂ ≈ 1.28 < 2). Further rejecting H0 : χ = 1
suggests that the empirical distribution is also asymmetric (more precisely skewed to the
right because χ̂ ≈ 1.05 > 1).

Similarly, for the second estimated volatility model based on skew Student’s t distri-
bution we test asymmetry of the empirical distribution of standardized residuals. As pre-
sented in Table A4, we obtain χ̂ ≈ 1.038 with its standard error of approximately 0.0247.
Using these results we do not reject H0 : χ = 1, which implies that the empirical distribu-
tion of standardized residuals is symmetric.

The asymmetry of standardized residuals under all distributional assumptions can
also be tested based on the skewness coefficient following [41]. The test results of skewness
coefficient presented in Table 3 suggest that the empirical distributions of standardized
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residuals ν̂t are asymmetric in all volatility models. In the first volatility model we assumed
standardized residuals νt following SGED, in the second—skew Student’s t distribution,
and in the third—GHD. The conclusion of asymmetry of the empirical distribution of
standardized residuals from the second volatility model is however in contradiction with
the earlier test of skewness parameter from skew Student’s t distribution, which suggested
that the empirical distribution of standardized residuals is symmetric.

Table 3. Testing symmetry of empirical distribution of standardized residuals ν̂t using the skew-
ness coefficient.

Sample Skewness (G1) Std Err of G1 Test Value Decision for H0 : Skewness = 0
ν̂t based on SGED 0.1682 0.0405 4.15 Reject
ν̂t based on Skew t 0.2041 0.0405 5.03 Reject
ν̂t based on GHD 0.2059 0.0405 5.08 Reject

Another contradiction is related to the significance of the ARCH terms. We obtain
two statistically insignificant ARCH terms when assuming skew Student’s t distribution
and GHD (Tables A4 and A5). Excluding the statistically insignificant ARCH terms led to
violation of the i.i.d. assumption.

The appropriateness of the distributional assumption (SGED, skew Student’s t dis-
tribution, or GHD) for standardized residuals can be verified using the Kullback–Leibler
distance, which is a general methodology for comparing the distance between the empirical
and theoretical distributions [42]. For most values of k presented in Table 4, the Kullback–
Leibler distance is smaller when comparing the empirical distribution of standardized
residuals from the first volatility model to SGED.

Table 4. Kullback–Leibler distance for the empirical distributions of standardized residuals when
comparing to SGED, skew Student’s t distribution, and GHD.

Assumed Distributions

k SGED Skew Student’s t GHD

1 0.0244 0.0438 0.0293
2 0.0359 0.0242 0.0365
3 0.0090 0.0173 0.0542
4 0.0060 0.0182 0.0367
5 0.0098 0.0421 0.0164
6 0.0012 0.0369 0.0182
7 0.0001 0.0308 0.0196
8 0.0035 0.0255 0.0114
9 0.0013 0.0138 0.0158
10 0.0054 0.0186 0.0153
11 0.0114 0.0195 0.0167
12 0.0068 0.0277 0.0147
13 0.0024 0.0218 0.0113
14 0.0006 0.0158 0.0099
15 0.0050 0.0185 0.0046
16 0.0084 0.0137 0.0044
17 0.0077 0.0135 0.0001
18 0.0055 0.0092 0.0007
19 0.0031 0.0118 0.0028
20 0.0013 0.0087 0.0036
Notes: The Kullback–Leibler distance allows to determine how close an empirical distribution is to a theoretical
probability distribution [42]. k is the number of values in the nearest neighbor search algorithm. The default
number of values is usually set to 10.

Therefore, taking into account the contradiction of asymmetry test results when
assuming skew Student’s t, statistically insignificant ARCH terms and a greater Kullback–
Leibler distance when assuming skew Student’s t or GHD, we suggest that in our research
SGED provides a better distributional fit for model residuals than do skew Student’s t
distribution or GHD.

Even if both distributional assumptions for standardized residuals are satisfied (an
i.i.d. and SGED), the estimated volatility model may still be incorrect because of possible
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remaining asymmetries in the effect of positive and negative shocks on volatility. That is
why, in order to evaluate the correctness of the volatility model we perform the sign bias
test, where the null hypothesis states that the volatility model is correctly specified. Based
on the test results in Table A3, we do not reject the null hypothesis. This suggests that the
volatility model is correctly specified.

The estimated volatility model explains about 80% of variation in the price data and
partially confirms the preliminary results from Table 1. In the next section, after discussing
our methodological contributions, we discuss in detail the impact of regulatory reforms on
price level and volatility.

4. Discussion

Among others, there are two distributions popularly applied in modeling the dy-
namics of energy price data: normal and Student’s t. Sometimes the reason for preferring
Student’s t distribution to normal distribution was to model the presence of heavy tails
reflecting a higher probability of occurrence of extreme values than under normal distribu-
tion [19]. In Figure 3 we showed that under the same peak, GED (a special case of SGED)
can be more heavy tailed. Another possible alternative distribution considered in this
paper is GHD, which also nests many distributions as its special or limiting cases.

If the distributional assumption is not satisfied, then a quasi maximum likelihood
estimation introduced in [43] could be used. This methodology addresses the model mis-
specification problem related to the wrong theoretical distributional assumption and allows
statistical inferences to be drawn robustly. For example, ref. [44] models the dynamics of
electricity prices from various countries assuming a normal distribution, even if prices are
asymmetric and have platykurtic and leptokurtic distributions. For statistical inference
the research applies robust standard errors following [43]. However, due to the wrong as-
sumption of normal distribution, we believe that the results in [44] based on the maximum
likelihood estimation may be biased.

Only few papers discuss the empirical distribution of model residuals in order to
check if the distributional assumptions (an i.i.d. and an assumed theoretical distribution)
were satisfied or not. After verifying the two distributional assumptions, it was necessary
to check if the estimated volatility model is correct using the sign bias test. Given that
the distributional assumptions and estimated volatility model are correct, it is possible to
proceed to the interpretation of our results, that is, the impact of regulatory reforms on
price level and volatility.

In Table 5 we provide an excerpt from Table 2, which contains coefficient estimates in
front of regime dummy variables. These coefficient estimates from the mean and volatility
equations indicate changes in the price level and volatility, respectively, compared to
Regime 1, i.e., the reference period during 1 April 1990 to 31 March 1993.

Table 5. Analysis of the impact of regulatory reforms.

Price Level Price Volatility

Variable Coef Std Err Variable Coef Std Err

a0 0.0566 *** 0.0037 α0 0.0012 *** 0.0001
Regime 2 0.0010 0.0018 Regime 2 0.0001 0.0002
Regime 3 −0.0166 *** 0.0042 Regime 3 0.0060 *** 0.0009

Pre-Regime 4 −0.0038 0.0165 Pre-Regime 4 0.0109 *** 0.0042
Regime 4 −0.0033 0.0032 Regime 4 0.0079 *** 0.0009
Regime 5 −0.0131 *** 0.0041 Regime 5 0.0047 *** 0.0007

Note: *** stand for the 1% significance level.

For the qualitative analysis we recalculate intercept terms of the mean and volatility
equations in percentages, where the intercept term for the reference period, i.e., Regime 1,
is set equal to 100%. The calculations are summarized in Figure 6.
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Figure 6. Price level and volatility during regulatory regime periods. Notes: Regime 1 is the reference
period, 100%. Blue and red columns represent percent values of the intercept from the mean and
volatility equations, respectively (based on Table 5).

The estimate of coefficient in front of Regime 2 (after coal contracts expired on
31 March 1993 and before price-cap regulation started on 1 April 1994) in the volatility
equation is almost zero. This suggests that price volatility was about the same during
Regime 1 (i.e., 1 April 1990 to 31 March 1993) and Regime 2 (i.e., 1 April 1993 to 31 March
1994). Our result does not necessarily contradict to the finding in [2], which documents
increased price volatility after the expiry of coal contracts because the research considered
arithmetic average price over weeks.

We find that compared to the reference period, during price-cap regulation, that
is, Regime 3 (i.e., 1 April 1994 to 31 March 1996) the price level is lower (i.e., 0.0566 +
(−0.0166) = 0.04 or 71% for Regime 3 is lower than 0.0566 or 100% for Regime 1), which
however takes place at the cost of increased price volatility (i.e., 0.0012 + 0.0060 = 0.0072
or 616% for Regime 3 is higher than 0.0012 or 100% for Regime 1). Generally, higher price
volatility may be stemming from different bidding strategies discussed in [4,45]. After the
first series of divestments (i.e., Regime 4) price level and volatility are higher than during
price-cap regulation (i.e., Regime 3).

From the estimated volatility model, it is not possible to state that the second series of
divestments (i.e., Regime 5) was more successful than price-cap regulation (i.e., Regime 3).
This is because compared to price-cap regulation, after the second series of divestments
price level is higher (i.e., 0.0566 + (−0.0131) = 0.0435 or 77% for Regime 5 is greater than
0.0566 + (−0.0166) = 0.04 or 71% for Regime 3) and price volatility is lower (0.0012 +
0.0047 = 0.0059 or 502% for Regime 5 is less than 0.0012 + 0.0060 = 0.0072 or 1039% for
Regime 3). But had we used only the results of summary statistics of demand weighted
average prices of electricity presented in Table 1, we would have stated that the second
series of divestments was more successful than price-cap regulation because average level
and variance of prices were lower after the second series of divestments was introduced.

We find that the second series of divestments was more successful than the first series
at decreasing the price level (i.e., 0.0566 + (−0.0131) = 0.0435 or 77% for Regime 5 is
lower than 0.0566 + (−0.0033) = 0.0533 or 94% for Regime 4) and price volatility (i.e.,
0.0012 + 0.0047 = 0.0059 or 502% for Regime 5 is lower than 0.0012 + 0.0079 = 0.0091
or 781% for Regime 4). The changes observed after the second series of divestments are
statistically significant.
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5. Conclusions

Modeling volatility of energy prices is of interest to investors, producers, and market
regulators. Various models have been applied in analyzing price volatility, most of which
however have assumed normal or Student’s t distributions. The empirical distribution
of data or model residuals usually does not follow normal or Student’s t distributions
due to asymmetry, excess kurtosis, a higher peak than in normal distribution or heavy
tails. That is why we conclude that in such cases, the assumption of normal or Student’s t
distributions should be replaced by SGED. Alternatively, in some cases skew Student’s t
distribution with unit variance or GHD could be also considered.

Because testing asymmetry under the assumption of skew Student’s t distribution
led to contradictory conclusions, some ARCH terms were found statistically insignificant
and the value of the Kullback–Leibler distance was mostly greater when assuming skew
Student’s t distribution or GHD, we conclude that SGED is more appropriate for modeling
the volatility of our price data. According to [46], correct modelling of price volatility
is important for building accurate pricing models, for forecasting future price volatility,
and for enriching our understanding of the broader financial markets, the energy industry,
and the overall economy.

SGED could be used in more complex volatility models, too. In some cases compli-
cating a volatility model may become unnecessary if one assumes a flexible distribution
capturing such features as asymmetry, heavy tails, or a higher peak than in normal dis-
tribution. Correctly estimated volatility models can reliably be used for policy analysis
or forecast.

Our volatility model includes a vector of explanatory variables. This vector can
be generalized to include market shares of firms, renewable energy sources, fuel prices,
or other variables, when analyzing current energy markets. In most cases, this adaptation
however would depend on the availability and completeness of data.

Interestingly, we find that conclusions based on summary statistics and estimated
volatility model are not qualitatively the same. Based on summary statistics one would
conclude that the second series of divestments was more successful than price-cap regu-
lation because both price level and variance are lower. However, based on the estimated
volatility model, we find that compared to price-cap regulation, the price level is higher
after the second series of divestments, although the difference between coefficient estimates
is not large (0.0435 versus 0.04). We also find that the second series of divestments was
more successful than the first series at reducing the price level and volatility. Therefore, we
conclude that divestment series might be preferred because they may allow reducing the
influence of big companies, improving competition, and avoiding monitoring costs arising
under price-cap regulation.

Demand weighted average prices have not been analyzed much in the literature
probably due to limitations of data on demand. We believe that distinguishing between
arithmetic and weighted averages is important because the former assumes the same
weight regardless of demand or traded volumes in various trading periods over days. Our
results and conclusions could be of interest to regulators and investors in markets, which
were formed based on the original model of the England and Wales electricity market.
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Abbreviations

AR Autoregressive
ARCH Autoregressive Conditional Heteroscedasticity
BDS-test Brock–Dechert–Scheinkman test of i.i.d. further developed in [40]
Coef of Var Coefficient of Variation (in %)
GED Generalized Error Distribution
GHD Generalized Hyperbolic Distribution
i.i.d. independent and identically distributed
Obs Number of Observations
Regime 1 1 April 1990–31 March 1993 (Coal contracts), Reference period
Regime 2 1 April 1993–31 March 1994
Regime 3 1 April 1994–31 March 1996 (Price-cap regulation)
Pre-Regime 4 1 April 1996–30 June 1996
Regime 4 1 July 1996–19 July 1999 (Divestment 1 introduced on 1 July 1996)
Regime 5 20 July 1999–26 March 2001 (Divestment 2 introduced on 20 July 1999)
SGED Skew Generalized Error Distribution
St Dev Standard Deviation

Notation
µ Mean parameter in SGED and (skew) Student’s distribution
σ Standard deviation parameter in SGED and (skew) Student’s distribution
β Shape parameter in SGED
ν The number of degrees of freedom in (skew) Student’s t distribution
χ Skewness parameter in SGED and skew Student’s distribution
lpricet Natural logarithm of the demand weighted average price during day t
εt Residuals from the mean equation (not standardized)
ht Volatility (based on notation in [30])
νt Standardized residuals
p-value Probability value of a test statistic

(if p-value is less than 0.10, then the null hypothesis is rejected)
Q-test Test of serial correlation introduced in [39]
χ2-test Goodness of fit test
G1 Sample skewness coefficient (notation used in [41])

Appendix A. Tables

Table A1. Q-test for standardized residuals when assuming SGED.

Lag Q-Test p-Value Q-Test p-Value

1 0.05 0.82 0.22 0.64
10 11.80 0.30 7.60 0.67
20 25.99 0.17 20.49 0.43
30 35.36 0.23 29.61 0.49

100 97.43 0.55 94.37 0.64
200 188.60 0.71 182.25 0.81
300 275.47 0.84 283.21 0.75

H0 : νt has no serial correlation H0 : ν2
t has no serial correlation

Note: No serial correlation in ν2
t is interpreted as νt being homoscedastic.

Table A2. BDS-test for standardized residuals when assuming SGED.

Dimension BDS-Test p-Value BDS-Test p-Value

2 −0.0004 0.77 −0.0022 0.33
3 0.0024 0.26 0.0018 0.61
4 0.0030 0.22 0.0032 0.45
5 0.0034 0.19 0.0034 0.44
6 0.0034 0.17 0.0032 0.46

H0 : νt is i.i.d. H0 : ν2
t is i.i.d.
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Table A3. t-test values of the sign bias test for standardized residuals when assuming SGED.

t-Test p-Value
Sign Bias 0.32 0.75

Negative Sign Bias 0.39 0.69
Positive Sign Bias 0.88 0.38

Joint Effect 2.44 0.49

Table A4. Estimation results when assuming skew Student’s t distribution.

Mean Equation Volatility Equation

lpricet = a0 +
P

∑
i=1

ai lpricet−i + w′t · b + εt ht = α0 +
p

∑
i=1

αi ε2
t−i + w′t · δ

Variable Coef Std Err Variable Coef Std Err

a0 0.0467 0.0329 α0 0.0012 *** 0.0001
lpricet−1 0.5794 *** 0.0001 ε2

t−1 0.2209 *** 0.0300
lpricet−2 0.0741 *** 0.0059 ε2

t−3 0.0132 0.0118
lpricet−3 0.0596 *** 0.0065 ε2

t−4 0.0474 *** 0.0169
lpricet−4 0.0459 *** 0.0066 ε2

t−5 0.0719 *** 0.0220
lpricet−6 0.0650 *** 0.0061 ε2

t−6 0.0223 0.0164
lpricet−7 0.2380 *** 0.0011 ε2

t−7 0.1769 *** 0.0300
lpricet−8 −0.0829 *** 0.0058 cos(6πt/7) 0.0008 *** 0.0001
lpricet−9 −0.1115 *** 0.0047 sin(2πt/7) 0.0006 *** 0.0001
lpricet−14 0.0695 *** 0.0061 sin(6πt/7) −0.0008 *** 0.0002
lpricet−21 0.1151 *** 0.0045 Regime 2 0.0000 0.0002
lpricet−22 −0.0872 *** 0.0056 Regime 3 0.0059 *** 0.0009
lpricet−25 −0.0395 *** 0.0064 Pre-Regime 4 0.0120 *** 0.0044
lpricet−28 0.0849 *** 0.0056 Regime 4 0.0081 *** 0.0010
lpricet−29 −0.0619 *** 0.0065 Regime 5 0.0051 *** 0.0007
lpricet−35 0.0624 *** 0.0067
lpricet−36 −0.0753 *** 0.0059 Skew Student’s t parameters
lpricet−42 0.0385 *** 0.0069 ν̂ 5.2192 *** 0.4413
lpricet−49 0.0590 *** 0.0068 χ̂ 1.0376 *** 0.0247
lpricet−50 −0.0844 *** 0.0055
lpricet−56 0.0528 *** 0.0068
lpricet−61 −0.0431 *** 0.0059
lpricet−63 0.0341 *** 0.0071
lpricet−71 −0.0386 *** 0.0062
lpricet−108 −0.0210 *** 0.0062
lpricet−147 0.0206 *** 0.0061
lpricet−225 −0.0170 *** 0.0057
lpricet−364 0.0500 *** 0.0055
cos(2πt/7) −0.0039 ** 0.0018
sin(6πt/7) −0.0065 *** 0.0014
Regime 2 0.0006 0.0030
Regime 3 −0.0141 *** 0.0043

Pre-Regime 4 −0.0087 0.0149
Regime 4 −0.0021 0.0037
Regime 5 −0.0127 *** 0.0041

Notes: The p-values of ε2
t−3 and ε2

t−6 are approximately 0.26 and 0.18, respectively. We keep these terms in order
to satisfy the i.i.d. assumption. ** and *** stand for the 5% and 1% significance levels, respectively.
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Table A5. Estimation results when assuming GHD.

Mean Equation Volatility Equation

lpricet = a0 +
P

∑
i=1

ai lpricet−i + w′t · b + εt ht = α0 +
p

∑
i=1

αi ε2
t−i + w′t · δ

Variable Coef Std Err Variable Coef Std Err

a0 0.0452 0.0381 α0 0.0012 *** 0.0001
lpricet−1 0.5798 *** 0.0004 ε2

t−1 0.2200 *** 0.0302
lpricet−2 0.0741 *** 0.0106 ε2

t−3 0.0134 0.0119
lpricet−3 0.0598 *** 0.0123 ε2

t−4 0.0476 *** 0.0169
lpricet−4 0.0457 *** 0.0116 ε2

t−5 0.0718 *** 0.0221
lpricet−6 0.0648 *** 0.0101 ε2

t−6 0.0223 0.0164
lpricet−7 0.2389 *** 0.0016 ε2

t−7 0.1779 *** 0.0304
lpricet−8 −0.0838 *** 0.0096 cos(6πt/7) 0.0008 *** 0.0001
lpricet−9 −0.1119 *** 0.0060 sin(2πt/7) 0.0007 *** 0.0001
lpricet−14 0.0702 *** 0.0102 sin(6πt/7) −0.0008 *** 0.0002
lpricet−21 0.1138 *** 0.0058 Regime 2 0.0000 0.0002
lpricet−22 −0.0864 *** 0.0089 Regime 3 0.0059 *** 0.0009
lpricet−25 −0.0393 *** 0.0098 Pre-Regime 4 0.0120 *** 0.0044
lpricet−28 0.0847 *** 0.0094 Regime 4 0.0081 *** 0.0010
lpricet−29 −0.0616 *** 0.0111 Regime 5 0.0051 *** 0.0007
lpricet−35 0.0625 *** 0.0125
lpricet−36 −0.0757 *** 0.0103 GHD parameters
lpricet−42 0.0390 *** 0.0106 shape 0.0252 0.0231
lpricet−49 0.0591 *** 0.0124 skewness 0.9527 *** 0.0151
lpricet−50 −0.0847 *** 0.0090 λ̂ −2.6159 *** 0.2224
lpricet−56 0.0530 *** 0.0112
lpricet−61 −0.0427 *** 0.0081
lpricet−63 0.0337 *** 0.0108
lpricet−71 −0.0389 *** 0.0087
lpricet−108 −0.0206 *** 0.0068
lpricet−147 0.0207 *** 0.0065
lpricet−225 −0.0171 *** 0.0059
lpricet−364 0.0498 *** 0.0069
cos(2πt/7) −0.0040 ** 0.0020
sin(6πt/7) −0.0065 *** 0.0015
Regime 2 0.0004 0.0033
Regime 3 −0.0143 *** 0.0044

Pre-Regime 4 −0.0083 0.0149
Regime 4 −0.0023 0.0038
Regime 5 −0.0128 *** 0.0042

Notes: The p-values of ε2
t−3 and ε2

t−6 are approximately 0.26 and 0.18, respectively. We keep these terms in order
to satisfy the i.i.d. assumption. ** and *** stand for the 5% and 1% significance levels, respectively.
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