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Abstract: In this paper, we study a monotone inclusion problem in the framework of Hilbert spaces.
(1) We introduce a new modified Tseng’s method that combines inertial and viscosity techniques.
Our aim is to obtain an algorithm with better performance that can be applied to a broader class
of mappings. (2) We prove a strong convergence theorem to approximate a solution to the mono-
tone inclusion problem under some mild conditions. (3) We present a modified version of the
proposed iterative scheme for solving convex minimization problems. (4) We present numeri-
cal examples that satisfy the image restoration problem and illustrate our proposed algorithm’s
computational performance.

Keywords: inertial algorithm; Tseng’s method; forward-backward algorithm; monotone inclusion
problem

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and induced norm ‖ · ‖.
A zero-point problem for monotone operators is defined as follows: find x∗ ∈ H such that

0 ∈ Tx∗, (1)

where T is a monotone operator. Barely a decade ago, many authors intensively studied
the convergence of iterative methods to find a zero-point for monotone operators in the
framework of Hilbert spaces. Additionally, many iterative methods have been constructed
and studied to solve a zero-point problem (1), since it is connected to various optimization
and nonlinear analysis issues, such as variational inequality problems, convex minimization
problems, and so on. The proximal point algorithm (PPA) [1], which was constructed by
Martinet in 1970, is well known as being the first algorithm to solve the problem (1). This
algorithm is shown below:

xn+1 = (I + λnT)−1xn, ∀n ≥ 1, (2)

where I is the identity mapping, and {λn} is a sequence of positive real numbers. Af-
ter Martinet [1] proposed the proximal point algorithm (PPA), many algorithms were
developed by many authors to solve the zero-point problem. The reader can see [2–4] and
the references therein for more details.

In this paper, we focus on the following monotone inclusion problem:

find x∗ ∈ H such that 0 ∈ (A + B)x∗, (3)
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where A : H → H and B : H → 2H are single and multi-valued mappings, respectively.
The monotone inclusion problem (3) can be written as the zero-point problem (1) by setting
T = A + B. However, the full resolvent operator (I + λT)−1 is much harder to compute
than the resolvent operators (I + λA)−1 and (I + λB)−1.

Because the monotone inclusion problem (3) is the core of image processing and many
mathematical problems [5–22], many researchers have proposed and developed iterative
methods for solving inclusion problems (3). The forward-backward splitting method,
constructed and studied by Lions and Mercier [23] in 1979, is the most popular algorithm
for solving the (3) problem. It is defined by the following iterative:{

xn+1 = (I + λB)−1(I − λA)xn, ∀n ≥ 1, (4)

where x1 ∈ H is arbitrarily chosen and λ > 0. In the algorithm (4), operators A and B are
usually called the forward operator and the backward operator, respectively. For more
details about forward-backward methods that have been constructed and considered to
solve the inclusion problem (3), the reader is directed to [2,9,11,24–32].

To speed up the convergence rate of iteration methods, Polyak [33] introduced inertial
extrapolation as an acceleration process in 1964. This method is well known as the heavy
ball method. Polyak [33] used his algorithm to solve the smooth convex minimization
problem. In recent years, many researchers have intensively used this useful concept for
combining their algorithms with an inertial term to accelerate the speed of convergence.

In 2001, Alvarez and Attouch [34] constructed an algorithm to solve a problem of
monotone operators. It combines the heavy ball method with the proximal point algorithm.
The algorithm is defined as follows:{

wn = xn + θn(xn − xn−1)

xn+1 = (I + λnB)−1wn, ∀n ≥ 1,
(5)

where x0, x1 ∈ H are arbitrarily chosen, {θn} ⊂ [0, 1), and {λn} is nondecreasing with

∞

∑
n=1

θn‖xn − xn−1‖ < ∞. (6)

They proved that the sequence {xn} generated by the algorithm (5) converges weakly
to a zero-point of the monotone operator B.

Moudafi and Oliny [35] studied the monotone inclusion problem (3). They constructed
the inertial proximal point algorithm, which combines the heavy ball method with the
proximal point algorithm. The inertial proximal point algorithm is defined as follows:{

wn = xn + θn(xn − xn−1)

xn+1 = (I + λnB)−1(xn − λn Awn), ∀n ≥ 1,
(7)

where x0, x1 ∈ H are arbitrarily chosen, and A : H → H and B : H → 2H are single and
multi-valued mappings, respectively. It was proven that if λn < 2/L with the Lipschitz
constant L of the monotone operator A and the condition (6) holds, then the sequence {xn}
generated by the algorithm (7) converges weakly to a solution of the inclusion problem (3).
Moreover, it has been observed that for θn > 0, the proximal point algorithm (7) cannot
be written as the forward-backward splitting method (4), since there is no estimation of
operator A at point xn.

Lorenz and Pock [36] studied the monotone inclusion problem (3). They proposed the
inertial forward-backward algorithm for monotone operators, which is defined as{

wn = xn + θn(xn − xn−1)

xn+1 = (I + λnB)−1(I − λn A)wn, ∀n ≥ 1,
(8)
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where x0, x1 ∈ H are arbitrarily chosen, A : H → H and B : H → 2H are single and
multi-valued mappings, respectively. They proved that the sequence {xn} generated by
the algorithm (8) converges weakly to a solution of the monotone inclusion problem (3)
with some conditions.

Kitkuan and Kumam [26] combined the forward-backward splitting method (4) with
the viscosity approximation method [37] for solving the monotone inclusion problem (3).
It is called the inertial viscosity forward-backward splitting algorithm, which is defined as:{

wn = xn + θn(xn − xn−1)

xn+1 = αn∇h(xn) + (1− αn)(I + λB)−1(I − λn A)wn, ∀n ≥ 1,
(9)

where x0, x1 ∈ H are arbitrarily chosen, h : H → R is a differentiable function such that its
gradient ∇h is a contraction with the constant k ∈ (0, 1), and A : H → H and B : H → 2H

are an inverse strongly monotone and a maximal monotone operator, respectively. They
proved that the sequence {xn} generated by the algorithm (9) converges strongly to a
solution of the monotone inclusion problem (3) under suitable conditions.

Besides solving the monotone inclusion problem using an algorithm combined with
the heavy ball idea, there are many ways to solve the monotone inclusion problem.
Tseng [24] introduced a powerful iterative method to solve the monotone inclusion prob-
lem (3), which is called the modified forward-backward splitting method. In short, it is
known as Tseng’s splitting algorithm. Let C be a closed and convex subset of a real Hilbert
space H. Tseng’s splitting algorithm is defined as{

yn = (I + λnB)−1(I − λn A)xn

xn+1 = PC(yn − λn(Ayn − Axn)), ∀n ≥ 1,
(10)

where x1 ∈ H is arbitrarily chosen, λn is chosen to be the largest λ ∈ {δ, δl, δl2, ...} satisfying
λ‖Ayn − Axn‖ ≤ µ‖xn − yn‖ where δ > 0, l ∈ (0, 1), µ ∈ (0, 1), and PC is the projection
onto a closed convex subset C of H. However, Tseng’s splitting algorithm only obtains
weak convergence in real Hilbert spaces.

Recently, Dilshad, Aljohani, and Akram [38] introduced and studied an iterative
scheme to approximate the common solution to a split variational inclusion and a fixed-
point problem of a finite collection of nonexpansive mappings. Let H1 and H2 be two real
Hilbert spaces and A : H1 → H2 be a bounded linear operator with its adjoint operator
A∗ : H2 → H1. Their algorithm is{

vn = (I + λG1)
−1(I + µA∗((I + λG2)

−1 − I)A)xn

xn+1 = αn f (xn) + (1− αn)T[n+1]vn, ∀n ≥ 1,
(11)

where x1 ∈ H is arbitrarily chosen, λ > 0, {αn} ∈ (0, 1), f is a contraction with a constant
k ∈ (0, 1), and T[n+1] is a finite collection of nonexpansive mappings. For more detail about
the split variational inclusion in other class of mappings and methods for solving them,
the reader is directed to [39–42].

Based on the above idea, we introduce a new modified Tseng’s method, which com-
bines inertial and viscosity techniques to solve inclusion problems in the framework of real
Hilbert spaces. The project aims to obtain algorithms with better performance and can be
applied for a broader class of mappings. Furthermore, we present a modified version of the
proposed iterative scheme to solve convex minimization problems. Moreover, we illustrate
the computational performance of our proposed algorithms by conducting experiments
that satisfy the image restoration problem.

The outline of this paper is as follows: Definitions and lemmas used to analyze our
algorithm are shown in Section 2. In Section 3, we present the convergence analysis of our
main theorem. Finally, we conduct experiments in which we use our proposed algorithm
to solve the image restoration problem.
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2. Preliminaries

In this section, we present some notations that are used throughout this work. Let
H be a real Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let C
be a nonempty closed and convex subset of a real Hilbert space H. xn → x and xn ⇀ x
denote the strong convergence and weak convergence of a sequence {xn}∞

n=1 to x ∈ H.
For any point x, there exists a unique nearest point for C, which is denoted by PC(x), such
that ‖x− PC(x)‖ ≤ ‖x− y‖ for all y ∈ C. The operator PC denotes the metric projection
from H onto C. It is well known that the metric projection PC is nonlinear, and it satisfies
the following:

〈x− PC(x), PC(x)− y〉 ≥ 0, (12)

for all y ∈ C. Next, we present several properties of operators and set-valued mappings,
which are helpful later. Let T : H → H be a mapping, Fix(T) denotes the set of fixed points
of T, i.e.,

Fix(T) = {x ∈ H | Tx = x}.

Proposition 1. Let H be a real Hilbert space and T : H → H be a mapping.

1. T is called nonexpansive mapping if

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ H.
2. T is called firmly nonexpansive mapping if

‖Tx− Ty‖2 + ‖(I − T)x− (I − T)y‖2 ≤ ‖x− y‖2,

for all x, y ∈ H.

Proposition 2 ([43]). Let T : H → H be a mapping. Then, the following items are equivalent:

(i) T is firmly nonexpansive;
(ii) (I − T) is firmly nonexpansive;
(iii) ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉, for all x, y ∈ H.

It is well known that the metric projection PC is a firmly nonexpansive mapping, i.e.,

‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉, (13)

for all x, y ∈ H.
For convenience, we let B : H → 2H be a set-valued mapping and

JB
λ = (I + λB)−1,

be the resolvent of mapping B where λ > 0. It is well known that JB
λ is single-valued,

D(JB
λ ) = H, where D(JB

λ ) is a domain of the operator JB
λ , and JB

λ is a firmly nonexpansive
mapping for all λ > 0.

Definition 1. Let B : H → 2H be a set-valued mapping with the graph G(B). B is called
monotone if,

〈x− y, u− v〉 ≥ 0,

for all x, y ∈ H, u ∈ Bx and v ∈ By. A monotone mapping A : H → 2H is maximal if the graph
of G(B) for B is not properly contained in the graph of any other monotone mapping.

Definition 2 ([44]). Let T : H → H be a mapping.
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1. T is called L-Lipchitz continuous if a non-negative real number L ≥ 0 exists such that

‖Tx− Ty‖ ≤ L‖x− y‖,

for all x, y ∈ H.
2. T is called α-inverse strongly monotone if a positive real number α exists such that

〈x− y, Tx− Ty〉 ≥ α‖Tx− Ty‖2,

for all x, y ∈ H. Moreover, if T is α-inverse strongly monotone, then T is 1/α-Lipschitz
continuous.

Lemma 1 ([43]). Let H be a real Hilbert space. Then, the following equations hold:

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, for all x, y ∈ H;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, for all x, y ∈ H;
(iii) ‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2, for all x, y ∈ H and

α ∈ [0, 1].

Lemma 2 ([45]). Let H be a real Hilbert space. Let A : H → H be an α-inverse strongly monotone
operator and B : H → 2H be a maximal monotone operator. Then, for λ > 0, the following
relation holds:

Fix(JB
λ (I − λA)) = (A + B)−1(0).

Lemma 3 ([46]). Let an be a sequence of non-negative real numbers that satisfy the following rela-
tion:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 0,

where

(i) {an} ⊂ [0, 1], ∑ αn = ∞,
(ii) lim sup σn ≤ 0,
(iii) γn ≥ 0 (n ≥ 1), ∑ γn < ∞.

Then, an → 0 as n→ ∞.

Lemma 4 ([47]). Let {Γn} be sequence of real numbers that does not decrease at infinity in the
sense that the following subsequence exists: {Γni} of {Γn} such that {Γni} < {Γni+1} for all i ≥ 0.
Additionally, consider the sequence of integers {η(n)}n≥n0 defined by

η(n) = max{k ≤ n | Γk ≤ Γk+1}.

Then {η(n)}n≥n0 is a nondecreasing sequence that verifies limn→∞ η(n) = ∞ and for all
n ≥ n0,

max
{

Γη(n), Γn

}
≤ Γη(n)+1.

3. Results

In this section, we present a convergence analysis of the proposed algorithm, which
generates sequences that converge strongly to a solution to the monotone inclusion prob-
lem (3). Throughout this section, Ω = (A + B)−1(0) is used to denote the set of all the
solutions to the monotone inclusion problem (3). We use the following conditions for the
analysis of our method.

Assumption 1. A1 Ω is nonempty.
A2 A is L-Lipschitz continuous and monotone, and B is maximal monotone.
A3 ∇h : H → H is σ-Lipschitz continuous, where σ ∈ [0, 1).
A4 Let {αn} be a sequence in (0, 1) such that limn→∞ αn = 0 and ∑∞

n=1 αn = ∞.
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Remark 1. Observe that from Assumption 1 (A4) and Algorithm 1, we have from {θn} ∈ [0, 1)
that

(1) lim
n→∞

θn

αn
‖xn − xn−1‖ = 0.

(2) lim
n→∞

θn‖xn − xn−1‖ = 0.

Algorithm 1 An iterative algorithm for solving inclusion problems
Initialization: Given λ1 > 0, µ ∈ (0, 1). Let x1, x2 ∈ H be arbitrary. Choose {αn}, ∇h to
satisfy Assumption 1 and {θn} to satisfy Remark 1.
Iterative Step: Given the current iterate xn, calculate the next iterate as follows:
Step 1. Compute

wn = xn + θn(xn − xn−1)

yn = JB
λn
(I − λn A)wn

sn = yn − λn(Ayn − Awn)

and

xn+1 = αn∇h(xn) + (1− αn)sn.

Step 2. Update

λn+1 =

min
{

µ‖wn − yn‖
‖Awn − Ayn‖

, λn

}
if Awn − Ayn 6= 0;

λn otherwise.
(14)

Replace n with n + 1 and then repeat Step 1.

Next, we provide a useful lemma for analyzing our main theorem.

Lemma 5 ([11]). The sequence {λn} generated by (14) is a non-increasing sequence and

lim
n→∞

λn = λ ≥ min
{

λ0,
µ

L

}
.

Lemma 6 ([11]). Assume that Assumption (1) holds and let {sn} be any sequence generated by
Algorithm 1. Then,

‖sn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 λ2
n

λ2
n+1

)
‖wn − yn‖2, (15)

for all p ∈ Ω and

‖sn − yn‖ ≤ µ
λn

λn+1
‖wn − yn‖. (16)

Theorem 1. Assume that Assumptions (1) A1–A4 hold. Let {xn} be a sequence generated by
Algorithm 1. Then, xn → p, where p = PΩ∇h(p).

Proof. Step 1. We prove that {xn}, {wn}, {yn} and {sn} are bounded sequences. Assume
that p = PΩ∇h(p). Since [11]

‖sn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 λ2
n

λ2
n+1

)
‖wn − yn‖2, (17)
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and

‖sn − yn‖ ≤ µ
λn

λn+1
‖wn − yn‖. (18)

Moreover, we observe that

‖yn − p‖ ≤ ‖JB
λn
(I − λn A)wn − p‖

≤ ‖wn − p‖, (19)

and

‖wn − p‖ = ‖xn − θn(xn − xn−1)− p‖
≤ ‖xn − p‖+ θn‖xn − xn−1‖. (20)

Consider

‖xn+1 − p‖ = ‖αn∇h(xn) + (1− αn)sn − p‖
≤ αn‖∇h(xn)− p‖+ (1− αn)‖sn − p‖
≤ αn‖∇h(xn)−∇h(p)‖+ αn‖∇h(p)− p‖+ (1− αn)‖sn − p‖
≤ αnσ‖xn − p‖+ αn‖∇h(p)− p‖+ (1− αn)‖wn − p‖

≤ (1− αn(1− σ))‖xn − p‖+ αn(1− σ)
‖∇h(p)− p‖

(1− σ)

+(1− αn(1− σ))θn‖xn − xn−1‖

≤ max
{
‖xn − p‖+ θn‖xn − xn−1‖, (1− σ)

‖∇h(p)− p‖
(1− σ)

}
...

≤ max
{
‖xn − p‖+ θ1‖x1 − x0‖, (1− σ)

‖∇h(p)− p‖
(1− σ)

}
. (21)

Thus, {xn} is bounded and {sn}, {yn}, and {wn} are bounded.
Next, we observe that

‖wn − p‖2 = ‖xn + θn(xn − xn+1)− p‖2

= ‖xn − p‖2 + 2θn〈xn − xn−1, xn − p〉+ θ2
n‖xn − xn−1‖2. (22)

It follows that

‖(xn − xn−1)− (xn − p)‖2 = ‖xn − xn−1‖2 − 2〈xn − xn−1, xn − p〉+ ‖xn − p‖2,

and

2θn〈xn − xn−1, xn − p〉 = θn‖xn − xn−1‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2). (23)

Then, by combining (22) with (23), we find that

‖wn − p‖2 = ‖xn − p‖2 + θn‖xn − xn−1‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2)

+θ2
n‖xn − xn−1‖2

≤ ‖xn − p‖2 + θn(1 + θn)‖xn − xn−1‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2)

≤ ‖xn − p‖2 + 2θn‖xn − xn−1‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2).



Mathematics 2021, 9, 1104 8 of 15

Next, by combining (17) with the above inequality, we find that

‖sn − p‖2 ≤ ‖xn − p‖2 + 2θn‖xn − xn−1‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2)

−
(

1− µ2 λ2
n

λ2
n+1

)
‖wn − yn‖2. (24)

Consider

‖xn+1 − p‖2 = ‖αn∇h(xn) + (1− αn)sn − p‖2

= 〈αn∇h(xn) + (1− αn)sn − p, xn+1 − p〉

= αn〈∇h(xn)− p, xn+1 − p〉+ (1− αn)〈∇sn − p, xn+1 − p〉

≤ αn

2

(
‖∇h(xn)− h(p)‖2 + ‖xn+1 − p‖2

)
+ αn〈∇h(p)− p, xn+1 − p〉

(1− αn)

2

(
‖sn − p‖2 + ‖xn+1 − p‖2

)
≤ αn

2

(
‖∇h(xn)− h(p)‖2 + ‖xn+1 − p‖2

)
+ αn〈∇h(p)− p, xn+1 − p〉

(1− αn)

2

(
‖xn − p‖2 + 2θn‖xn − xn−1‖2 + θn(‖xn − p‖2 − ‖xn−1 − p‖2)

−
(

1− µ2 λ2
n

λ2
n+1

)
‖wn − yn‖2 + ‖xn+1 − p‖2

)

≤ (1− αn(1− σ2))

2
‖xn − p‖2 +

1
2
‖xn+1 − p‖2 + αn〈∇h(p)− p, xn+1 − p〉

+θn(1− θn)‖xn − xn−1‖2 +
(1− αn)

2
θn

(
‖xn − p‖2 − ‖xn−1 − p‖2

)
− (1− αn)

2

(
1− µ2 λ2

n

λ2
n+1

)
‖wn − yn‖2. (25)

It follows that

‖xn+1 − p‖2 = (1− αn(1− σ2))‖xn − p‖2 + αn(1− σ2)

(
2

(1− σ2)
〈∇h(p)− p, xn+1 − p〉

)
+2θn(1− αn)‖xn − xn+1‖2 + (1− αn)θn(‖xn − p‖2 − ‖xn−1 − p‖2)

−(1− αn)

(
1− µ2 λ2

n

λ2
n+1

)
‖wn − yn‖2. (26)

Therefore, we obtain

(1− αn)

(
1− µ2 λ2

n

λ2
n+1

)
‖wn − yn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2(1− αn)θn‖xn − xn+1‖2

+αn(1− σ2)

(
2

(1− σ2)
〈∇h(p)− p, xn+1 − p〉

)
+(1− αn)θn(‖xn − p‖2 − ‖xn−1 − p‖2). (27)

Moreover, by using (26), we obtain

‖xn+1 − p‖2

≤ (1− αn(1− σ2))‖xn − p‖2 + αn(1− σ2)

{
2

(1− σ2)
〈∇h(p)− p, xn+1 − p〉

+

(
2(1− αn)

(1− σ2)

)
θn

αn
‖xn − xn+1‖2

+

(
(1− αn)

(1− σ2)

)
θn

αn
‖xn − xn+1‖(‖xn − p‖+ ‖xn−1 − p‖)

}
.

(28)
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Next, we consider two possible cases to show that ‖xn − p‖ → 0.

Case 1. Suppose that the sequence Γn = {‖xn − p‖2} is non-increasing, N ∈ N exists
such that Γn+1 ≤ Γn for each n ≥ N. Therefore, Γn converges.

Since lim
n→∞

αn = 0, lim
n→∞

(
1− µ2 λ2

n

λ2
n+1

)
> 0, by using Remark 1, we obtain from (27) that

lim
n→∞

‖wn − yn‖ = 0. (29)

Thus, from (18), we immediately obtain

lim
n→∞

‖sn − yn‖ = 0. (30)

If we consider

‖sn − wn‖ ≤ ‖sn − yn‖+ ‖wn − yn‖, (31)

then

lim
n→∞

‖sn − wn‖ = 0. (32)

Since {xn} is bounded, take a subsequence {xnk} of {xn} such that xnk ⇀ p∗ ∈ H. By
setting Tn = JB

λn
(I − λn A), we have

‖(I − Tn)p∗‖2 = 〈(I − Tn)p∗, (I − Tn)p∗〉
= 〈(I − Tn)p∗, p∗ − wnk 〉+ 〈(I − Tn)p∗, wnk − Tnwnk 〉

+〈(I − Tn)p∗, Tnwnk − Tn p∗〉. (33)

Using the fact that ‖xn − wn‖ → 0 and (29), we obtain

lim
n→∞

‖(I − Tn)p∗‖ = 0. (34)

Therefore, p∗ ∈ Ω. We can obtain

lim sup
n→∞

2
1− σ2 〈∇h(p)− p, xn+1 − p〉 = lim sup

k→∞

2
1− σ2 〈∇h(p)− p, xnk − p〉

=
2

1− σ2 〈∇h(p)− p, p∗ − p〉

≤ 0. (35)

By applying Lamma 3 and using (28) and (35) and using conditions of all parameters,
we can claim that xn → p = PΩ∇h(p).

Case 2. Suppose that the sequence Γn = {‖xn − p‖2} is increasing. Let η : N→ N be
a mapping for all n ≥ N values (where N is large enough). This is defined by

η(n) := max{k ∈ N : Γk ≤ Γk+1}. (36)

Then, η(n)→ ∞ as n→ ∞ and Γη(n) ≤ Γη(n)+1 for all n ≥ N. By using (27), and the
conditions of the parameters for each n ≥ N, we have
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‖wη(n) − yη(n)‖2 ≤ Γη(n) − Γη(n)+1

+2(1− αη(n))θη(n)‖xη(n) − xη(n)+1‖2

+αη(n)(1− ρ2)

(
2

(1− ρ2)
〈∇h(p)− p, xη(n)+1 − p〉

)
+(1− αη(n))θη(n)(Γη(n) − Γη(n)−1). (37)

Since αn → 0, we can conclude that

lim
n→∞

‖wη(n) − yη(n)‖ = 0.

Moreover, by following the proof in Case 1, we obtain

lim sup
n→∞

〈∇h(p)− p, xη(n)+1 − p〉 ≤ 0. (38)

Using (28), we have

Γη(n)+1 ≤ (1− αη(n)(1− ρ2))Γη(n) + αn(1− ρ2)

(
2

(1− ρ2)
〈∇h(p)− p, xη(n)+1 − p〉

+

(
2(1− αη(n))

(1− ρ2)

)
θη(n)

αη(n)
‖xη(n) − xη(n)+1‖2

+

(
(1− αη(n))

(1− ρ2)

)
θη(n)

αη(n)
‖xη(n) − xη(n)+1‖

(√
Γη(n) +

√
Γη(n)−1

))
.

(39)

By applying Lamma 3 to (39), using (38) and the conditions of all parameters, we can
claim that

lim
n→∞

‖xη(n)+1 − p‖ = 0.

Using Lemma 4, we obtain

0 ≤ ‖xn − p‖ ≤
{
‖xn − p‖, ‖xη(n) − p‖

}
≤ ‖xη(n)+1 − p‖ → 0 as n→ ∞. (40)

Therefore, xn → p = PΩ∇h(p), which completes the proof.

4. Applications and Numerical Results

Let F : H → R and G : H → R be a convex function and a convex, lower-
semicontinuous, and nonsmooth function, respectively. Consider the convex minimization
problem that finds x̄ ∈ H such that

F(x̄) + G(x̄) = min
x∈H
{F(x) + G(x)}. (41)

Using Fermat’s rule, an equivalent of the problem (41) is obtained in the form

0 ∈ ∇F(x̄) + ∂G(x̄), (42)

where ∂G is a subdifferential of G, which is a maximal monotone. For more detail, we
direct the reader to [48]. ∇F is a gradient of F, which is 1/L-Lipschitz continuous [49]. By
setting A = ∇F and B = ∂G, we obtain the following theorem:
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Algorithm 2 An iterative algorithm for solving the convex minimization problems
Initialization: Given λ1 > 0, µ ∈ (0, 1), let x1, x2 ∈ H be arbitrary. Choose {αn}, ∇h to
satisfy Assumption 1 and {θn} to satisfy Remark 1.
Iterative Step: Given the current iterate xn, calculate the next iterate as follows:
Step 1. Compute

wn = xn + θn(xn − xn−1)

yn = J∂G
λn

(I − λn∇F)wn

sn = yn − λn(∇Fyn −∇Fwn)

and

xn+1 = αn∇h(xn) + (1− αn)sn.

Step 2. Update

λn+1 =

min
{

µ‖wn − yn‖
‖∇Fwn −∇Fyn‖

, λn

}
if ∇Fwn −∇Fyn 6= 0;

λn otherwise.

Replace n with n + 1 and then repeat Step 1.

Theorem 2. Assume that Assumptions (1) A1–A4 are held. Let {xn} be a sequence generated by
Algorithm 2. Then, xn → p, where p = PΩ∇h(p).

In this paper, we focus on the topic of image restoration. The inversion of the following
model can be used to formulate the image restoration problem:

y = Ax + b. (43)

where x ∈ Rn×1 is an original image, y ∈ Rm×1 is the observed image, b is additive noise,
and A ∈ Rm×n. To solve the problem (43), we can transform it into the least squares
minimization problem

min
x

{
1
2
‖Ax− b‖2

2 + λ‖x‖1

}
, (44)

where λ > 0 is a regularization parameter. We set G(x) = ‖x‖1, F(x) =
1
2
‖Ax− b‖2

2 and
λ1 = 0.001. The Lipschitz gradient of F is in the form

∇F(x) = AT(Ax− b),

where AT is a transpose of operator A. Now, an iteration is used to find the solution to the
following convex minimization problem: Find x ∈ Rn such that

x ∈ arg min
{

1
2
‖Ax− b‖2

2 + λ‖x‖1

}
, (45)

where A is a bounded linear operator and b is the degraded image. Therefore, we use

Theorem 2 to solve (45) by setting h(x) =
z2

12
, θn =

70n− 9
100n

and αn =
1

1000n + 1
. Next,

since G(x) = ‖x‖1, we immediately know from [50] that

(I + λ∂G)−1(x) =
(

max{|x1| − λ, 0}sign(x1), |x2| − λ, 0}sign(x2), ...

{|xn| − λ, 0}sign(xn)). (46)
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In this part, we present the restoration of an image that has been corrupted by a
motion blur specified by a motion length of 22 pixels and a motion orientation of 45◦ (blur
matrix A1), a Gaussian blur with a filter size of 9× 9 and a standard deviation of σ = 2
(blur matrix A2), an out of focus blur or a circular average filtered blurred image with a
radius of r = 5 (blurred matrix A3), and an average blur with a filter size of 9× 9 (blurred
matrix A4), respectively. We use Algorithm 2 to restore the original grey (cameraman) and
RGB (baboon) images, which are shown in Figure 1. Blurred grey images and blurred RGB
images with a blurred matrix A1–A4 are shown in Figures 2 and 3, respectively.

The reconstructed grey images corrupted by blurred matrixes A1–A4 are shown in
Figure 4, and the reconstructed RGB images corrupted by blurred matrixes A1–A4 are
shown in Figure 5.

In order to measure the quality of the restored images, we use the signal-to-noise ratio:

SNR = 20 log
‖x‖2

‖x− xn+1‖2
, (47)

where x is an original image. The behavior of SNR for the Algorithm 2 of all cases for grey
and RGB images are shown in Figures 6 and 7, respectively.

Figure 1. Original images.

Figure 2. Blurred grey images with blurred matrixes A1–A4, respectively.

Figure 3. Blurred RGB images with blurred matrixes A1–A4, respectively.
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Figure 4. Reconstructed grey images corrupted by blur matrixes A1–A4, respectively.

Figure 5. Reconstructed RGB images corrupted by blurred matrixes A1–A4, respectively.
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Figure 6. The behavior of SNR for the Algorithm 2 of all cases for grey images.

0 50 100 150 200

Iterations number

136

138

140

142

144

146

148

150

152

154

S
N

R

Motion

Gauss

Disk

Average

Figure 7. The behavior of SNR for the Algorithm 2 of all cases for RGB images.

5. Conclusions

In this paper, we proposed a modified Tseng’s method that combines inertial and
viscosity techniques to solve monotone inclusion problems in real Hilbert spaces. We also
established a strong convergence theorem. Our modifications improve the practicality
of the algorithm, which means that it performs better and can be applied for a more
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expansive mapping class. Moreover, we used our algorithm to solve some parts of image
recovery problems.
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