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Abstract: The lasso and elastic net methods are the popular technique for parameter estimation and
variable selection. Moreover, the adaptive lasso and elastic net methods use the adaptive weights on
the penalty function based on the lasso and elastic net estimates. The adaptive weight is related to
the power order of the estimator. Normally, these methods focus to estimate parameters in terms
of linear regression models that are based on the dependent variable and independent variable as
a continuous scale. In this paper, we compare the lasso and elastic net methods and the higher-
order of the adaptive lasso and adaptive elastic net methods for classification on high dimensional
data. The classification is used to classify the categorical data for dependent variable dependent on
the independent variables, which is called the logistic regression model. The categorical data are
considered a binary variable, and the independent variables are used as the continuous variable.
The high dimensional data are represented when the number of independent variables is higher
than the sample sizes. For this research, the simulation of the logistic regression is considered as
the binary dependent variable and 20, 30, 40, and 50 as the independent variables when the sample
sizes are less than the number of the independent variables. The independent variables are generated
from normal distribution on several variances, and the dependent variables are obtained from the
probability of logit function and transforming it to predict the binary data. For application in real
data, we express the classification of the type of leukemia as the dependent variables and the subset
of gene expression as the independent variables. The criterion of these methods is to compare by
the average percentage of predicted accuracy value. The results are found that the higher-order of
adaptive lasso method is satisfied with large dispersion, but the higher-order of adaptive elastic net
method outperforms on small dispersion.

Keywords: elastic net; high dimensional data; lasso

1. Introduction

The regression analysis is a statistical method for the estimation of the relationship
between a dependent variable and one or more independent variables. The model from
regression analysis is used to predict a continuous dependent variable from several inde-
pendent variables. If the dependent variable is of a dichotomous scale, then the logistic
regression should be used to explain the relationship between a binary dependent variable
and one or more independent variables.

The use of logistic regression analysis is focused to predict whether or not an event
occurred such as failure or success, diseased or healthy, yes or no. Especially, decision
making of the patient is widely used to study in health science for classifying this event.
The application of the logistic regression model obtained a cohort of the pregnant woman
and the factor that influences the decision to opt for caesarean delivery or vaginal birth [1].
The logistic regression analysis is used to evaluate the effect of the number of events per
variable from patients in which deaths occurred [2].

However, parameter estimation is one process for predicting the probability of logit
function, which then classifies the categorical classes of the dependent variable. There
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are several methods to approximate the parameters such as the maximum likelihood
method [3], ridge regression [4], and the Markov Chain Monte Carlo method [5]. These
methods estimate parameter for classification of the dependent variable dependent on all
independent variables, but they fail to select the important independent variable. When
the high dimensional data occur, the selection variable methods are proposed to solve
this problem.

The lasso (least absolute shrinkage and selection operator) method [6] is a new method
for estimation in the linear model, and it shrinks some coefficients to zero. It tries to retain
the good features of subset selection. After that, Zou and Hastie [7] proposed the elastic
net that encouraged a grouping effect, in which strongly correlated independent variables
tend to be in or out of the model together. The simulation study has shown that the elastic
net outperforms the lasso. These methods are the variable selection methods for estimating
parameters dependent on the penalty function and tuning parameter.

The developed method is concerned with the adaptive weights and the power of the
adaptive weight on the penalty function. Zou [8] proposed the adaptive lasso, where the
adaptive weights were used for penalizing different coefficients in the lasso penalty. The
adaptive lasso enjoyed the oracle properties by utilizing the adaptive weights and leads
to an optimal estimator on the generalized linear model. Zou and Zhang [9] considered
the model selection and estimation in high dimensional data called the adaptive elastic
net. This method combined the strengths of the quadratic regularization and the adaptive
weights lasso shrinkage.

The point of the previous methods is to estimate parameters on the regression model
for predicting the continuous dependent variables. To explain the categorical dependent
variable, the logistic regression model is used to model the probability of a binary class.
Furthermore, we apply the parameter estimation of the lasso, elastic net, and adaptive
lasso and elastic methods to solve these problems. The new study is to concentrate on
the higher-order of the adaptive lasso and elastic net to estimate parameters and predict
the binary dependent variable when the data are in form of high dimensional data. The
gene expression is applied to these methods for classification and gene selection. Algamal
and Lee [10] studied cancer classification and gene selection on high dimensional data by
adjusting adaptive elastic net. They were successful to tackle both estimating the gene
coefficients and performing gene selection simultaneously. Zou and Hastie [11] proposed
the penalized logistic regression for cancer classification; this method had the advantage of
providing an estimate of the underlying probability. Furthermore, there is no comparison
of the performance of adaptive lasso and adaptive elastic net methods, which play on the
higher-order of adaptive weight in logistic regression model under high dimensional data
and apply for a classification of leukemia patient.

The propose of this study is to compare the lasso, elastic net, adaptive lasso, and
adaptive elastic net to shrinkage the number of the independent variables and classify
the binary dependent variable under the high dimensional data. The higher-order of
adaptive lasso and adaptive elastic net is appropriate also to mention the estimated pa-
rameter. Moreover, we compare the performance of four methods in logistic regression
with the average percentage of predicted accuracy, and the average number of selected
variables. These outcomes are obtained to shrinkage the independent variables via a Monte
Carlo simulation.

2. Methods
2.1. The Logistic Regression Model

The general class of logistic regression is written by

yi = π(x
i
) + εi, i = 1, 2, . . . , n, (1)

where yi denotes the value of a dichotomous outcome variable, π(x
i
) denotes the prob-

ability of the Bernoulli distribution depended on independent variable, x
i
, and εi is
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called the error and follows a normal distribution with mean zero and variance equal

to π(x
i
)

[
1− π(x

i
)

]
.

The specific form of the logistic regression model is considered as the probability by

π(x
i
) =

e
x

i
β

1 + e
x

i
β

=
1

1 + e
−x

i
β

. (2)

The transformation of π(x
i
) is a central of logistic regression model that is called logit

function. This transformation is defined as

g(x
i
) = log

π(x
i
)

1− π(x
i
)

= β0 + β1x1i + β1x1i + . . . + βkxki = x
i
β, (3)

where β is the vector of coefficient in terms of logit transformation on (k + 1)× 1, x
i

is a

matrix of independent variable on n× (k + 1), k is a number of independent variable, and
i = 1, 2, . . . , n is the number of observations. If yi is coded as 0 or 1, then the probability
π(x

i
) provides yi = 1. It follows that the probability 1−π(x

i
) gives yi = 0. The probability

distribution function to contribute the likelihood function is expressed as

P(Yi = yi) =

(
π(x

i
)

)yi
(

1− π(x
i
)

)1−yi

, yi = 0, 1. (4)

The likelihood function is obtained from the terms of (4) as

l(β) =
n

∏
i=1

π(x
i
)yi (1− π(x

i
))1−yi . (5)

The likelihood from (5) can be expressed by taking log as

L(β) = ln l(β) = ln
[

n
∏
i=1

π(x
i
)yi (1− π(x

i
))1−yi

]
=

n
∑

i=1

[
yi ln(π(x

i
)) + (1− yi) ln (1− π(x

i
))

] (6)

The log-likelihood function in Equation (6) can be written in the form of penalized
function as follows [10]:

L∗(β) = −L(β) + λ J(β), (7)

where λ is the tuning parameter and J(β) is the penalty function.

2.2. LASSO Method

The least absolute shrinkage and selector operator (Lasso) [6] is a method for esti-
mation parameters in the linear model by minimizing the residual sum of the square to
the sum of the absolute values of the coefficients. The shrinkage of the lasso composes by
assigning some coefficients to zero and hence tries to retain the good features for variable
selection. The lasso estimate β is define by

β̂
j(L)

= argmin
β

 n

∑
i=1

(yi − β0 −
k

∑
j=1

β jxij)

2

+ λ
k

∑
j=1

∣∣β j
∣∣
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where λ
k
∑

j=1

∣∣β j
∣∣ is the penalty function.

For the binary dependent variable, the lasso estimate β is regularized from (6) and (7) as:

β̂
j(L)

= argmin
β

[
−

n

∑
i=1

{
yi ln(π(x

i
)) + (1− yi) ln (1− π(x

i
))

}
+ λ

k

∑
j=1

∣∣β j
∣∣]. (8)

The tuning parameter λ is used to try out different values by the cross-validation
method. Lasso estimators for all values of λ can be computed through a modification of
the least-angle regression (LARS) algorithm [12] which is an algorithm for fitting linear
regression model to high dimensional data.

Zou [8] proposed the adaptive lasso, where adaptive weights are used for penalizing
different coefficients in the penalty function. The adaptive lasso estimators are defined as

β̂
j(AL)

= argmin
β

 n

∑
i=1

(yi − β0 −
k

∑
j=1

β jxij)

2

+ λ
k

∑
j=1

ŵj
∣∣β j
∣∣,

where the λ
k
∑

j=1
ŵj
∣∣β j
∣∣ is the penalty function.

The adaptive lasso can be applied to classify a dichotomous outcome variable, thus,
the adaptive lasso estimate β is regularized from (6) and (7) as:

β̂
j(AL)

= argmin
β

[
−

n

∑
i=1

{
yi ln(π(x

i
)) + (1− yi) ln (1− π(x

i
))

}
+ λ

k

∑
j=1

ŵj
∣∣β j
∣∣]. (9)

The adaptive weight is ŵj =
1

|β̂ j(L)|γ
; j = 1, 2, . . . , k, γ > 0 , where β̂ j(L) is obtained

from (8). The positive value γ is the power of the adaptive weight, which is concerned in
higher-order. The tuning parameter λ and the order of adaptive weight γ are used as the
two-dimensional cross-validation to tune the adaptive lasso.

2.3. Elastic Net Method

Zou and Hastie [7] proposed the elastic net as a new regularization and variable
selection method. The elastic net of penalty function had the characteristics of both lasso
and ridge regression [4]. In the parameter estimating, the elastic net estimator found the
ridge regression coefficient and made the lasso shrinkage along with the lasso coefficient
solution. The elastic net estimate β is define by

β̂
j(E)

= argmin
β

[
n
∑

i=1
(yi − β0 −

k
∑

j=1
β jxij)

2

+ λ1
k
∑

j=1

∣∣β j
∣∣+λ2

k
∑

j=1
β2

j

]
;

0 < λ1 + λ2 < 1,

where λ1
k
∑

j=1

∣∣β j
∣∣+λ2

k
∑

j=1
β2

j is the penalty function.

To consider the classification of yi, the elastic net estimate β is regularized from

(6) and (7) as:

β̂
j(E)

= argmin
β

[
−

n

∑
i=1

{
yi ln(π(x

i
)) + (1− yi) ln (1− π(x

i
))

}
+ λ1

k

∑
j=1

∣∣β j
∣∣+λ2

k

∑
j=1

β2
j

]
. (10)
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From (10), the elastic net estimation is a ridge regression when λ1 is zero as

β̂
R

= argmin
β

[
−

n
∑

i=1

{
yi ln(π(x

i
)) + (1− yi) ln (1− π(x

i
))

}
+ λ2

k
∑

j=1
β2

j

]
. The lasso esti-

mator is in form of (8) when λ2 is zero. The tuning parameters of λ1 and λ2 control the
shrinkage of β̂

E
using cross-validation [13].

The adaptive elastic net is developed from the elastic net to solve the problem when
the number of parameters diverges with the sample sizes and the dimension is high. Zou
and Zhang [6] proposed the adaptive elastic net that combines the strengths of the quadratic
regularization and adaptively weighted lasso shrinkage. The adaptive elastic net is defined
as follows:

β̂
j(AE)

= argmin
β

 n

∑
i=1

(yi − β0 −
k

∑
j=1

β jxij)

2

+ λ1

k

∑
j=1

ŵj
∣∣β j
∣∣+ λ2

k

∑
j=1

β2
j

.

The adaptive elastic net reduces to the adaptive lasso when λ2 closes to be zero. The
penalty function combines the elastic net and adaptive lasso method, and then, the tuning
parameter is checked using Bayesian information criterion (BIC) cross-validation [14] which
is the method to select an optimal value of regularization parameter.

If we focus to classify a dichotomous outcome variable, then the adaptive elastic net
of β can be constructed from (6) and (7) as:

β̂
j(AE)

= argmin
β

[
−

n

∑
i=1

{
yi ln(π(x

i
)) + (1− yi) ln (1− π(x

i
))

}
+ λ1

k

∑
j=1

ŵj
∣∣β j
∣∣+ λ2

k

∑
j=1

β2
j

]
. (11)

The adaptive weight is ŵj =
(∣∣∣β̂ j(E)

∣∣∣+ 1
n

)−γ
; j = 1, 2, . . . , k, γ > 0 , where β̂ j(E) is

obtained from (10). The γ is power of the adaptive weight, which is concentrated as the
adaptive lasso.

3. Simulation Data and Results

In the following examples, we compare the classification methods consisted of the
lasso, adaptive lasso, elastic net, and adaptive elastic net. The adaptive lasso and elastic
net use the higher-order on the adaptive weights. For simulation, we generate the data in
form of high dimension data when the number of independent variables is higher than
the sample sizes (n). The independent variables test sets by 20 (n = 15), 30 (n = 15, 20, 25),
40 (n = 20, 25, 30, 35), and 50 (n = 20, 25, 30, 35, 40) variables from the normal distribution
with mean (µ) and variance (σ2) denoted by N(µ, σ2). The variance is studied in sets of 1,
5, and 10 that are presented in Figure 1.
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The coefficients of logistic regression are set the constant values as β, and the classi-

fication of dependent variable (yi) related the probability form as π(x
i
) = 1

1+e
−x

i
β . The

yi is noted as 0 or 1, then the probability π(x
i
) ≥ 0.5 provides yi = 1, and the probability

π(x
i
) < 0.5 gives yi = 0. After that, we obtain the estimator from the previous section as

β̂, and the probability can approximate by π̂(x
i
) = 1

1+e
−x

i
β̂

. The categorical dependent

variables are predicted by ŷi = 1 as π̂(x
i
) ≥ 0.5 and by ŷi = 0 as π̂(x

i
) < 0.5. This process

can be seen in Figure 2.
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The performance of predictive analytics is the confusion matrix, which compared
predicted values and actual data in Table 1.

Table 1. The confusion matrix of actual data (yi) and predicted data (ŷi).

Predicted Data
Actual Data

yi=1 yi=0

ŷi i = 1 True positive False positive
(TP) (FP)

ŷi = 0 False negative True negative
(FN) (TN)

The confusion matrix is used when there are two or more classes as the output of the
classifier. The predicted accuracy is computed from Table 1 using

Percentage of Accuracy =
TP + TN

TP + TN + FP + FN
× 100.

The average percentage of accuracy and number of selected variables of the lasso,
adaptive lasso, elastic net, and adaptive elastic net under 20, 30, 40, and 50 variables is
presented in Tables 2–5. The average percentage of accuracy and number of selected variables
is computed by the mean of over 500 replications. For the adaptive lasso and elastic net, the
higher-order is denoted by γ. For this process, we use the R program for simulation data and
the R package called glmnet and HDeconometrics, which support estimating parameters on
these methods. The code of commands presents in the Appendix A.

Table 2. The average percentage of accuracy and the average number of selected variables (#) of lasso, adaptive lasso (AL),
elastic net, and adaptive elastic net (AEN) under 20 variables.

Sample Sizes
(n)

Normal
N(µ,σ2)

Lasso AL
γ = 1

AL
γ = 2

Elastic
Net

AEN
γ = 1

AEN
γ = 2

15
N(0,1) (#) 87.11 (3) 96.20 (4) 99.18 (4) 87.48 (6) 95.71 (5) 99.59 (6)
N(0,5) (#) 87.14 (5) 96.85 (4) 99.53 (5) 88.17 (10) 91.30 (8) 94.09 (8)
N(0,10) (#) 87.60 (5) 96.97 (5) 99.46 (5) 88.16 (8) 90.08 (7) 91.40 (8)

Table 3. The average percentage of accuracy and the average number of selected variables (#) of lasso, adaptive lasso (AL),
elastic net, and adaptive elastic net (AEN) under 30 variables.

Sample Sizes
(n) Normal Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

15
N(0,1) (#) 84.15 (4) 95.94 (5) 99.54 (5) 85.45 (8) 96.61 (7) 99.87 (7)
N(0,5) (#) 85.06 (4) 95.78 (5) 99.65 (5) 86.18 (9) 90.10 (8) 94.13 (7)
N(0,10) (#) 85.02 (4) 95.80 (5) 99.61 (9) 86.76 (8) 88.36 (8) 90.86 (8)

20
N(0,1) (#) 87.90 (6) 97.52 (7) 99.69 (7) 88.32 (10) 97.12 (10) 99.95 (10)
N(0,5) (#) 87.84 (6) 97.46 (7) 99.63 (7) 88.46 (10) 91.62 (9) 94.83 (9)
N(0,10) (#) 87.81 (6) 97.32 (7) 99.69 (7) 88.42 (10) 90.14 (9) 91.60 (9)

25
N(0,1) (#) 88.99 (8) 97.75 (9) 99.04 (9) 90.00 (12) 96.63 (12) 99.83 (12)
N(0,5) (#) 88.76 (9) 97.71 (9) 99.52 (9) 90.85 (12) 93.44 (12) 96.00 (11)
N(0,10) (#) 88.80 (8) 97.79 (9) 99.53 (9) 90.88 (12) 92.16 (12) 93.60 (12)
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Table 4. The average percentage of accuracy and the average number of selected variables (#) of lasso, adaptive lasso (AL),
elastic net, and adaptive elastic net (AEN) under 40 variables.

Sample Sizes
(n) Normal Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

20
N(0,1) (#) 87.00 (6) 96.79 (6) 99.49 (7) 97.86 (10) 97.76 (10) 99.97 (10)
N(0,5) (#) 86.13 (6) 97.39 (6) 99.63 (7) 97.82 (10) 92.01 (10) 95.80 (9)
N(0,10) (#) 86.23 (5) 97.44 (6) 99.71 (7) 88.14 (10) 90.27 (10) 92.19 (9)

25
N(0,1) (#) 86.73 (7) 97.80 (9) 99.94 (9) 87.14 (12) 97.10 (12) 99.97 (12)
N(0,5) (#) 86.57 (7) 97.68 (9) 99.70 (9) 87.50 (12) 90.88 (11) 95.75 (11)
N(0,10) (#) 86.27 (7) 97.72 (9) 99.70 (9) 87.69 (12) 89.04 (12) 92.48 (11)

30
N(0,1) (#) 89.08 (9) 98.18 (11) 99.70 (11) 90.32 (13) 97.57 (13) 99.92 (14)
N(0,5) (#) 88.19 (9) 98.32 (11) 99.62 (11) 89.76 (14) 93.14 (14) 96.25 (13)
N(0,10) (#) 88.51 (9) 98.06 (11) 99.72 (11) 89.72 (14) 91.72 (14) 93.50 (13)

35
N(0,1) (#) 89.20 (10) 98.18 (13) 99.70 (13) 90.32 (15) 97.57 (15) 99.92 (17)
N(0,5) (#) 88.26 (10) 98.32 (12) 99.62 (13) 89.84 (14) 93.14 (15) 96.25 (14)
N(0,10) (#) 88.59 (10) 98.06 (12) 99.72 (13) 89.78 (14) 91.72 (14) 93.50 (14)

Table 5. The average percentage of accuracy and the average number of selected variables (#) of lasso, adaptive lasso (AL),
elastic net, and adaptive elastic net (AEN) under 50 variables.

Sample Sizes
(n) Normal Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

20
N(0,1) (#) 85.18 (6) 96.42 (6) 99.70 (7) 86.09 (11) 98.37 (10) 99.97 (10)
N(0,5) (#) 85.12 (5) 96.57 (6) 99.72 (7) 86.14 (10) 91.35 (9) 95.82 (9)
N(0,10) (#) 85.26 (5) 96.60 (6) 99.71 (7) 86.57 (10) 88.14 (10) 99.50 (10)

25
N(0,1) (#) 85.70 (7) 97.73 (8) 99.91 (9) 86.76 (12) 98.00 (12) 99.99 (12)
N(0,5) (#) 85.29 (7) 97.88 (8) 99.72 (9) 86.64 (12) 91.70 (11) 96.04 (11)
N(0,10) (#) 84.96 (7) 97.84 (8) 99.82 (9) 86.69 (12) 89.47 (11) 92.63 (11)

30
N(0,1) (#) 84.85 (8) 98.32 (10) 99.77 (11) 86.82 (14) 98.03 (14) 99.98 (14)
N(0,5) (#) 85.53 (9) 98.18 (11) 99.82 (11) 87.42 (15) 91.54 (13) 95.84 (13)
N(0,10) (#) 85.73 (9) 97.98 (11) 99.81 (11) 86.96 (14) 89.47 (!3) 92.11 (13)

35
N(0,1) (#) 86.40 (10) 98.18 (12) 99.76 (13) 87.30 (16) 97.67 (16) 99.99 (17)
N(0,5) (#) 86.21 (11) 98.25 (13) 100 (13) 87.37 (16) 92.43 (16) 96.09 (15)
N(0,10) (#) 85.99 (10) 98.28 (12) 100 (13) 87.52 (16) 90.50 (16) 93.10 (15)

40
N(0,1) (#) 89.22 (12) 98.53 (15) 99.85 (15) 90.85 (18) 97.95 (18) 99.95 (19)
N(0,5) (#) 88.47 (12) 98.39 (15) 99.50 (15) 89.85 (19) 93.38 (17) 96.26 (17)
N(0,10) (#) 87.75 (12) 98.37 (15) 99.49 (15) 89.41 (19) 91.84 (17) 93.60 (17)

From Tables 2–5, it can be seen that the adaptive elastic net showed a maximum
average percentage of accuracy at the small dispersion when the order is defined at 2.
When the dispersion is large, i.e., the adaptive lasso is of good performance depended on
the high order, then the average percentage of accuracy of this method is closely related to
high variance. An increase in the average percentage of accuracy causes an increase in the
number of independent variables.

To concentrate on the average number of selected variables, when the variance is
increasing value, there is no effects with selected variables. For the increase in sample sizes,
the average number of selected variables is also increasing too. Furthermore, increasing
order of adaptive lasso and the elastic net is slightly different number of selected variables.

4. Application in Real Data

To evaluate our proposed methods, gene expression monitoring (via DNA microarray)
is used to classify 72 patients with acute myeloid leukemia and acute lymphoblastic
leukemia. These data have consisted of 3571 genes from the bone marrow samples, which
is described in detail by Golup et al. [15]. A subset of 3571 genes is the independent
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variables and simulated by setting the independent variables larger than the sample sizes
(n) in 500 replications. The set of independent variables is 20 (n = 15), 30 (n = 15, 20, 25), 40
(n = 20, 25, 30, 35), and 50 (n = 20, 25, 30, 35, 40), which is similar the simulation data. The
sample sizes are selected from 72 patients under simple random sampling. The example
of leukemia genes is shown in Figure 3, which can be seen in the descriptive statistics on
the box plot diagram. The multicollinearity of genes is presented in Figure 4 in terms of
correlation matrix among 40 sample genes. The average percentage of accuracy and the
average number of selected genes of the lasso, adaptive lasso, elastic net, and adaptive
elastic net under 20, 30, 40, and 50 leukemia genes can be found in Tables 6–10.
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Table 7. The average percentage of accuracy and the average number of selected genes of lasso, adaptive lasso (AL), elastic
net, and adaptive elastic net (AEN) under 20 leukemia genes.

Sample Sizes
(n) Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

15 93.95 94.01 96.39 95.10 95.21 97.05
# Selected genes (9) (4) (4) (12) (9) (8)

Table 8. The average percentage of accuracy and the average number of selected genes of lasso, adaptive lasso (AL), elastic
net, and adaptive elastic net (AEN) under 30 leukemia genes.

Sample Sizes
(n) Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

15 96.12 95.57 97.96 97.40 97.42 98.39
20 95.68 95.73 98.06 97.59 97.70 98.62
25 95.41 96.03 98.35 98.10 98.41 98.54

# Selected genes (12) (5) (5) (15) (11) (10)
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Table 9. The average percentage of accuracy and the average number of selected genes of lasso, adaptive lasso (AL), elastic
net, and adaptive elastic net (AEN) under 40 leukemia genes.

Sample Sizes
(n) Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

20 96.47 96.68 98.70 97.99 99.06 99.03
25 96.08 96.21 98.68 98.01 98.24 98.94
30 95.41 96.03 98.35 98.01 98.41 98.54
35 91.99 93.83 97.65 97.17 97.66 97.78

# Selected genes (13) (5) (5) (17) (11) (10)

Table 10. The average percentage of accuracy and the average number of selected genes of lasso, adaptive lasso (AL), elastic
net, and adaptive elastic net (AEN) under 50 leukemia genes.

Sample Sizes
(n) Lasso AL

γ = 1
AL

γ = 2
Elastic

Net
AEN
γ = 1

AEN
γ = 2

20 96.51 96.68 99.08 98.64 98.64 99.40
25 96.66 97.02 99.22 98.80 98.90 99.47
30 96.26 95.56 98.92 98.66 98.85 99.15
35 93.24 94.77 98.22 98.06 98.21 98.59
40 93.85 95.20 98.47 98.47 98.59 98.65

# Selected genes (14) (5) (6) (20) (11) (11)

In Figure 3, the bold line in the box plot presents the middle value of the dataset,
called median, and the whiskers indicate variability outside the first and the third quartiles.
The dot lines drawn horizontally from the box represented the minimum and maximum of
all data. Outliers may be plotted as individual points in x1, x5, x10, x15, x25, x35, x55, x65,
and x75. It can be seen that the median is closed to zero and the variance is one.

The correlation matrix shows the different shades. The light shade presents a weak
correlation, and the dark shade plays a strong correlation. From Figure 4, it can be seen that
the weak correlation following the light shade is larger than the dark shade. It means that
the sample dataset has a slight correlation. However, all genes are selected for computing
parameter, so it reduces the multicollinearity problem.

As can be seen from Tables 6–10, the higher-order of adaptive elastic net achieves a
maximum average percentage of accuracy for 50 leukemia genes. Furthermore, it is clear
from the results that the adaptive elastic net outperforms the lasso and adaptive lasso in
terms of classification accuracy for these data sets. To mention the selection variables, the
elastic net selects more genes than the other methods for all data sets, but the adaptive
lasso selects fewer genes than the other methods. The adaptive has the potential to select
genes that made the highest accuracy. The classification of the type of leukemia patient can
use some gene expressions that it can save the time and budget to collect large data. The
study of gene selection and classification has proposed the other techniques to detect the
expression level of thousands of genes in a few experiments [16–18].

5. Discussion

From the simulated results in Tables 2–5, the factors influencing the average percentage
of accuracy are the variance level of the independent variable, sample sizes, and the order
of adaptive weights. An increase in the variance affects a decrease in the average percentage
of accuracy in most cases. In the case of sample sizes, if the sample size is increased then
the accuracy of all methods decreases in all cases. Moreover, an increase in the high order
causes an increase in the average percentage of accuracy for all variables.

For the results of gene expression monitoring in Tables 6–10, the sample sizes and the
order of adaptive weights are affected similarly to the simulation data. On the other hand,
the adaptive elastic net shows the highest average percentage of accuracy. It is obvious that
DNA microarray real data demonstrate the small variance as seen from Figure 1. Again,
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we compute the mean of 3571 genes and present in the histogram in Figure 5, which is
collected from the 72 patients. Then, t-test is used to confirm that the mean of all genes is
equal to zero significance. From hypothesis testing, the p-value (0.0466) is higher than the
significant level (0.01), then we accept the null hypothesis H0 : µ = 0. It can be concluded
that the mean of the gene expression is equal to zero. The mean and variance are similar to
the simulation dataset as mean equal to zero and variance equal to one. Overall, it is clear
that the adaptive elastic net is a good performance for classification of the type of leukemia
for some genes.
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6. Conclusions

We have proposed the lasso, elastic net, adaptive lasso, and adaptive elastic methods
for estimating parameters for classification in binary data. For the empirical results on the
high dimensional data, the adaptive elastic net of higher-order is performed in classification
when the small dispersion is used in case of simulation data, but adaptive lasso of higher-
order is provided in the large dispersion. When using the selection variable, these methods
tend to reduce the large independent variables to outperform. For application to actual
data, the gene expression data are used to classify the type of leukemia patients. The high
dimensional data are concerned in this case because the number of patients is less than the
large gene expression data. The simulation of thousands of gene expression are used to
compute the percentage accuracy, and these methods are also used to select the influential
variables. From the results, it was shown that the adaptive elastic net is effective in gene
selection, which was based on the dispersion of data and higher-order of adaptive weights.
Therefore, we can conclude that the higher-order is beneficial to classification.
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Appendix A

The following commands were used to fit the logistic regression model,
############## x is the independent variables ###################################

########
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############## y is the dependent variable#####################################
########

###################The Lasso Method######################################
#############

library(glmnet)
cvfit = cv.glmnet(x,y, alpha = 1)
ll = cvfit$lambda.min
fit_las = glmnet(x,y, family = “binomial”, lambda = ll,alpha = 1)
est_las = predict(fit_las, newx = x)
#####################The Adaptive Lasso######################################

############
library(HDeconometrics)
tau = 1
lasso=ic.glmnet(x,y,crit = “bic”)
first.step.coef=coef(lasso)[−1]
penalty.factor=abs(first.step.coef)ˆ(-tau)
cvfit = cv.glmnet(x,y, alpha = 1)
ll = cvfit$lambda.min
fit_Alass1 = glmnet(x,y, family = “binomial”, alpha = 1, lambda = ll, penalty.factor =

penalty.factor)
est_Alass1 = predict(fit_Alass1, newx = x)
######################Elastic Net##############################################

######3
cvfit = cv.glmnet(x,y, alpha = 0.5)
ll = cvfit$lambda.min
fit_elas = glmnet(x,y, family = “binomial”, lambda = ll,alpha = 0.5)
est_elas = predict(fit_elas, newx = x)
################The Adaptive Elastic Net#######################################

#####
library(HDeconometrics)
tau = 1
lasso = ic.glmnet(x,y,crit = “bic”)
first.step.coef=coef(lasso)[-1]
penalty.factor=(abs(first.step.coef)+(1/(nrow(x))))ˆ(-tau)
cvfit = cv.glmnet(x,y, alpha = 0.5)
ll = cvfit$lambda.min
fit_Aelastic = glmnet(x,y, family = “binomial”, alpha = 0.5, lambda = ll, penalty.factor

= penalty.factor)
est_Aelas = predict(fit_Aelastic, newx = x)
############################################################################

#####
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