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Abstract: The problem of guaranteeing stability from the entire null controllable region (NCR) for
multi-input linear dynamical systems is addressed in the present manuscript. The proposed controller
design is inspired by results for single input systems and generalized to multiple input systems.
The approach relies on utilizing the level sets of the NCR as level sets of a Lyapunov function. A
contractive constraint is incorporated into a model predictive control design, guaranteeing feasibility
for any horizon length, and resulting in the NCR as the closed-loop stability region. The proposed
method is illustrated using a simulation example.

Keywords: linear dynamicle systems; null controllable region; input constraints

1. Introduction

In engineering systems, input constraints arise due to the physical limitations on
process equipment such as pumps or valves. Neglecting the input constraints in the control
design may result in sub-par process performance or even process instability. Recall that
for open-loop unstable equilibrium points, input constraints determine the shape and size
of the set of states from where stabilization is possible—the null controllable region (NCR).
Control designs that have the NCR as the stability region become a natural benchmark for
effective control design.

Previous research has been devoted to handling input constraints using, for in-
stance, anti-windup designs [1], results on semi-global stability [2] or polynomial based
approaches [3] that ensure local stability, Lyapunov-based approaches (see, e.g., [4–6]), and
model predictive controllers (MPC) (see [7–9]), with efforts continuing for a specific class
of linear systems [10]. More recently, quadratic Lyapunov functions [11] were developed
for stabilizing linear systems subject to input saturation. However, designing a Lyapunov
function for multiple input multiple output (MIMO) systems with constrained inputs that
can achieve stability for the entirety of the NCR remains an open problem.

Typical existing MPC formulations are successful in achieving stability under input
constraints for subsets of the null controllable region. However, when guaranteeing initial
and successive feasibility of the optimization problem, the horizon, or number of future
controls the MPC must evaluate, expands [12,13]. This leads to computationally complex
optimization problems, and unwieldy ones if stability from the entire NCR is desired.

In previous work, there have been advances in the design of a predictive controller that
can achieve closed-loop stability from all initial conditions, for linear systems with single
inputs, without the need for large horizon values [14]. The work presented in [15] utilizes the
boundary of the NCR to formulate a Lyapunov-based controller able to achieve stability for
all initial conditions while handling input constraints for nonlinear systems. However, the
methods presented in existing designs only address single-input systems. Generalizations
to multi-input systems that enable stabilization from the entire NCR remain unaddressed.

Motivated by these considerations, this work considers a MIMO linear system and
presents a controller design that enables stabilization from the entire NCR. A constrained

Mathematics 2021, 9, 1110. https://doi.org/10.3390/math9101110 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1246-5548
https://orcid.org/0000-0001-5866-211X
https://www.mdpi.com/article/10.3390/math9101110?type=check_update&version=1
https://doi.org/10.3390/math9101110
https://doi.org/10.3390/math9101110
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9101110
https://www.mdpi.com/journal/mathematics


Mathematics 2021, 9, 1110 2 of 8

control Lyapunov function (CCLF) is proposed such that its level sets correspond to the
boundary of the NCR with decreasing input constraints and a controller is designed to
force the system to lower level sets of the NCR. It is shown that this controller can achieve
stability for all initial conditions within the NCR.

The rest of the manuscript is organized as follows. In Section 2, we present the linear
system description and review existing methods to construct the NCR. In Section 3, we
propose a CCLF and MPC formulation to achieve stability from the entire NCR. In Section 4,
simulation results are presented comparing the proposed CCLF to another Lyapunov function
candidate. Finally, in Section 5, we present concluding remarks.

2. Preliminaries

This section describes the system dynamics for the class of systems considered. A
review of the NCR construction is presented next.

2.1. Process Description

We consider linear multi-input multi-state systems described by:

ẋ = Ax + Bu, u ∈ U (1)

where x ∈ Rn is the vector of state variables, A is an n× n matrix, and B is a n×m matrix.
The vector of control inputs, u ∈ Rm, with each respective control input ui is bounded
and can take on values within the set Ui = {ui,min < U < ui,max} where ui,min and ui,max
correspond to the minimum and maximum values of ui, i = 1, . . . , m. For the sake of
simplicity, in the present manuscript, we consider the case where ∀i = 1, . . . , m, ui,min = −1
and ui,max = 1.

2.2. NCR

A state is null controllable if there is some permissible control action u(t) such that
the system’s trajectory can reach the origin. The region that encompasses all reachable
states is called the null controllable region (NCR), denoted as Xmax. For a system where A
is unstable, an explicit characterization of the single input NCR exists [16]. In the present
manuscript, we will recognize the multiple input system written as ẋ = Ax + ∑m

i=1 biui,
and for the ith single input system of the form:

ẋ = Ax + biui, u ∈ U (2)

the NCR can be characterized as Xmax
i = UT∈[0,∞){x = −

∫ T
0 e−Aτbiui(τ)dτ : u(τ) ∈ Ui}

and can be shown to be a bounded convex open set containing the origin.
Subsequently, the boundary of the NCR (for systems with real eigenvalues) can be

computed as follows: [16]

∂Xmax
i =

{
±
[

n−1

∑
j=1

2(−1)je−A(t−tj) +−1n I

]
A−1bi : 0 = t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ t ≤ ∞

}
(3)

For the multiple input system in consideration, the NCR can be computed as the
Minkowski sum of Xmax

i : [16]

Xmax =
m

∑
i=1

Xmax
i ≡ {x1 + x2 + . . . xm, s.t., xi ∈ Xmax

i , i = 1, 2, . . . , m} (4)

The specific question that the present manuscript addresses is utilizing this definition
toward the design of a controller that enables stabilization from the null controllable region
for multiple input systems.
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3. Proposed Control Design

Consider the set

∂Xmax
i,α =

{
±
[

n−1

∑
j=1

2(−1)je−A(t−tj) +−1n I

]
A−1biα : 0 = t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ t ≤ ∞

}
(5)

where 0 ≤ α ≤ 1 (thus, ∂Xmax
i,α can be understood as the boundary of the null controllable

with the input bound on the individual subsystems being α) and consequently

Xmax
α =

m

∑
i=1

Xmax
i,α ≡ {x1 + x2 + . . . xm, s.t., xi ∈ Xmax

i,α , i = 1, 2, . . . , m} (6)

with the closure of the set Xmax
α denoted by ∂Xmax

α . We propose a constrained control
Lyapunov function (CCLF) as follows:

VNCR(x) ≡ α s.t., x ∈ ∂Xmax
α (7)

To illustrate the proposed control design, we consider a linear system of the form of
Equation (2) with A =

[ 0 −0.5
1 1.5

]
and B =

[
0 1
1 0

]
. The NCR is computed using the Minkowski

sum of the single input system’s NCR’s—as defined by Equation (4). MATLAB’s boundary
function is used to extract the boundary of the multi-input systems NCR. The boundary
is then multiplied by values ranging from 0 to 1 (increasing by increments of 0.005). The
results are stored in MATLAB’s scatteredInterpolant function; this vector serves as the
numerical approximation for VNCR(x), and the level sets can be seen in Figure 1.

Figure 1. Level sets created using the boundary of the NCR for a MIMO linear system.

Theorem 1. For the dynamical system of Equation (2), with the CCLF defined by Equation (7)
∃u(t) ∈ U, s.t., limt→∞ x(t) = 0 i f f VNCR(x) < 1.

Proof. The proof of the theorem follows from construction of ∂Xmax
α in Equation (6). Noting

that the NCR of the Muli-input system is the Minkowski sum of the NCR for the single
input systems, VNCR(x) < 1 iff x ∈ Xmax. Existence of u(t) ∈ U, s.t., limt→∞ x(t) = 0
follows from the definition of the NCR.

Remark 1. Theorem 1 formalizes two properties—one simply re-invokes the existing result that
the Minkowski sum of the NCRs of the individual subsystems is the NCR of the multi-input system.
The other, more pertinent result, is to establish a mapping from the level sets of the NCR of the
multi-input system to the level sets of the individual subsystems. Note that the mapping from
the level sets of the individual subsystems to the level sets of the multi-input system is many to
one. In other words, two level sets from the individual subsystems map to a unique level set for
the multi-input system, but one level set from the multi-input system maps to multiple possible
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combinations of level sets of the individual subsystems. Our particular choice of the level sets of the
NCR, as defined by Theorem 1 as the level sets of the CCLF for the multi-input NCR, has important
implications for the control design presented next.

The predictive controller that guarantees stabilization from all initial states within the
NCR takes the form:

u = argmin{J(x̄, τ, u(·)) | u(·) ∈ U, x̄(0) = x(t)} (8)

s.t.
dx̄
dτ

= Ax̄ + Bu (9)

d(VNCR(x̄))
dτ

|0 < 0 (10)

J(x, τ, u(·)) = q
d(VNCR(x̄(0))

dτ
+ ‖∆u(τ)‖2

R (11)

where Equation (9) is the time evolution of the process, and VNCR is the CCLF defined
in Equation (7), q is a positive scalar and R is a positive semi-definite symmetric matrix
of weightings which penalize the rate of change in inputs. The MPC calculations are
done using a dummy state x̄ which is initialized at the current value of the process state.
The basic idea of the control design is to force the trajectory of the states to lower level
sets, as defined by V, while still adhering to the imposed input constraints. Note that the
above is a representative continuous time formulation of the MPC with the feasibility and
stability properties characterized in Theorem 2. The simulation example presented later
uses a discrete implementation and thus Equation (10) is implemented as VNCR(x(t + ∆) <
VNCR(x(t)).

Theorem 2. Consider the MIMO System described by Equation (2) under the MPC formulation
in Equations (8)–(11). For any V(x0) < 1, the optimization problem is feasible for all times and
limt→∞ x(t) = 0.

Proof. The proof of the theorem follows from construction for a single input system as
shown in Theorem 2 in [14] but with one critical adjustment as detailed below:

For single input systems it has been established in [14] that ∀x0 ∈ Xmax, i.e., ∀x0 s.t.
V(x0) < 1, ∃ u ∈ U s.t. V̇(x0, t, u(·)) ≤ 0 there are x0 in Xmax for which minu V̇(x0, t, u(·)) =
0. This occurs for all points given by x ∈ εui where εui = {x : x = A−1Bui, u ∈ U}—
additionally when Ax is co-linear with bi. With the assumption that the multi-input
system is defined by independent inputs (i.e, all bi are linearly independent), the set
εu = {x : x = A−1Bui∀i = 1 . . . m} = 0. Thus, in contrast to [14], the constraint of
Equation (10) is feasible for all x ∈ Xmax, limt→∞ x(t) = 0 follows.

Remark 2. The present manuscript uses the individual NCRs to construct the NCR of the multi-
input system, and then directly uses the boundary of the ‘level sets’ of this NCR to define the CCLF.
For single input systems, the NCR and the associated level sets have a direct relationship with the
bound on the manipulated input. Thus, for the single-input system, VNCR(x) is the value of input
constraint for which x resides on the boundary of the NCR of the single-input system with the bound
VNCR(x). For multiple-input systems, the interpretation is that VNCR(x) is the value of input
constraint for all the subsystems i = 1 . . . n, for which xi, i = 1 . . . n resides on the boundary of the
NCR for each of the single-input systems with the bound VNCR(x) and x = x1 + x2+, . . . , xn.
This choice of the definition for the CCLF is fairly simple and intuitive, but, as it turns out, also
non-unique (see Remark 3). This, in turn, results in a non-unique solution to the optimization
problem as well, but yet, results in the stabilization for the closed-loop system. This non-uniqueness
is not due to the formulation of the CCLF, but rather fundamental to the problem at hand (see
Remark 4 for further explanation)
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Remark 3. Another possible way to define a CCLF for the multiple-input system and design
the controller would be to work with the individual subsystems. Thus, for the current state,
the state would be projected onto each individual subsystem to find xi, i = 1, . . . , n s.t., x =
x1 + x2+, . . . , xn. Using each of the xi, the level set of the Lyapunov function for the individual
subsystems could be calculated, and the CCLF, for instance, could be defined as the sum of the CCLFs
for the individual subsystem. While such a line of thinking would follow from a direct generalization
of the NCR design for single-input systems, the implementation would be computationally expensive,
and not alleviate the non-uniqueness issue since a state could be projected into the individual
subsystems in non-unique fashion, i.e., different combinations of xi could correspond to the same
state of the system. This non-uniqueness may result in jumpy control actions as new projections are
evaluated at subsequent time points and due to the single-input system’s originally non-smooth
input profiles [14] .

Remark 4. By the very nature of the problem, smaller ‘level sets’ of the multi-input NCR correspond
to non-unique combinations of the individual NCRs of the individual subsystems, hence multiple
solutions exist that enable V̇NCR < 0. This is simply due to the linear nature of the simple dynamics,
and not due to particular choice of the NCR. The ability to guarantee and invoke the fact that
V̇NCR < 0 is achievable (not invoked in [14]), means that it can be imposed as a constraint in the
optimization problem to take care of stability, leaving the objective function available as a tuning
parameter to achieve a smooth control action, as is demonstrated in the simulation example.

4. Simulation Results

Five simulation trials arre performed under the MPC formulation described by
Equations (8)–(11). First, a quadratic Lyapunov function VQ is set with VQ = xTx, q = 1
and R =

[
0 0
0 0
]
. To show the stability properties of the controller under VQ, two simulations

are run from the initial conditions x0 =
[ 2
−0.9

]
and x0 =

[ 2.5
−1.1

]
respectively. The proposed

controller design using VNCR is then simulated three times. To replicate the behavior of
the control design in [14],with no rate of change input penalty, the controller is run with
q = 1 and R =

[
0 0
0 0
]
. To demonstrate the input smoothing properties of the proposed

design, the second trial is shown with q = 10.2 and R =
[

0.82 0
0 0.82

]
. Finally, the third trial

is run with q = 10.2 and R =
[

0.82 0
0 0.82

]
, from an initial condition of x0 =

[ −3.5
2.5

]
to show

the stability properties of the proposed controller from additional points. The simulation
example is solved using a discretization time of δ = 0.1 and a prediction horizon of N = 1.
The optimization problem is solved using the MATLAB function FMINCON.

From an initial condition of x0 =
[ 2
−0.9

]
, the predictive controller is implemented with

VQ to stabilize the system. As shown by the light red line in Figure 2, closed-loop stability
is achieved. Moving further away from the origin to an initial condition of x0 =

[ 2.5
−1.1

]
, the

controller fails to achieve stability under VQ. The red lines in Figure 3a,b and Figure 4a,b
show the state trajectories and input profiles of this outcome.

Under the proposed predictive controller and V = VNCR with q = 1 and R =
[

0 0
0 0
]
,

closed-loop stability is achieved for the initial condition x0 =
[ 2.5
−1.1

]
. However, without the

rate of change input penalty, the controller selects inputs which constantly vary, resulting
in a chatty input profile, as can be seen in Figure 4a by the light blue line. Under the same
initial conditions but with q = 10.2 and R =

[
0.82 0

0 0.82
]

(invoking the rate of change input
penalty), the controller still achieves closed-loop stability but has a smoother input profile
with fewer sporadic changes in ui, as shown in Figure 4a,b (dark blue). A third initial
conditional is simulated to illustrate the stability of the proposed controller with V = VNCR,
with the input and state profiles shown by the black lines in Figure 3a,b and Figure 4a–d .
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Figure 2. Evolution of the state trajectory of the multiple input multiple output liner system under
various choices of the Lyapunov function. V = VQ with q = 1 and R =

[ 0 0
0 0
]

from an initial condition
of x0 =

[ 2
−0.9

]
(light red) and from an initial condition x0 =

[ 2.5
−1.1

]
(dark red).V = VNCR with q = 1

and R =
[ 0 0

0 0
]

(light blue) and with q = 10.2 and R =
[ 0.82 0

0 0.82
]

(dark blue). Laslty, V = VNCR with
q = 10.2 and R =

[ 0.82 0
0 0.82

]
from an initial condition of x0 =

[−3.5
2.5

]
(black).

Remark 5. The choice of q and R in this approach is made by manually tuning the controller. Note
that the choice of q and R will not result in infeasibility of the optimization problem but can be used
to alter the state trajectories and input profiles of the closed-loop system.

Remark 6. In practical applications, the proposed approach could be utilized in several ways. For
instance, in deployments where a nonlinear model is available, but the controller is designed on the
basis of the linearization, the proposed MPC would be applicable. In other instances, when building
an empirical model from plant data, the resultant model sometimes ends up being unstable, invoking
the utility of the proposed MPC. In other applications [17,18], where the MPC application is limited
due to the computational complexity, the ability of the proposed MPC to achieve stability with a
short horizon could be useful.

a b
Figure 3. The system states (a,b) with VQ with an initial condition of x0 =

[ 2.5
−1.1

]
(red), VNCR for an initial condition of

x0 =
[ 2.5
−1.1

]
with q = 1, R =

[ 0 0
0 0
]
(light blue), q = 10.2 and R =

[ 0.82 0
0 0.82

]
(dark blue) and VNCR for an initial condition of

x0 =
[−3.5

2.5

]
with q = 10.2, R =

[ 0.82 0
0 0.82

]
(black).
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a b

c d
Figure 4. The system input profiles (a,b) with VQ with an initial condition of x0 =

[ 2.5
−1.1

]
(red), VNCR for an initial

condition of x0 =
[ 2.5
−1.1

]
with q = 1, R =

[ 0 0
0 0
]
(light blue), q = 10.2 and R =

[ 0.82 0
0 0.82

]
(dark blue) and VNCR for an

initial condition of x0 =
[−3.5

2.5

]
with q = 10.2, R =

[ 0.82 0
0 0.82

]
(black) , (c) evolution of the quadratic Lyapunov function,

VQ with an initial condition of x0 =
[ 2.5
−1.1

]
(red), (d) evolution of VNCR for an initial condition of x0 =

[ 2.5
−1.1

]
with q = 1,

R =
[ 0 0

0 0
]
(light blue) and q = 10.2, R =

[ 0.82 0
0 0.82

]
(dark blue) and VNCR for an initial condition of x0 =

[−3.5
2.5

]
with

q = 10.2, R =
[ 0.82 0

0 0.82
]
(black).

5. Conclusions and Perspectives

This manuscript addressed the problem of MPC design for MIMO linear systems
subject to input constraints that is able to achieve closed-loop stability for the entire NCR
without resorting to large horizon lengths. There exist several problems that can be solved
in future research. In one direction, this MPC formulation could be adapted to make the
controller robust to linear additive uncertainty. Further directions could be handling the
output feedback problem, and/or dealing with non-symmetric input constraints, or state
constraints. While these issues have been addressed in various other control designs, they
have not been addressed as part of a control design that achieves stabilization from the
entire NCR. Naturally, these issues represent limitations with the current formulation. The
present manuscript addresses the problem of a linear system subject to symmetric input
constraints. When dealing with asymmetric input constraints, the calculation of the NCR
described in Section 2 is no longer valid. Results exist for the construction of the NCR for
linear systems subject to non-symmetric input constraints in [19], their use for construction
of the CCLF is a non-trivial problem and remains the subject of future work.
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