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Abstract: For engineering products with uncertain input variables and distribution parameters,
a sampling-based sensitivity analysis methodology was investigated to efficiently determine the
influences of these uncertainties. In the calculation of the sensitivity indices, the nonlinear degrees
of the performance function in the subintervals were greatly reduced by using the integral whole
domain segmentation method, while the mean and variance of the performance function were
calculated using the unscented transformation method. Compared with the traditional Monte Carlo
simulation method, the loop number and sampling number in every loop were decreased by using
the multiplication approximation and Gaussian integration methods. The proposed algorithm also
reduced the calculation complexity by reusing the sample points in the calculation of two sensitivity
indices to measure the influence of input variables and their distribution parameters. The accuracy
and efficiency of the proposed algorithm were verified with three numerical examples and one
engineering example.

Keywords: sensitivity analysis; distribution parameter; sampling calculation; unscented transforma-
tion; Gaussian integration

1. Introduction

A variety of uncertainties are inherent in engineering products due to various factors,
which inevitably affects product performances, especially for nonlinear and complex engi-
neering products. Therefore, many uncertainty quantification and uncertainty optimization
design methodologies have been developed to decrease these deteriorating impacts and
improve product performances under uncertainties [1–3].

The sensitivity analysis (SA) quantifies the relative importance of uncertain input
variables on the output performance functions, which is useful for the uncertainty design of
engineering products in many fields, such as the selection of significant input variables [4,5],
uncertainty reduction [6,7], model simplification [8,9], reliability/robust optimization
algorithms [10,11], and so forth. SA methods can be classified into two categories: local SA
methods and global SA methods [12,13]. Local SA methods characterize the influence of
uncertain input variables only at the nominal point, which is useful in the calculation of
iterative steps for uncertainty optimization design [14,15]. Global SA methods measure
variability due to uncertain variables, including all interactions with other variables in the
design space of the input variables. Based on the results of global SA methods, researchers
can determine the main design variables, obtain comprehensive insight into structural
systems, and decrease the uncertainty of output performances [16–18].

In the past few decades, many SA methodologies have been proposed, including the prob-
abilistic analysis method [19,20], regression method [21,22], variance-based method [23,24],
and moment independent method [25,26]. For simple single input and single output sys-
tems, these methods can be used to calculate the sensitivity index directly. However, the
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performance function is complicated in engineering structures; therefore, linear regression
methods are inappropriate, as they cannot calculate the probability density function of
output variables based on the original performance function. Therefore, some metamodel
technologies, such as Monte Carlo [27], Kriging model [28,29], and polynomial chaos
expansion methods [30,31], have been integrated with these traditional SA technologies
to calculate sensitivity indices. For engineering systems with multivariate outputs, there
are some strong correlations among multiple output variables; therefore, multivariate SA
methods based on distance correlation analysis [32], the vector projection method [33], or
the selected scalar objective function [34] have been proposed to determine the influences
between multiple inputs and multiple outputs. In these SA methods, multiple uncertain
input variables are assumed to be independent. However, in some situations of engineer-
ing structures, there are correlations among multiple variables, and some improved SA
methods have been proposed. For example, Li [35] decomposed the variance contributions
of correlated inputs to independent contributions by individual inputs, and independent
contributions by interactions between the individual input and others based on the high
dimensional model representation of the performance function. De Carlo [36] developed
a global SA computation method with correlation variables by incorporating optimal
space-filling quasi-random sequences into an existing, importance sampling-based kernel
regression sensitivity method.

In these SA methods, the uncertainty information of the input variables is assumed
to be determinate. However, input variables may have aleatory uncertainty or epistemic
uncertainty for some engineering practices. The uncertainty input variables can be classi-
fied into statistical variables with sufficient input data, sparse variables with insufficient
input data, and interval variables with little input data, according to the available amount
of uncertainty input data. Sparse variables with insufficient input data exist in many
uncertainty analysis problems of engineering products. Many uncertainty representation
methods, such as p-box, evidence theory, and uncertainty distribution parameters, have
been implemented to represent sparse variables. Additionally, many pro-processing data
techniques and data-transforming methodologies are also proposed to decrease the in-
fluences of uncertainties, such as the soft computing method [37,38] and cubic normal
transformation method [39,40]. Some uncertainty information can be compensated, using
these pro-processing methods. However, in some engineering applications, due to the
accuracy requirement and the scarcity of uncertainty representation data, the sensitivity
analysis and uncertainty design under sparse variables are still problems which require at-
tention. In this paper, we considered one type of sparse variable whose distribution type is
determinate, while its distribution parameters are uncertain [41,42]. The sensitivity indices
of the input variables can be influenced by the uncertainty distribution parameters, and the
sensitivity indices can be decomposed by the individual influences of input variables, indi-
vidual influences of distribution parameters, and correlation influences of input variables
and distribution parameters. Wang [43] proposed an improved analytical variance-based
sensitivity analysis method to calculate the sensitivity indices of uncertain input variables
and their distribution parameters. However, sensitivity indices are calculated based on two
assumptions: (1) the input variables have normal distribution types; and (2) the metamodel
is a quadratic polynomial without cross-terms. However, in actual engineering problems,
there is often serious coupling, and there may be multiple different distribution types.

To solve these issues, a sampling-based sensitivity analysis method, considering the
uncertainties of input variables and their distribution parameters simultaneously, was
proposed. The first-order sensitivity indices of the distribution parameters were calculated
based on the unscented transformation method, and a detailed sampling algorithm was
proposed to decrease the calculation complexity through multiplication approximation and
Gaussian integration methods. This paper is organized as follows. Section 2 introduces
the formulation of the proposed problem. Subsequently, Section 3 proposes an efficient
method for estimating the variance-based sensitivity indices. The calculation algorithm
of the proposed SA method is introduced in Section 4. Three numerical examples and



Mathematics 2021, 9, 1095 3 of 18

one engineering example, outlined in Section 5, were utilized to verify the efficiency,
accuracy and robustness of the proposed algorithm. Finally, conclusions are summarized
in Section 6.

2. Problem Formulation

The computational model of an engineering system is available, the performance
function Y = g(X) can be calculated using theoretical analysis, finite element analysis,
or experimental calculation. X = (X1, · · · , Xn) is the vector of n independent uncertain
input variables.

In the probabilistic framework, the uncertainty of input variables X can be repre-
sented with the probability density function (PDF) fX(X). The corresponding performance
function Y is also uncertain, whose PDF fY(Y) can be calculated through uncertainty
propagation analysis. For the uncertain input variables X with determinate distribution
types and distribution parameters θ, the PDF fX(X) is also determinate. However, in some
situations, the uncertainty representation data and uncertainty information are insufficient,
and the uncertainty variables are represented by sparse variables with uncertain distribu-
tion types or distribution parameters [41,42]. For the sake of simplification, the distribution
types are assumed to be determinate. Only uncertainties of distribution parameters θ are
analyzed, which can be represented by PDF fθ(θ), where θ =

(
θ1, · · · , θp

)
is the vector

of p independent distribution parameters. For instance, the distribution type of Xl is a
normal distribution, and there are two distribution parameters, which are the mean θ1 and
standard deviation θ2.

As shown in Figure 1, when considering the uncertainty of distribution parameters
θ, the PDF of input variables X is a family of PDFs, which is the uncertainty function of
distribution parameters θ, which can be expressed as fX(X |θ ). The corresponding PDF of
performance function Y is also a family of PDFs. For every value of θ, the PDF of X and
corresponding PDF of Y can be calculated, using uncertainty propagation methods. The
uncertain distribution parameters θ and input variables X are continuous real numbers,
and the performance function Y is also a continuous variation function. Therefore, the
performance function Y = ψ(θ) between distribution parameters θ and performance
function Y is also a continuous square integrable function of distribution parameters θ.
The uncertainty representation function of Y under every value of θ can be calculated,
using uncertainty propagation methods. However, the function ψ is complex and cannot
be obtained by an analytical model, but it can be represented by an approximate model or
numerical method. There are some new challenges when considering the uncertainty of
distribution parameters θ:

(1) There is a nested double loop in the uncertainty analysis of performance function
Y, which is complex and computationally expensive. With the increase in the total
number p of θ, the computational time increases exponentially. For example, there
are 10 uncertainty variables, which have 2 uncertainty distribution parameters for
every uncertainty variables. The sampling points for every distribution parameter is
1000. For considering the uncorrelation between 20 distribution parameters, the total
sampling point of uncertainty distribution parameters is increased along with the
number of distribution parameters; therefore, the total sampling point of distribution
parameters is 20 × 1000 = 2 × 104; For every group of sampling points of distribution
parameters, the sampling points of 10 uncertainty variables is 10 × 1000 = 104. The
total number of sampling points will, therefore, be 2× 108, which is time-consuming,
especially for an engineering system whose performance function at every sampling
point is difficult to calculate or analyze.

(2) Considering the uncertainty of distribution parameters θ, the performance func-
tion Y is a function of uncertain input variables X and distribution parameters θ

simultaneously. Therefore, the SA of X and θ should be analyzed. The analytical
expression of function ψ is difficult to obtain. Therefore, calculating the SA values is
another challenge.
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Figure 1. Uncertainty propagation with uncertainty distribution parameters.

According to the classical variance based sensitivity analysis method, the sensitivity
between uncertain input variables X and output performance function Y can be represented
using two indices: the first-order sensitivity index SXl and total sensitivity index STXl .

The first-order sensitivity index SXl measures the variation of the output performance
function Y associated with variations in input variable Xl and without other input vari-
ables [44,45].

SXl =
VXl

[
EX−l (Y|Xl)

]
V(Y)

, (1)

where VXl

[
EX−l (Y|Xl)

]
measures the average residual variance of the model output when

Xl is fixed through its full distribution range, and X−l represents a vector including all
input variables, except Xl .

Similarly, the total sensitivity index STXl measures the total impact of uncertain input
variables Xl , which contain the independent and interaction with other variables [46,47].

STXl = 1−
VX−l

[
EXl (Y|X−l)

]
V(Y)

=
EX−l

[
VXl (Y|X−l)

]
V(Y)

, (2)

The total sensitivity index STXl can be calculated based on the first-order sensitivity
index of SX−l . Therefore, for simplicity, only the first-order sensitivity indices of input
variables and distribution parameters are analyzed and calculated.

Considering the influence of uncertain distribution parameters θ, the output variance
and the corresponding variance contribution can be analyzed using the high dimensional
representation method. The expected value of output variance is decomposed to eliminate
the influences of uncertain distribution parameters θ. Since the output variance and the
variance contributions are averaged in the parameter space, the first-order sensitivity index
of input variables SXl in Equation (1) is transformed into Equation (3); the details are
explained by Wang [43]. There is a functional relationship between the output statistical
values and uncertain distribution parameters. In Equation (1), SXl is calculated based on
the functional relationship between x and y. Similarly, based on the functional relationship
ψ between θ and y, the first-order sensitivity index of distribution parameters Sθi is defined
in Equation (4).

SXl = Eθi

{
VXl

[
EX−l (Y

∣∣Xl)
]}

, (3)

Sθi = Vθi

[
Eθ−i (ψ(θ)

∣∣θi)
]
, (4)

The first-order sensitivity indices SXl and Sθi can identify the influence of input vari-
ables and distribution parameters on the output variance. However, there are difficulties in
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the specific calculation of these sensitivity indices: (1) it is impossible to obtain the explicit
function of ψ, and the calculation of the mean and variance under some constraints in Equa-
tion (4) is difficult; and (2) the nested double loop of sampling for uncertain input variables
and distribution parameters increases the computational complexity and decreases the com-
putational efficiency. To solve these issues, a sampling-based sensitivity analysis method
is presented here. The Gaussian integral formula was improved by incorporating the
unscented transformation method [48] to solve the sensitivity analysis problem considering
uncertainties of input variables and their distribution parameters simultaneously.

3. An Efficient Sampling-Based SA Method Based on Unscented Transformation

The first-order sensitivity index of input variables SXl can be equivalently converted
to Equation (5), according to the algorithm in [49].

SXl = Eθi

{
VXl

[
EX−l (Y

∣∣Xl)
]}

= Eθi

{
V(Y)− EX

[
g(X)− EX−l (Y

∣∣Xl)
]2}, (5)

The three-loop sampling procedure is involved in the calculation of Equation (5). In the
first loop, X−l are sampled for determinate Xl , and the conditional expectation EX−l (Y

∣∣Xl)
is calculated. In the second loop, X are sampled for determinate distribution parameters
θ, and the conditional expectation EX

[
g(X)− EX−l (Y

∣∣Xl)
]2 and total variance V(Y) are

calculated. In the third loop, distribution parameters θ are sampled according to their
probability density function fθ(θ), and the first-order sensitivity index SXl is obtained.

There are many approximation methods to reduce the sampling number in the sam-
pling loops, such as spline Gaussian rules [50–53] and polynomial rules [49,54]. The spline
Gaussian rules are exact for a sufficiently smooth integrand and spline rules, they require
fewer integration points, and have been widely used in isogeometric analysis. However,
the accuracy of uncertain sensitivity indices is more important than the accuracy of sam-
pling curves in these problems. Polynomial rules have been proved in many uncertainty
analysis problems; therefore, a new sampling method based on multiplication approxi-
mation [54] and the unscented transformation method is proposed to convent the inner
two loops into one loop. The multiplication approximation method is a conventional
dimensional reduction method, which assumes that the influence of higher-order terms is
smaller than that of the univariate terms. In the uncertainty analysis, we mainly focused on
the first-order sensitivity analysis in which the influences of higher-order terms are lower
than those of one-dimensional terms. Therefore, the conditional expectation EX−l (Y

∣∣Xl) in
the first loop can be approximately expressed in Equation (6), based on the multiplication
approximation method.

EX−l (Y
∣∣Xl) =

∫
g(X) fX−l (X−l)dx−l

≈ [g(c)]1−n · g(c1, . . . , cl−1, xl , cl + 1, . . . , cn)×
n
∏

j = 1
j 6= l

∫
Xj

g(c1, . . . , cj−1, xj, cj + 1, . . . , cn) fXj(xj)dxj

= g[(c)]−1g(c1, . . . , cl−1, xl , cl + 1, . . . , cn)×
n
∏

j = 1
j 6= l

EXj

(6)

where the reference points c = [c1, c2, · · · , cn], and cl is the mean value of uncertain input
variable Xl . EXj is a one-dimensional integration function. In the traditional method, EXj
is calculated using the Monte-Carlo method or the Gaussian integration method, which
need a large number of sampling points. Therefore, a new sampling method based on the
unscented transformation method is proposed to calculate EXj with few sampling points.

The sampling intervals of uncertain input variables Xl are determined by 3σ criterions.
The mean µXl and standard deviation σXl of Xl are determined based on the probability
density function fXl (Xl). The sampling interval

[
µXl − 3σXl , µXl + 3σXl

]
is equally prob-

abilistically divided into N′ subintervals that do not overlap each other and that fill the
entire value area. Every subinterval is divided into (2n + 1) cells, where the adaptive sigma
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points and corresponding weight ratios are determined using the unscented transformation
method. The calculation algorithm of EXj can be approximated in Equation (7).

EXj =
∫

Xj
g(c1, . . . , cj−1, xj, cj + 1, . . . , cn) fXj(xj)dxj ≈

N′
∑

k = 1

2n + 1
∑

m = 1
g(c1, . . . , cj−1, sj

m,k, cj + 1, . . . , cn) fXj(s
m,k
j

) · dm
sj

, (7)

where d is the step size of the k- subinterval of the Gaussian distribution sampling interval[
µXl − 3σXl , µXl + 3σXl

]
, sm,k

j is the sigma points of Xj, and dm
sj

= d/(2n + 1) is the cell

step size in the k-th subinterval.
The sigma points sm,k

j and corresponding weights Wm,k
j in k-th sub-intervals are deter-

mined using the algorithm as follows: the mean X j and variance-covariance matrix PXX of
uncertain input variables in the k-th sub-intervals are calculated based on fX(X). The 2n + 1
sampling points sm,k

j (m = 1, · · · , 2n + 1) in the k-th sub-intervals are determined using
Equations (8) and (9) based on the standard unscented transformation algorithm [55].

s0,k
j = W0X j, (8)

sm,k
j =

 X j +
(√

n
1−W0

PXX

)
m

m ∈ [1, n]

X j −
(√

n
1−W0

PXX

)
m

m ∈ [n + 1, 2n + 1]
, (9)

where W0 is the initial weight ratio, √ is a matrix square root, and ()m is the m-th row of
the matrix. The variance–covariance matrix PXX is calculated using Equation (10).

PXX =
n

∑
j = 1

Wm,k
j

(
sm,k

j −
¯
X
)(

sm,k
j −

¯
X
)T

, (10)

The weight ratios Wm,k
j of sampling points sm,k

j are determined using Equation (11).

Wm,k
j

=

{
W0 m = 0

(1−W0)/2n m = 1, · · · , 2n + 1
, (11)

After determining the sampling points sj and corresponding weight ratios Wj in m-th
cell, EXj can be calculated using single-loop sampling points. The total number of sampling
points is (2n + 1)N′, where n is the number of uncertain input variables, and N′ is the
subintervals number of

[
µXl − 3σXl , µXl + 3σXl

]
.

The sensitivity index of distribution parameters Sθi can be transformed from Equation (4)
to Equation (12), using a similar convention method as used for uncertain input variables X.

Sθi = V(ψ)− Eθi

[
g(X)− Eθ−i (ψ

∣∣θi)
]2, (12)

In the calculation of Equation (12), four input factors need to be sampled, which
contain the sampling of θi, θ−i, input variable of θi and other input variables. After
determining the sampling points, a large number of Monte Carlo sampling points is used to
calculate conditional expectation Eθi

[
g(X)− Eθ−i (ψ

∣∣θi)
]2. To decrease the computational

complexity, a similar calculation method to that for SXl is implemented to calculate Sθi , and
the details are presented in Section 4.2.

4. Implementation of the Proposed Sensitivity Calculation Algorithm
4.1. Calculation of the First-Order Sensitivity Index of the Input Variables

The detailed procedures for calculating the first-order sensitivity index of input vari-
ables SXl are given below, and the flowchart is given in Figure 2.
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Step 1: In the outer loop, N1 sampling points θ
(r)
i (i = 1, · · · , p; r = 1, · · · , N1) for

uncertain distribution parameters θ are determined according to their probability density
functions fθ(θ).

Step 2: At every sampling point θ
(r)
i , the uncertainty information and probability

density function of input variables X are determined. N2 sampling points of
x(t)l (l = 1, · · · , n; t = 1, · · · , N2) are generated according to the joint probability den-
sity function fX(X) with determining distribution parameters θ. The N2 × n sampling
matrix A of uncertain input variables X are generated in Equation (13).

A =


x(1)1 x(2)1 · · · x(N2)

1

x(1)2 x(2)2 · · · x(N2)
2

...
...

. . .
...

x(1)n x(2)n · · · x(N2)
n

, (13)

Step 3: The reference point c is generated in Equation (14), and the sampling value of
every uncertain input variable Xl is its mean value xl .

c = [x1, x2, · · · , xn]
T , (14)
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Step 4: The new sampling matrix Bl is obtained in Equation (15) through assigning
reference point c into the column of the matrix A expect the l-th column.

Bl =


x1 · · · x(1)l · · · xn

x1 · · · x(2)l · · · xn
...

...
...

. . .
...

x1 · · · x(N2)
l · · · xn

, (15)

Step 5: The sampling interval
[
µXl − 3σXl , µXl + 3σXl

]
is divided into N′ subinter-

vals. The sigma points sm,k
j

(j = 1, · · · , n; m = 1, · · · , 2n + 1; k = 1, · · · , N′) and corre-

sponding weight ratios Wm,k
j

at every subinterval are obtained based on the algorithm in
Equations (8)–(11). The joint probability density function fXj

(
sj
)

is estimated according to
the selected sigma points sj.

Step 6: New (2n + 1)× n sampling matrix Dj is obtained in Equation (16). The j-th
column is sigma points sj, and other columns are references point c.

Dj =


x1 · · · s(1)j · · · xn

x1 · · · s(2)j · · · xn
...

...
...

. . .
...

x1 · · · s(2n + 1)
j · · · xn

, (16)

Step 7: The values of the performance function at the sampling matrices are calculated
in Equation (17).

YA = g(A), YBl = g(Bl), YC = g(C), YDj = g
(
Dj
)
, (17)

Step 8: The one-dimensional conditional expectation EXj in Equation (7) is calculated
based on sampling values Dj for selected sigma points sj in Equation (18).

EXj ≈
N′
∑

k = 1

2n + 1

∑
m = 1

g(Dj) · fXj(s
m,k
j

) · dm
sj

, (18)

Step 9: Based on the algorithms in Equations (6) and (7), EX
[
g(X)− EX−l (Y

∣∣Xl)
]2 and

V(Y) can be calculated, using Equations (19) and (20), respectively.

EXl

[
VX−l (Y|Xl)

]
=

1
N2

N2

∑
t = 1

g(A)(t) − g[(c)]−1g(Bl)×
n

∏
j = 1
j 6= l

Esj(G|sj)


2

, (19)

V(Y) =
1

N2

N2

∑
t = 1

[
g(A)(t)

]2
−
[

1
N2

N2

∑
t = 1

g(A)(t)
]2

, (20)

Step 10: At the inner loop, the sensitivity index SXl at i-th sampling points θi of
distribution parameters θ is approximated by Equation (21) based on Equations (7), (19)
and (20).

SXl = 1
N2

N2
∑

t = 1

[
g(A)(t)

]2
−
[

1
N2

N2
∑

t = 1
g(A)(t)

]2

− 1
N2

N2
∑

t = 1

g(A)(t) − g(c)1−n · g(Bl)
(t) ·

n
∏

j = 1
j 6= l

Esj(G
∣∣∣sj)


2

, (21)
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Step 11: At the outer loop, the sensitivity index SXl , considering uncertain distribution
parameters, is calculated in Equation (22).

SXl = 1
N1

N1
∑

r = 1


1

N2

N2
∑

t = 1

[
g(A)(t)

]2
−
[

1
N2

N2
∑

t = 1
g(A)(t)

]
− 1

N2

N2
∑

t = 1

g(A)(t) − g(c)1−n · g(Bl)
(t) ·

n
∏

j = 1
j 6= l

Esj(G
∣∣∣sj)


2,

(22)
Step 12: To decrease the random errors due to the selection of random sampling points,

Steps 1–11 are implemented repeatedly, and the means of the sensitivity indices are the
final, first-order sensitivity index of the input variables.

4.2. Calculation of the First-Order Sensitivity Index of the Distribution Parameters

To effectively calculate the first-order sensitivity index of distribution parameters Sθi ,
the three-loop sampling method was implemented, and the flowchart is shown in Figure 3.
The steps are as follows.
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Step 1: In the first loop, N1 sampling points θ
(r)
i (i = 1, · · · , p; r = 1, · · · , N1) for un-

certain distribution parameter θi are determined based on its probability density function.
Step 2: In the second loop, the corresponding input variable of distribution parameter

θi is assumed as to be Xl . N2 sampling points x(t)l (l = 1, · · · , n; t = 1, · · · , N2) for uncer-
tain input variable Xl are obtained with the determinate distribution parameter sampling
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value θ
(r)
i . Other uncertain distribution parameters θ−i are sampled according to their

probability density function, and N1 sampling points θ
(rr)
−i (i = 1, · · · , p; rr = 1, · · · , N1)

are obtained.
Step 3: In the third loop, N2 sampling points of other uncertain input variables X−l

are obtained according to their probability density function with determinate distribution
parameters θ−i. Therefore, the sampling matrices A, Bl , and Dj are selected and the
corresponding output values YA, YBl , YC, YDj are calculated, using Equations (13)–(17) in
Section 4.1.

Step 4: The total variance V(ψ) is calculated using all sampling values of YA in three
sampling loops of all uncertain input variables and uncertain parameters, which is shown
in Equation (23).

V(ψ) =
1

(N1)
p × N2

∑(YA)
2 −

[
1

(N1)
p × N2

∑(YA)

]2
, (23)

where p is the number of uncertain distribution parameters, N1 is the number of samples
of each uncertainty distribution parameter θi, and N2 is the number of samples of each un-
certainty input variable Xl . Therefore, the total number of samples (N1)

pN2 for calculating
the total variance of the determinate input variable Xl is the multiplication of the number
of samples of all the uncertain distribution parameters and the number of samples of the
input variable.

Step 5: In the calculation of Eθi

[
g(X)− Eθ−i (ψ

∣∣θi)
]2, the unscented transformation

method is also used. In the third loop, the sampling interval
[
µXl − 3σXl , µXl + 3σXl

]
of uncertain input variables Xl is equally probabilistically divided into N′ subintervals.
Every subinterval is divided into (2n + 1) cells, where the adaptive sigma points
sm,k

j (j = 1, · · · , n; m = 1, · · · , 2n + 1; k = 1, · · · , N′) and the corresponding weight ra-
tios are determined using the unscented transformation method. The output perfor-
mance function is calculated using g

(
Dj
)
. Then, the conditional expectation Esj(G

∣∣∣sj)

and Eθ−i (ψ
∣∣θi) are calculated, using Equations (24) and (25), respectively. Therefore, the

expectation Eθi

[
g(X)− Eθ−i (ψ

∣∣θi)
]2 can be calculated in Equation (26).

Esj(G|sj) =
∫

g(c1, . . . , cj−1, sj, cj + 1, . . . , cn) fXj(sj)dsj

=
N′
∑

k = 1

2n + 1
∑

m = 1
g(Dj) · fXj(s

m.k
j ) · dm

sj

(24)

Eθ−i (ψ|θi) = [g(c)]1−ng(Bl)×
n

∏
j = 1
j 6= i

Esj(G|sj), (25)

Eθi

[
Vθ−i (ψ|θi)

]
=

1
(N1)

p × N2
∑

g(A)− g[(c)]1−ng(Bl)×
n

∏
j = 1
j 6= l

Esj(G
∣∣∣sj)


2

, (26)

Step 6: The results in the third loop are integrated into the first sampling loop of
distribution parameter θi and the second sampling loop for θ−i. The first-order sensitivity
index of distribution parameter Sθi is calculated in Equation (27).

Sθi = 1
(N1)

p×N2
∑ [g(A)]2−

[
1

(N1)
p×N2

∑ g(A)

]2
− 1

(N1)
p×N2

∑

g(A) − g(c)1−n · g(Bl) ·
n
∏

j = 1
j 6= l

Esj(G
∣∣∣sj)


2

(27)
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4.3. Computational Effort and Comparison to the Crude Monte-Carlo

The computational cost of the sampling-based sensitivity analysis methods mainly
depends on the estimation of the performance function Y at the sampling points.

In the computation of sensitivity indices of input variables SXl , the sampling numbers
of uncertain distribution parameters θ and input variables X are N1 and N2, respectively,
and the corresponding YA and YBl , are estimated. At every sampling point of the distri-
bution parameters θi, (2n + 1) sigma sampling points for N′ subintervals and reference
point c are selected, and the corresponding YDj and YC are calculated to determine the

one-dimensional conditional expectation Esj(G
∣∣∣sj) . Therefore, the total number of model

evaluations NX−p for SXl in the proposed method is given in Equation (28).

NX−p = N1[N2(n + 1) + (2n + 1)N′ + 1], (28)

Using traditional single-loop Monte Carlo sampling (MCS) [56] to calculate SXl , the
total number of model evaluations is N1[N2(n + 2)]. The subinterval number N′ is about
10–30, which is far less than the sampling number N2 (100~1000) of uncertain input
variables Xl . Therefore, the total evaluation number is decreased, and the computational
efficiency is improved through using the proposed algorithm.

In the computation of the sensitivity indices of distribution parameters Sθi , the model

evaluation number for Esj(G
∣∣∣sj) is the same as that in the calculation of SXl , which is

(2n + 1)N′ + 1. The sampling number of distribution parameters θi is (N1)
p, and the

evaluation number of YA and YBl are N
2

and nN
2
, respectively. Therefore, the total number

of model evaluations Nθ−p is given in Equation (29).

Nθ−p = N
2

(
N

1

)p[N
2
(n + 1) + (2n + 1)N′ + 1

]
, (29)

In the MCS method, the total number of model evaluations is (n + 2)N
2

(
N

1

)p, where
N1 and N2 are the sampling number of distribution parameter θi and input variable Xl ,
respectively. The values of N1 and N2 are about 104 in the MCS method. In the proposed
method, the model can converge, and accurate sensitivity indices can be acquired when the
number of both N1 and N2 are about 100. Therefore, the total number of model evaluations
is decreased, and the computational efficiency is improved, in terms of the accuracy of the
results for the sensitivity indices of the uncertain distribution parameters, through using
the proposed algorithm.

5. Numerical and Engineering Examples

Four examples are used to illustrate the effectiveness of the proposed methodology.
In numerical example 1, the uncertain input variables are independent, and the cross terms
among the uncertain input variables are considered in numerical example 2. Arbitrary
distribution types of uncertain input variables and distribution parameters can be analyzed
by the proposed methodology; therefore, the normal distribution and Gamma distribution
types are handled in numerical example 3. The example of a heat exchanger can illustrate
this method’s effectiveness in complex, actual engineering conditions.

5.1. Numerical Example 1

Let us consider the quadratic polynomial model without cross terms in Equation (30).

Y = 40− 18X1 + X2
2 + X2 + X2

3 + 5X3, (30)

where Xl ∼ N(θ, 1), l = 1, 2, 3 are independent uncertain input variables with normal
distribution type, and their standard deviations are determinate values. The mean values
of Xl are the same as θ ∼ N(4, 1), which is a normal distribution function with a mean of 4
and a standard deviation of 1.
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The first-order sensitivity indices of uncertain input variables and distribution pa-
rameters were estimated using the proposed methodology and MCS method. The mean
absolute errors (MAE) of X are shown in Figure 4 under different numbers of total sampling
points for the proposed algorithm and the MCS method. The MAE for the MCS method
is unstable because there are many randomicities in the sampling procedure. However,
the MAE of the proposed methodology decreased as the total number of sampling points
increased, which was less than that of MCS when the total number of sampling points was
higher than 7 × 104. The calculated first-order sensitivity indices are listed in Table 1. The
accurate values of the first-order sensitivity indices were also calculated using the analytic
method in [43], which are also listed in Table 1. The proposed method and MCS method
can both obtain accurate sequences of the sensitivity indices, which were SX1 > SX3 > SX2

for uncertain input variables and Sθ3 > Sθ2 > Sθ1 for uncertain distribution parameters.
The maximum relative errors for SX were 0.09% and 0.60% for the proposed method and
MCS method, respectively, while the maximum relative errors for Sθ were 4.97% and 4.47%,
respectively. The proposed method can also obtain accurate sensitivity indices when the
sampling points decrease from 5× 108 to 61,000, which can decrease the computational
number of the performance function and improve the computational efficiency. Through
using the proposed method, the first-order sensitivity indices can be estimated accurately
with fewer sampling points than that required for the MCS method.

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 19 
 

 

absolute errors (MAE) of X  are shown in Figure 4 under different numbers of total sam-

pling points for the proposed algorithm and the MCS method. The MAE for the MCS 

method is unstable because there are many randomicities in the sampling procedure. 

However, the MAE of the proposed methodology decreased as the total number of sam-

pling points increased, which was less than that of MCS when the total number of sam-

pling points was higher than 7 × 104. The calculated first-order sensitivity indices are listed 

in Table 1. The accurate values of the first-order sensitivity indices were also calculated 

using the analytic method in [43], which are also listed in Table 1. The proposed method 

and MCS method can both obtain accurate sequences of the sensitivity indices, which 

were 
1 3 2X X XS S S   for uncertain input variables and 

3 2 1
S S S     for uncertain dis-

tribution parameters. The maximum relative errors for 
XS  were 0.09% and 0.60% for the 

proposed method and MCS method, respectively, while the maximum relative errors for 

S
 were 4.97% and 4.47%, respectively. The proposed method can also obtain accurate 

sensitivity indices when the sampling points decrease from 85 10  to 61,000, which can 

decrease the computational number of the performance function and improve the com-

putational efficiency. Through using the proposed method, the first-order sensitivity in-

dices can be estimated accurately with fewer sampling points than that required for the 

MCS method. 

 

Figure 4. Mean relative error of the first-order sensitivity index under different numbers of sam-

pling points in example 1. 

Table 1. First-order sensitivity indices in Example 1. 

Sensitivity Indices Accurate Values Proposed Method pro  MCS MCS  

1XS  324 324.30 0.09% 323.91 0.03% 

2XS  87 86.96 0.05% 87.13 0.15% 

3XS
 

175 175.05 0.03% 176.06 0.60% 

1
S

 0 0 0 0 0 

2
S  1328 1316.32 0.89% 1323.52 0.34% 

3
S  

2736 2879.15 4.97% 2864.03 4.47% 

5.2. Numerical Example 2 

A polynomial model with cross terms in Equation (31) was analyzed. 
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Table 1. First-order sensitivity indices in Example 1.

Sensitivity
Indices

Accurate
Values

Proposed
Method εpro MCS εMCS

SX1 324 324.30 0.09% 323.91 0.03%
SX2 87 86.96 0.05% 87.13 0.15%
SX3 175 175.05 0.03% 176.06 0.60%
Sθ1 0 0 0 0 0
Sθ2 1328 1316.32 0.89% 1323.52 0.34%
Sθ3 2736 2879.15 4.97% 2864.03 4.47%

5.2. Numerical Example 2

A polynomial model with cross terms in Equation (31) was analyzed.

Y = X1 + 2X2 + 3X1X2, (31)
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where X1 ∼ N(θ1, 2) and X2 ∼ N(θ2, 1) are uncertain input variables with normal dis-
tribution type. The mean values θ1 ∼ N(1, 1) of X1 and θ1 ∼ N(2, 1) of X2 are normal
distribution types with determinate distribution parameters.

The proposed method and traditional MCS method were used to calculate the first-
order sensitivity indices. The MAEs under the same number of total sampling points
for the proposed method and MCS method are shown in Figure 5. As the number of
sampling points increased, the accuracy of the calculated results improved. The proposed
method can obtain more accurate results compared with the MCS method with the same
number of total sampling points. The proposed method can obtain accurate first-order
sensitivity indices with 3× 104 sampling points, while the MCS method required 4× 108

sampling points. The proposed method needed fewer sampling points, which improved
the computational efficiency. The calculated first-order sensitivity indices for uncertain
input variables and distribution parameters are shown in Figure 6. The accurate analytical
results and SDP results in [43] are also shown in Figure 6. The maximum relative errors of
SX and Sθ for the proposed method were 2.94% and 2.31%, respectively, which are not only
lower than 5.88% and 12.99% for the MCS method, but are also lower than 12. 82% and
4.91% for the SDP method.
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5.3. Numerical Example 3

A mathematical function with multiple different types of uncertain information was
considered, as shown in Equation (32).

Y = 4− X1 − X2, (32)

where the uncertain input variable X1 ∼ N(θ1, 1) is a normal distribution variable with
an uncertain mean θ1 and determinate standard deviation and X2 ∼ N(θ2, 1) is a normal
distribution variable with an uncertain mean θ2 and determinate standard deviation. The
uncertain distribution parameter θ1 ∼ G(3, 1) is a Gamma distribution function, and
θ2 ∼ G(6, 1) is also a Gamma distribution function.

As there are normal and Gamma distributions in the uncertain input variables and
distribution parameters, it is difficult to calculate the first-order sensitivity indices using
the analytical method. Therefore, only the proposed method and MCS method were used
to calculate the sensitivity indices. In the proposed method, the sampling points for X1,
X2, θ1, and θ2 were set as 30, 30, 60, 60, respectively. The total number of sampling points
required to calculate the sensitivity of the uncertainty input variables was 18,000, and the
total number of sampling points required to calculate the sensitivity of the uncertainty
distribution parameters was 2.6× 107. In the MCS method, to obtain accurate results,
4× 108 sample points were used to calculate the sensitivity of the uncertainty input vari-
ables, and 4× 1012 sample points were used to calculate the sensitivity of the uncertainty
distribution parameters. The total number of sampling points and calculation number of
performance function Y were decreased through using the proposed method. The calcu-
lated sensitivity indices are listed in Table 2. The maximum relative error of the proposed
method was 9.10%, which illustrates the effectiveness of the proposed method. Compared
with the theoretical analytical method, the proposed method can manage multiple different
distribution types of uncertain input variables and distribution parameters. Compared
with the MCS method, the proposed method can generate accurate sensitivity indices with
fewer sampling points, which can increase the computational efficiency.

Table 2. First-order sensitivity indices in Example 3.

Sensitivity Indices Proposed Method MCS ε

SX1 0.47 0. 48 2.13%
SX2 0.11 0. 12 9.10%
Sθ1 0.92 0. 93 1.09%
Sθ2 0.73 0. 70 4.11%

5.4. Engineering Example: Inlet Header of Heat Exchanger

The aforementioned numerical examples are intended to illustrate the effectiveness of
the proposed method. In this example, the inlet header of the heat exchanger is employed
as an example to illustrate the applicability of the proposed sensitivity analysis method in
an engineering application.

The inlet header in Figure 7 is the main component of the heat exchanger. The hot and
cold streams flow from the inlet header to the fin channels, and then heat is transferred into
the fin channels. Flow maldistribution in the inlet header is one of main factors affecting
the total heat transfer rates. The details of the inlet header and heat exchangers can be
found in [57,58]. Many structure parameters can influence the flow distribution in the
inlet header, and two structure parameters are analyzed in this example: the splitter plate
height h and inclined angle of outermost splitter plate α. The flow distribution in the inlet
header under different h and α values was analyzed in Fluent (Figure 8), and the flow
maldistribution degree S was calculated based on the mass flow rate at the outlet region of
the inlet header.
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Firstly, 25 sampling points of h and α are selected using the Latin hypercube sampling
method in the design region h ∈ [20, 40]mm and α ∈ [46◦, 54◦]. Then, the structure
model at these sampling points are constructed in Solidworks, and the flow analysis is
implemented in Fluent; the corresponding flow maldistribution degrees S are calculated
based on the Fluent analysis results. A total of 20 sampling results are used to fit the
response surface model of S, and an additional 5 sampling results are used to verify the
accuracy of approximate model. The final approximate response surface model of flow
maldistribution degree S is represented by Equation (33).

S = 61590− 382h− 2131α + 5h2 + 21α2, (33)

There were some manufacturing and assembly errors in the inlet header; h and α
are uncertain variables. The splitter plate height h was assumed to be h ∼ N(θ1, 3)mm,
and the distribution parameter θ1 ∼ N(30, 1)mm was also an uncertain variable with
a normal distribution type. The inclined angle α was assumed to be α ∼ N(θ2, 1), and
the distribution parameter θ2 ∼ N(50◦, 1◦) was also an uncertain variable with a normal
distribution type.

The proposed method and MCS method were used to calculate the sensitivity indices,
and the results are listed in Table 3. The maximum relative error of the sensitivity indices
between the proposed method and MCS method was 3.22%, which indicated the effec-
tiveness of the proposed method. The total sampling number in the calculation of the
sensitivity indices were 21,600 for the proposed method and 4× 108 for the MCS method,
which reflects the improvement of the computational efficiency. Therefore, the proposed
method can obtain accurate sensitivity analysis results with lower computational times,
which is useful for the sensitivity analysis of complex engineering products.
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Table 3. First-order sensitivity indices for the inlet header of the heat exchanger.

Sensitivity Indices Proposed Method MCS

Sh 0.95 0.95
Sα 0.05 0.05
Sθ1 0.95 0.93
Sθ2 0.78 0.76

6. Conclusions and Discussion

A sampling-based sensitivity analysis method is proposed, which considers the un-
certainties of input variables and their distribution parameters. Through computing the
conditional expectation in subintervals with the unscented transformation method, the
number of total sampling points and loop numbers were decreased, with the high accuracy
maintained. The calculation procedures of the first-order sensitivity indices of the uncer-
tainty input variables and distribution parameters were implemented. Through using
the proposed algorithm, sensitivity indices with arbitrary distribution types of uncertain
input variables and distribution parameters could be calculated, no matter how complex
the engineering model was in terms of uncertain input variables and output performance
function. The computational efficiency of the sensitivity analysis was improved with high
computational accuracy, compared with the MCS method.

However, there are some limitations to the proposed framework, which could be
further studied: (1) the distribution type of uncertain input variables was assumed to be
determinate; therefore, more distribution types and mixed distribution types for different
input variables could be considered in the sensitivity analysis framework; (2) the total
sampling number was decreased through adaptive sampling based on the unscented trans-
formation algorithm—however, as there are many potential sampling rules, determining
the most suitable sampling rule and the application of spline Gaussian rules could be re-
searched in the future; and (3) the proposed sensitivity analysis method could be extended
to consider multiple types of uncertainty variables, such as aleatory uncertainties, p-box,
evidence theory variables, and so forth.
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