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Abstract: A combined energy method is proposed to investigate the flutter instability characteristics
of weakly damped panels in the supersonic airflow. Based on the small damping assumption,
the motion governing partial differential equation (PDE) of the panel aeroelastic system, is built by
adopting the first-order piston theory and von Karman large deflection plate theory. Then by applying
the Galerkin procedure, the PDE is discretized into a set of coupled ordinary differential equations,
and the system reduced order model (ROM) with two degrees of freedom is obtained. Considering
that the panel aeroelastic system is non-conservative in the physical nature, and assuming that
the panel exhibits a single period oscillation on the flutter occurrence, the non-conservative energy
balance principle is applied to the linearized ROM within one single oscillation period. The obtained
result shows that the ROM modal coordinate amplitudes ratio is regulated by the modal damping
coefficients ratio, though each modal damping coefficient is small. Furthermore, as the total damping
dissipation energy can be eliminated due to its smallness, the He’s energy balance method is applied
to the undamped ROM, therefore the critical non-dimensional dynamic pressure on the flutter
instability occurrence, and the oscillation circular frequency amplitude relationship (linear and
nonlinear form) are derived. In addition, the damping destabilization paradoxical influence on the
system flutter instability is investigated. The accuracy and efficiency of the proposed method are
validated by comparing the results with that obtained by using Routh Hurwitz criteria.

Keywords: a combined energy method; non-conservative energy principle; He’s energy balance
method; panel flutter instability; frequency amplitude relationship; damping paradox

1. Introduction

Skin panels of high speed vehicles in supersonic airflow may experience the flutter
oscillations due to the aeroelastic interaction mechanism. The oscillations can cause severe
damage to the skin panel structures, and threaten the vehicle’s integrity. Therefore, the
panel aeroelastic behaviors, including the instability and the nonlinear flutter oscillations
characteristics, have drawn great attentions to relevant researchers [1–11]. For the panel in
supersonic airflow, there exist two types of panel flutter behavior, i.e., the single mode type
and the coupled modes type [3–5]. These two types panel flutter instability characteristics
are both related to the system damping. The single mode type flutter behavior can occur in
low supersonic airflow, while the coupled modes type flutter behavior mainly occurs in
high supersonic airflow. In this study, we mainly investigate the coupled modes type panel
flutter instability characteristics using a combined energy method.

In the panel flutter instability research field, several sophisticated methods have been
developed, such as, the classical Routh Hurwitz criteria [3,10], the eigenvalue analysis
method [4,5], and the asymptotic method [6]. Though the above methods are feasible
and effective, their evaluation procedures are complicated on some level, and lack of
definite physical meanings from the energy transfer perspective. Recently, a specific critical
parameters evaluation method based on non-conservative energy balance principle was
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proposed to predict the system flutter instability characteristics, but the procedure is also
complicated [11].

For the panel aeroelastic system in supersonic airflow, the piston theory is usually
adopted to simulate the aeroelastic interaction mechanism. This piston aerodynamics
can play a role as the circulatory force exerting on the aeroelastic system, through the
aerodynamic stiffness term ∂w/∂x, where w and x are the panel deflection and the chord-
wise coordinate respectively. If the continuous panel aeroelastic system is discretized and
transformed into the modal coordinates, each order modal oscillator is coupled through
the aerodynamic stiffness, and the circulatory system can experience the coupled modes
type flutter instability. Based on this consideration, Hamilton energy conservation law can
be applied to investigate the flutter instability, and the energy transfer characteristics of the
undamped panel aeroelastic system.

In addition to the system stiffness, the system damping also exhibit significant influ-
ence on the system flutter instability characteristics, especially the damping paradox [11–19].
In this field, the damping paradox was firstly noted by Dowell [1]. Then, the complex
role played by the system damping was investigated by Bolotin using Routh Hurwitz
criteria [3]. Recently, a non-conservative energy balance principle was adopted to evaluate
the damping paradoxical influence [11]. Actually, the damping paradox has been analyzed
based on some simple non-conservative models, such as Ziegler pendulum and Pflüger
column. Based on these models, Kirillov concluded that the damping paradox is related to
the system symmetry breaking from the PT-symmetry perspective [13–15]. Bigoni supplied
both the theoretical and experimental results to validate the damping destabilization para-
dox [16–18]. Luongo gave an interpretation that the damping destabilization paradox is
related to the sign of the projection of the damping force on the eigenvector of the dual basis
with the concept of “modal damping” [19]. Based on these studies, it can be concluded
that the damping destabilization paradox is more related to the damping distribution
characteristics in the modal coordinates, rather than the system damping dissipated energy.

Therefore, considering the reality that the damping within the panel aeroelastic system
is small, thus we try to propose a combined energy method to investigate the flutter
instability characteristics of weakly damped panels in this study. The remainder of this
theoretical study is organized as follows. In Section 2, the system motion governing
equation is built. In Section 3, the incremental non-conservative energy balance equation
within a closed trajectory is derived. In Section 4, based on the small damping assumption,
He’s energy balance method [20–22] is adopted to investigate the system Hamilton energy
balance relationship, and to derive the oscillation circular frequency amplitude relationship
(the linear form). Additionally, the panel flutter instability characteristics and the damping
paradox can be investigated. In Section 5, the nonlinear frequency–amplitude relationship
is obtained. Parallel with the above studies, the proposed combined method is validated
by comparing the results in this study with that derived by Routh Hurwitz criteria. Finally
in Section 6, some conclusions are drawn.

2. Formulation of Motion Equation

Considering a two-dimensional, isotropic flat panel with simply supported boundary
conditions in supersonic airflow (see Figure 1) [1], the panel motion governing partial
differential equation (PDE) can be obtained using the piston theory and von Karman large
deflection plate theory, as,

ρmh
∂2w(x, t)

∂t2 − Nx
∂2w(x, t)

∂x2 + D
∂4w(x, t)

∂x4 +
2q
β

(
∂w(x, t)

∂x
+

Ma2 − 2
Ma2 − 1

1
V∞

∂w(x, t)
∂t

)
= 0 (1)

where, the panel transverse deflection is w(x, t), the large deflections induced panel in-

plane force is Nx = Eh
2l(1−ν2)

l∫
0

(
∂w(x,t)

∂x

)2
dx, the panel bending stiffness is D = Eh3

12(1−ν2)
,

the panel density is ρm, the panel length is l (along the chord-wise x direction, see
Figure 1), the panel thickness is h, the panel material elastic modulus is E, Poisson’s
ratio is v, the air density is ρa, the airflow velocity is V∞, and Mach number is Ma. Ad-



Mathematics 2021, 9, 1090 3 of 11

ditionally, 2q
β

(
∂w(x,t)

∂x + Ma2−2
Ma2−1

1
V∞

∂w(x,t)
∂t

)
indicates the aerodynamic loading by using the

first-order piston theory, q = ρaV2
∞/2 is the dynamic pressure of the supersonic airflow,

β =
√

Ma2 − 1 is the Prandtl Glauert factor.
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Figure 1. A two-dimensional flat panel in supersonic airflow.

Following with Dowell’s procedure [1], and introducing the following non-dimensional
parameters: ξ = x/l, λ = 2ql3/βD, τ = tπ2

√
D/ρmhl4, W = w/h, µ = ρal/ρmh,

Rx = Nxl2/D, and RM =
(

Ma2−2
Ma2−1

)
µ
β , Equation (1) can be rewritten as,

∂2W(ξ, τ)

∂τ2 − Rx
∂2W(ξ, τ)

∂ξ2 +
∂4W(ξ, τ)

∂ξ4 + λ
∂W(ξ, τ)

∂ξ
+
√

λRM
∂W(ξ, τ)

∂τ
= 0 (2)

the panel simply supported boundary conditions are,{
W(ξ, τ)|ξ=0,1 = 0

W ′′ (ξ, τ)|ξ=0,1 = 0
(3)

Equations (2) and (3) constitute a boundary value problem. To solve this problem, the
Galerkin method is applied. Considering the boundary conditions described as Equation
(3), the panel non-dimensional deflection W(ξ, τ) can be expressed as,

W(ξ, τ) =
N

∑
m=1

qm(τ) sin(mπξ) (4)

where, qm(τ) is the mth modal coordinate and sin(mπξ) is the corresponding mode shape
function. Using this expression, the panel non-dimensional in-plane force Rx = Nxl2/D

can be rewritten as Rx = 3
N
∑

m=1
q2

m(mπ)2.

Substituting the above equations into the governing equation (Equation (2)), then multi-
plying each term by sin(mπξ) and integrating each term over the non-dimensional length ξ,
a set of coupled nonlinear ordinary differential equations (ODEs) can be obtained as,

..
qs +

(
3

N

∑
m=1

q2
mm2

)
qss2 + qss4 +

(
2λ

π4

) N

∑
m = 1
m 6= s

sm
s2 −m2

(
1− (−1)s+m

)
qs +

√
λRM

π4
.
qs = 0 (5)

where N is the selected modes number. It is noted that in Equation (5), only the aero-
dynamic damping is considered, as each order modal damping coefficient is

√
λRM/π4.

Since that there may exist other damping models (such as the structural viscoelastic damp-
ing) with arbitrary modal distribution characteristics, so that each order modal damping
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coefficient
√

λRM/π4 is replaced by εs=1,2 to consider the arbitrary damping models.
Additionally, the following equations are obtained,

..
qs +

(
3

N

∑
m=1

q2
mm2

)
qss2 + qss4 +

(
2λ

π4

) N

∑
m = 1
m 6= s

sm
s2 −m2

(
1− (−1)s+m

)
qs + εs

.
qs = 0 (6)

where, the sth order modal damping coefficient εs is assumed having small values (ε1,2 << 1),
i.e., the system is weakly damped. As the system coupled modes type flutter instability
characteristics of the panel initial flat equilibrium can be analyzed using the panel first two
modes (N = 2), a weakly damped reduced order model (ROM) with two degrees of freedom
(2-DOF) can be built,{ ..

q1 + q1 + ε1
.
q1 − 8λ

3π4 q2 +
(
3q2

1
+ 12q2

2

)
q1 = 0

..
q2 + 16q2 + ε2

.
q2 +

8λ
3π4 q1 + 4

(
3q2

1
+ 12q2

2

)
q2 = 0

(7)

This ROM can be treated as two weakly damped (ε1,2 << 1) nonlinear oscillators with
coupled aerodynamic stiffness terms ( 8λ

3π4 q1,2). Additionally, taking the difference between
the non-conservative energy and the conservative energy into account, a combined energy
method, consisting of non-conservative energy balance principle and Hamilton energy
conservation law (He’s energy balance method), is proposed to investigate the panel flutter
instability characteristics in the following sections.

3. Non-Conservative Energy Balance Principle

In this section, a non-conservative energy balance principle is applied to the ROM
described as Equation (7). It should be noted that a complicated parameters evaluation
procedure based on the non-conservative energy balance principle has been proposed
by the author in Reference [11]. While in this study, the system critical parameters are
evaluated based on Hamilton energy conservation law, while the non-conservative energy
balance principle is adopted to derive the relationship between the modal coordinate
amplitudes and the modal damping coefficients. Therefore, the proposed combined energy
method in this study is different to the previous one [11].

The power flow equation for the ROM is derived by multiplying each term of the first
equation and the second equation in Equation (7) with

.
q1 and

.
q2 respectively, as,

( ..
q1 + q1 + ε1

.
q1 − 8λ

3π4 q2 +
(
3q2

1
+ 12q2

2

)
q1

) .
q1 = 0( ..

q2 + 16q2 + ε2
.
q2 +

8λ
3π4 q1 + 4

(
3q2

1
+ 12q2

2

)
q2

) .
q2 = 0

(8)

For the panel flutter oscillation on the flutter occurrence, since the modal coordinate
q1 and q2 are very small, the above power flow equation can be linearized by eliminating
the nonlinear terms, as, { ..

q1
.
q1 + q1

.
q1 + ε1

.
q1

.
q1 − 8λ

3π4 q2
.
q1 = 0

..
q2

.
q2 + 16q2

.
q2 + ε2

.
q2

.
q2 +

8λ
3π4 q1

.
q2 = 0

(9)

Considering that the system non-conservative energy is path dependent, it is necessary
to select a specific time interval [τ1, τ2] to guarantee a closed trajectory for removing the
influence of the system conservative energy. Therefore, the relationship between the system
stiffness related circulatory type energy and the damping related dissipation type energy
can be derived. On the flutter occurrence, assuming that the panel is experiencing a neu-
trally stable single period oscillation with the circular frequency ω, thus the time interval
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[τ1, τ2] can be specified as one single oscillation period
[
0, 2π

ω

]
, and the non-conservative

energy balance equation for the linearized ROM can be derived as, ∆E1 =
∫ 2π

ω
0

( ..
q1

.
q1 + q1

.
q1 + ε1

.
q1

.
q1 − 8λ

3π4 q2
.
q1

)
dτ = 0

∆E2 =
∫ 2π

ω
0

( ..
q2

.
q2 + 16q2

.
q2 + ε2

.
q2

.
q2 +

8λ
3π4 q1

.
q2

)
dτ = 0

(10)

where, ∆E1 and ∆E2 denote the incremental non-conservative energy of the first and second
order mode within one single oscillation period, respectively. For the panel’s neutrally
stable oscillation on the flutter occurrence, there exists the following non-conservative
energy balance equation,

∆E = ∆E1 + ∆E2 = 0 (11)

Additionally, the selected two modal coordinate, q1(τ) and q2(τ) are assumed as,{
q1(τ) = a cos(ωτ)

q2(τ) = b cos(ωτ + θ)
(12)

where, a and b are the two modal coordinate amplitudes, θ is the positive modal phase shift
induced by the system damping, and ω is the oscillation circular frequency. Substituting
Equation (12) into Equation (10) and integrating each term over

[
0, 2π

ω

]
, obtains,{

∆E1 = 8λab
3π3 sin θ + πa2ωε1 = 0

∆E2 = 8λab
3π3 sin θ + πb2ωε2 = 0

(13)

or in the form, [
πωε1

8λ
3π3 sin θ

8λ
3π3 sin θ πωε2

][
a
b

]
=

[
0
0

]
(14)

As on the flutter occurrence, there exists a condition,
[

a b
]T 6= [ 0 0

]T, which
demands the coefficients matrix determinant being zero, thus we have,∣∣∣∣∣ πωε1

8λ
3π3 sin θ

8λ
3π3 sin θ πωε2

∣∣∣∣∣ = 0 (15)

yields the phase shift,

sin θ =
3
4

(
π4

2λ

)
ω
√

ε1ε2 (16)

Based on the small damping assumptions, the phase shift can be very small. In
addition, the energy dissipated by the system damping,

∆Edamping = −πω
(

ε1a2 + ε2b2
)

(17)

should be balanced by the energy conserved by the system aerodynamic stiffness,

∆Esti f f ness =
8
3

(
2λ

π4

)
abπ sin θ (18)

With considering the energy balance relationship described as Equation (11), the
following energy balance equations can be obtained as,

8
3

(
2λ

π4

)
ab sin θ = −ω

(
ε1a2 + ε2b2

)
(19)
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Substituting Equation (16) into Equation (19) obtains,

a
b
= −

√
ε2

ε1
= −√η (20)

where η = ε2/ε1 denotes the ratio of the modal damping coefficients. From Equation (20),
it can be observed that the modal coordinate amplitudes ratio can be regulated by the
modal damping coefficients ratio η. Additionally, it is noted that this relationship is only
dependent on the ratio of two modal damping coefficients, but independent on their values.
Correspondingly, the mode configurations on the system flutter instability occurrence can
be regulated by η as shown in Figure 2. For fixed b = 1, the first order modal coordinate
amplitude a can be increased with increasing η. This variation tendency demonstrates a
side effect of the damping paradoxical influence (discussed in Section 4). Furthermore,
the ROM fluttering configurations can be affected by η. Therefore, the panel geometric
dependent in-plane stress distribution is altered, so that the panel nonlinear flutter behavior
is also affected by the ratio η. Based on the above discussions, the maximum deflection of
the fluttering configuration on the system flutter instability occurrence can be altered as
shown in Figure 3.
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Figure 3. Fluttering configurations on the panel flutter occurrence with different η.

4. He’s Energy Balance Method

In this section, He’s energy balance method, based on Hamilton energy conservation
law, is applied to investigate the panel flutter instability characteristics. The reason for
using this method to deal with the weakly damped panel’s flutter instability, is that the
system damping dissipated energy can be eliminated due to its smallness. Even though,
the modal coordinate amplitudes ratio can be regulated by the modal damping coefficients
ratio (Equation (20)). After eliminating the damping dissipation energy, there exists Hamil-
ton energy to sustain the system flutter oscillation. Based on the panel aeroelastic system’s
reduced order model, this Hamilton energy is mainly related to the system coupled aero-
dynamic stiffness, as the aerodynamic stiffness achieve the flow energy transfer process.
Therefore, the He’s energy balance method and He’s frequency amplitude formulation are
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practicable to theoretically derive the system non-dimensional critical dynamic pressure,
and the circular frequency.

Based on the small damping assumption, the phase shift θ can also be neglected due
to its smallness, and q1(τ) and q2(τ) in Equation (12), are approximated as,{

q1(τ) = a cos(ωτ)
q2(τ) ≈ b cos(ωτ)

(21)

Following with the He’s energy balance method [20], a time scale parameter κ = ωτ is
introduced into Equation (7). Then, eliminating the nonlinear stiffness and damping terms,
and denoting the differentiation with respect to κ by the primes, the following equation of
the linearized undamped 2-DOF ROM can be obtained,{

ω2q1
′′ (κ) + q1(κ)− 8λ

3π4 q2(κ) = 0
ω2q2 ′′ (κ) + 16q2(κ) +

8λ
3π4 q1(κ) = 0

(22)

Its Hamiltonian equation is,{
H(q1(κ)) =

1
2 ω2(q′1)2

+ 1
2 (q1)

2 − 8λ
3π4 q2q1

H(q1(κ)) =
1
2 ω2(q′2)

2 + 1
2 (16q2)

2 − 8λ
3π4 q1q2

(23)

Using Equation (21), the initial conditions (κ = 0) for Equation (23) are,
q1(κ = 0) = a
q2(κ = 0) = b
q′1(κ = 0) = 0
q′2(κ = 0) = 0

(24)

and the Hamilton equation is (κ = 0), H(q1(κ)) =
(

1
2 (q1)

2 − 8λ
3π4 q2q1

)∣∣∣
κ=0

= 1
2 a2 − 8λ

3π4 ab

H(q1(κ)) =
(

1
2 (16q2)

2 + 8λ
3π4 q2q1

)∣∣∣
κ=0

= 8b2 + 8λ
3π4 ab

(25)

In addition, considering the condition κ = π
4 , and using the Hamilton energy conser-

vation law, the following equation is derived,[
ω2 − 1 2 8λ

3π4

−2 8λ
3π4 ω2 − 16

][
a
b

]
=

[
0
0

]
(26)

Solving this homogeneous linear equation, the oscillation circular frequency amplitude
relationship for the linearized ROM can be obtained as,

ω2 =
16b2 + a2

a2 + b2 (27)

It is observed from Equation (27) that the system critical oscillation circular frequency
is dependent on the two modal coordinate amplitudes, while the modal coordinate ampli-
tudes ratio is regulated by the modal damping coefficients ratio (Equation (20)). Therefore,
substituting Equation (20) into Equation (27) yields,

ω2 =
η + 16
η + 1

(28)

Based on Equation (28), it is concluded that the flutter oscillation circular frequency
is related with the modal damping coefficients ratio η, and this equation meets well with
the one obtained by the non-conservative energy balance principle based parameters
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evaluation procedure [11]. Additionally, for η = 1, we have ω =
√

17/2, this equation is
identical with the one obtained in studies [4,10,11]. The variation of ω with changing ε1
and ε2 is shown in Figure 4. While the variation of ω with changing η is shown in Figure 5.
It is shown that with increasing η, ω decreased gradually.
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Furthermore, substituting Equation (28) into Equation (26), and considering that for
the condition

[
a, b

]T 6=
[

0, 0
]T on the system flutter instability occurrence, the

determinant of the coefficients matrix should be zero, we have,

2λ

π4 =
45
8

2
√

η

1 + η
(29)

This equation is identical with the one in References [3,4,10,11], if the system damping
is assumed with a small value. From Equation (29), it is observed that the system critical
non-dimensional dynamic pressure is regulated by the ratio 2

√
η

1+η , which is depending on

the modal damping coefficients ratio η. As for the ratio 2
√

η
1+η , it is easily concluded that

for η > 0, there always exists 2
√

η
1+η ≤ 1, i.e., the system damping “Ziegler” paradoxical

influence, and only when η = 1 or the undamped situation, 2λ
π4 can reach its max value,(

2λ
π4

)∣∣∣
η=1

= 45
8 . The variation of 2λ

π4 with changing ε1 and ε2 is shown in Figure 6. It is

shown that this symmetric surface separates the stable domain (below the surface) from
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the unstable one (above the surface). In mathematics, this surface is well known as the
“Whitney’s umbrella” surface. It should be noted that there exists a ridge line on the
surface, dividing the surface into two symmetric surface, and along this ridge line, there
exits η = 1. Additionally, the variation 2λ

π4 with changing η is shown in Figure 7. It is shown

that with increasing η, 2λ
π4 firstly increased sharply to its maximum value

(
2λ
π4

)∣∣∣
η=1

= 45
8 ,

then decreased gradually.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 12 
 

 

 

Figure 6. The variation of 
4

2
π
λ  with changing 1ε  and 2ε . 

 

Figure 7. The variation of 
4

2
π
λ  with changing η . 

5. Nonlinear Frequency Amplitude Relationship 
In addition to the critical parameters (circular frequency ω  and non-dimensional 

dynamic pressure 
4

2
π
λ ) on the system instability occurrence, the nonlinear circular fre-

quency amplitude relationship for the system post flutter oscillation is derived theoreti-
cally by applying He’s energy balance method in this section. 

Substituting Equation (21) and the time scale parameter κ  into Equation (7), the 
following Hamilton equation can be obtained as, 

( )( ) ( ) ( ) ( ) ( )( )( )

( )( ) ( ) ( ) ( )( )( ) ( )









++++=

++−+=

4
2

2
1

2
1214

2
2

2'
2

2
1

2
1

2
1

4
1124

2
1

2'
1

2
1

4
4812

2
1

3
816

2
1

2
1

12
2
1

4
3

3
8

2
1

2
1

qqqqqλqqqH

qqqqqλqqqH

π
ωκ

π
ωκ

(30) 

Selecting 0=κ  and 
4
πκ = , the following equation can be obtained, 










=−−−−

=−−+−

018362
3
816

018
4
92

3
8

224
4

222

224
4

222

bababλbb

baaabλaa

π
ω

π
ω

(31) 

Figure 6. The variation of 2λ
π4 with changing ε1 and ε2.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 12 
 

 

 

Figure 6. The variation of 
4

2
π
λ  with changing 1ε  and 2ε . 

 

Figure 7. The variation of 
4

2
π
λ  with changing η . 

5. Nonlinear Frequency Amplitude Relationship 
In addition to the critical parameters (circular frequency ω  and non-dimensional 

dynamic pressure 
4

2
π
λ ) on the system instability occurrence, the nonlinear circular fre-

quency amplitude relationship for the system post flutter oscillation is derived theoreti-
cally by applying He’s energy balance method in this section. 

Substituting Equation (21) and the time scale parameter κ  into Equation (7), the 
following Hamilton equation can be obtained as, 

( )( ) ( ) ( ) ( ) ( )( )( )

( )( ) ( ) ( ) ( )( )( ) ( )









++++=

++−+=

4
2

2
1

2
1214

2
2

2'
2

2
1

2
1

2
1

4
1124

2
1

2'
1

2
1

4
4812

2
1

3
816

2
1

2
1

12
2
1

4
3

3
8

2
1

2
1

qqqqqλqqqH

qqqqqλqqqH

π
ωκ

π
ωκ

(30) 

Selecting 0=κ  and 
4
πκ = , the following equation can be obtained, 










=−−−−

=−−+−

018362
3
816

018
4
92

3
8

224
4

222

224
4

222

bababλbb

baaabλaa

π
ω

π
ω

(31) 

Figure 7. The variation of 2λ
π4 with changing η.

5. Nonlinear Frequency Amplitude Relationship

In addition to the critical parameters (circular frequency ω and non-dimensional
dynamic pressure 2λ

π4 ) on the system instability occurrence, the nonlinear circular frequency
amplitude relationship for the system post flutter oscillation is derived theoretically by
applying He’s energy balance method in this section.

Substituting Equation (21) and the time scale parameter κ into Equation (7), the
following Hamilton equation can be obtained as, H(q1(κ)) =

1
2 ω2(q′1)2

+ 1
2 (q1)

2 − 8λ
3π4 q2q1 +

3
4 (q1)

4 + 1
2

(
12(q1)

2
)
(q1)

2

H(q1(κ)) =
1
2 ω2(q′2)

2 + 1
2 (16q2)

2 + 8λ
3π4 q1q2 +

1
2

(
12(q1)

2
)
(q1)

2 + 48
4 (q2)

4 (30)

Selecting κ = 0 and κ = π
4 , the following equation can be obtained,{

ω2a2 − a2 + 8
3

2λ
π4 ab− 9

4 a4 − 18a2b2 = 0
ω2b2 − 16b2 − 8

3
2λ
π4 ab− 36b4 − 18a2b2 = 0

(31)
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Additionally, the nonlinear circular frequency-amplitude relationship can be derived as,

ω =

√
a2 + 16b2

a2 + b2 +
9
4

a4 + 16b4 + 16a2b2

a2 + b2 (32)

This relationship is believed to be firstly derived. Comparing with the harmonic mo-
tion balance method [23], this proposed method is much more efficient and simple for the
panel post flutter behavior analysis. However, as ω is dependent on a and b simultaneously,
thus for given 2λ

π4 , the two modal coordinates amplitudes should be determined. To solve
this problem, the multiple scale method might be adopted in the future work.

6. Conclusions

In this paper, a combined energy method was proposed to theoretically investigate
the flutter instability characteristics of weakly damped panels in the supersonic airflow.
With this method, both the critical non-dimensional dynamic pressure and the oscillation
circular frequency on the system flutter occurrence were derived theoretically. The system
damping paradoxical effect was investigated. The accuracy and efficiency of the proposed
techniques were validated by comparing the derived results with that obtained by other
methods. Additionally, the nonlinear circular frequency amplitude relationship of the
panel post flutter oscillation was derived theoretically for the first time, which can enhance
our understanding of the panel post-flutter behavior.

Author Contributions: Conceptualization, X.W.; writing—original draft preparation, X.W. and X.X.;
writing—review and editing, X.W. and G.Z.; supervision, Z.Y.; project administration, X.W.; funding
acquisition, X.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Science Foundation of China, grant number 12002280.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data included in this study are available upon request by con-
tactwith the corresponding author.

Acknowledgments: The first author would like to acknowledge the support from China Scholar-
ship Council (CSC), Technische Universität Braunschweig and Aeroelasticity Institute of German
Aerospace Center (DLR).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dowell, E.H. Nonlinear oscillations of a fluttering plate. AIAA J. 1966, 4, 1267–1275. [CrossRef]
2. Fung, Y.C. On two-dimensional panel flutter. J. Aeronaut Sci. 1958, 25, 145–160. [CrossRef]
3. Bolotin, V.V.; Petrovsky, A.V.; Grishko, A.A. Secondary bifurcations and global instability of an aeroelastic non-linear system in

the divergence domain. J. Sound Vib. 1996, 191, 431–451. [CrossRef]
4. Johns, D.J.; Parks, P.C. Effect of structural damping on panel flutter: Stability of two-dimensional simply-supported panels using

linear piston theory. Aircr. Eng. Aerosp. Tec. 1960, 32, 304–308. [CrossRef]
5. Zheng, Y.; Qiu, Z. An efficient method for flutter stability analysis of aeroelastic systems considering uncertainties in aerodynamic

and structural parameters. Mech. Syst. Sig. Process. 2019, 126, 407–426. [CrossRef]
6. Vedeneev, V.V. Panel flutter at low supersonic speeds. J. Fluid Struct. 2012, 29, 79–96. [CrossRef]
7. Ganji, H.F.; Dowell, E.H. Panel flutter prediction in two dimensional flow with enhanced piston theory. J. Fluid Struct. 2016, 63,

97–102. [CrossRef]
8. Xie, D.; Xu, M.; Dai, H.; Dowell, E.H. Proper orthogonal decomposition method for analysis of nonlinear panel flutter with

thermal effects in supersonic flow. J. Fluid Struct. 2014, 50, 271–291. [CrossRef]
9. Nayfeh, A.H.; Chin, C.; Mook, D.T. Parametrically excited nonlinear two-degree-of-freedom systems with repeated natural

frequencies. Shock Vib. 1994, 2, 43–57. [CrossRef]
10. Cao, L.-N.; Yao, G. Hopf Bifurcation of Heated Panels Flutter in Supersonic Flow. Mathematics 2019, 7, 787. [CrossRef]
11. Wang, X.; Yang, Z.; Chen, Z. Study on coupled modes panel flutter stability using an energy method. J. Sound Vib. 2020, 468,

115051. [CrossRef]

http://doi.org/10.2514/3.3658
http://doi.org/10.2514/8.7557
http://doi.org/10.1006/jsvi.1996.0132
http://doi.org/10.1108/eb033313
http://doi.org/10.1016/j.ymssp.2019.02.038
http://doi.org/10.1016/j.jfluidstructs.2011.12.011
http://doi.org/10.1016/j.jfluidstructs.2016.03.003
http://doi.org/10.1016/j.jfluidstructs.2014.05.015
http://doi.org/10.1155/1995/421274
http://doi.org/10.3390/math7090787
http://doi.org/10.1016/j.jsv.2019.115051


Mathematics 2021, 9, 1090 11 of 11

12. Zhinzher, N.I. Effect of dissipative forces with incomplete dissipation on the stability of elastic systems. Izv. Ross. Akad. Nauk,
Mekh. Tverd. Tela. 1994, 19, 149–155.

13. Kirillov, O.N. Destabilization paradox due to breaking the Hamiltonian and reversible symmetry. Int. J. Nonlin Mech. 2007, 42,
71–87. [CrossRef]

14. Kirillov, O.N.; Seyranian, A.O. The effect of small internal and external damping on the stability of distributed non-conservative
systems. J. Appl. Math. Mec. 2005, 69, 529–552. [CrossRef]

15. Kirillov, O.N.; Seyranian, A.P. Stabilization and destabilization of a circulatory system by small velocity-dependent forces. J.
Sound Vib. 2005, 283, 781–800. [CrossRef]

16. Bigoni, D.; Kirillov, O.N.; Misseroni, D.; Noselli, G.; Tommasini, M. Flutter and divergence instability in the pflüger column:
Experimental evidence of the ziegler destabilization paradox. J. Mech. Phys. Solids 2008, 116, 99–116. [CrossRef]

17. Tommasini, M.; Kirillov, O.N.; Misseronia, D.; Bigoni, D. The destabilizing effect of external damping: Singular flutter boundary
for the Pfluger column with vanishing external dissipation. J. Mech. Phys. Solids 2016, 91, 204–215. [CrossRef]

18. Bigoni, D.; Misseroni, D.; Tommasini, M.; Kirillov, O.N.; Noselli, G. Detecting singular weak-dissipation limit for flutter onset in
reversible systems. Phys. Rev. E 2018, 97, 023003. [CrossRef]

19. Luongo, A.; D’Annibale, F. On the destabilizing effect of damping on discrete and continuous circulatory systems. J. Sound Vib.
2014, 333, 6723–6741. [CrossRef]

20. He, J.H. Preliminary report on the energy balance for nonlinear oscillations. Mech. Res. Commun. 2009, 29, 107–111. [CrossRef]
21. Younesian, D.; Askari, H.; Saadatnia, Z.; Kalamiyazdi, M. Frequency analysis of strongly nonlinear generalized Duffing oscillators

using He’s frequency-amplitude formulation and He’s energy balance method. Comput. Math. Appl. 2010, 59, 3222–3228.
[CrossRef]

22. Fan, J. He’s frequency-amplitude formulation for the Duffing harmonic oscillator. Comput. Math. Appl. 2009, 58, 2473–2476.
[CrossRef]

23. Baghdasaryan, G.Y.; Mikilyan, M.A.; Saghoyan, R.O.; Cestino, E.; Frull, G.; Marzocca, P. Nonlinear LCO “amplitude-frequency”
characteristics for plates fluttering at supersonic speeds. Int. J. Nonlin Mech. 2015, 77, 51–60. [CrossRef]

http://doi.org/10.1016/j.ijnonlinmec.2006.09.003
http://doi.org/10.1016/j.jappmathmech.2005.07.004
http://doi.org/10.1016/j.jsv.2004.05.020
http://doi.org/10.1016/j.jmps.2018.03.024
http://doi.org/10.1016/j.jmps.2016.03.011
http://doi.org/10.1103/PhysRevE.97.023003
http://doi.org/10.1016/j.jsv.2014.07.030
http://doi.org/10.1016/S0093-6413(02)00237-9
http://doi.org/10.1016/j.camwa.2010.03.013
http://doi.org/10.1016/j.camwa.2009.03.049
http://doi.org/10.1016/j.ijnonlinmec.2015.06.014

	Introduction 
	Formulation of Motion Equation 
	Non-Conservative Energy Balance Principle 
	He’s Energy Balance Method 
	Nonlinear Frequency Amplitude Relationship 
	Conclusions 
	References

