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Abstract: In this paper, a novel algorithm (IBC1) for graph clustering with no prior assumption of the
number of clusters is introduced. Furthermore, an additional algorithm (IBC2) for graph clustering
when the number of clusters is given beforehand is presented. Additionally, a new measure of
evaluation of clustering results is given—the accuracy of formed clusters (T). For the purpose of
clustering human activities, the procedure of forming string sequences are presented. String symbols
are gained by modeling spatiotemporal signals obtained from inertial measurement units. String
sequences provided a starting point for forming the complete weighted graph. Using this graph, the
proposed algorithms, as well as other well-known clustering algorithms, are tested. The best results
are obtained using novel IBC2 algorithm: T = 96.43%, Rand Index (RI) 0.966, precision rate (P) 0.918,
recall rate (R) 0.929 and balanced F-measure (F) 0.923.

Keywords: graph clustering; the accuracy of formed clusters; inertial measurement units data;
human activities clustering

1. Introduction

Automatic human activity recognition (HAR) development is a challenging task that
is yet to be solved. The solution to this task has significant importance for improving
human-machine interactions, security, healthcare and many other fields.

As computing hardware becomes more attainable, smaller and faster, it also becomes
omnipresent, so much that presently, a smart phone, smart watch or similar accessory has
assumed an integral role in everyday life. The upsurge of such wearable devices equipped
with inertial measurement units (IMUs) brought an increase in the employment of IMU data
for HAR. Implementation of various methods, using IMU for HAR, yields notable results
in a field of automatic recognition on conventional HAR data sets, which contain solely
simple and repetitive activities shown in [1–5]. However, the demand arises for analyzing
complex activities which are not precisely defined. Various human subjects perform the
same activity in different ways. Segments of the same complex activity can be performed
in a different order. Additionally, different types of complex activities might have the
same segments. Graph clustering algorithms [6–9] can be practical for human activities
recognition and classification. The aim is to construct an algorithm suitable for human
activities clustering, albeit there are significant inter-cluster similarities. A new graph-based
clustering algorithm, suitable for analyzing both simple and complex human activities,
is proposed in this paper. IMU data, less challenging for computational processing and
considered suited for practical application, are used for testing the algorithm. Sequences of
strings are configured, obtained from symbol-based modeling of spatiotemporal signals
using IMU data. Sequences of strings can be understood as weighted graph vertices,
whereby the weight of an edge presents a modified Levenshtein distance [10] between
its vertices.

The first contribution of this paper is a novel clustering algorithm with no prior
assumption of the number of clusters, which differs from noted hierarchical and non-
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hierarchical algorithms since it is based on a non-disjunct sets of vertices (not on a partition
of all graph vertices). The algorithm is not built solely on connectivity or just on the distance
of graph vertices but integrates both principles. The problem with all the algorithms is
inter-cluster edges whose weights are less than the weights of some intra-cluster edges (the
weight of the edges is inversely proportional to the similarity of the vertices); let us call
them intruder edges. The algorithm recognizes and removes the intruder edges. Therefore,
it is suitable for graph clustering with a significant percentage of intruder edges. Clusters
obtained with the previous algorithm provide the starting point for an additional clustering
algorithm with the number of clusters given beforehand. The additional algorithm (which
represents the second contribution of this paper) delivers even more precise results. The
third contribution is a new measure for the evaluation of clustering – the accuracy of
formed clusters. This measure yields the percentage of common vertices of both given
and corresponding formed clusters out of all the vertices. The fourth contribution imparts
a theoretical basis for building sequences of strings, used for applying the described
algorithms on clustering human activities and builds upon [10,11].

The introduced method is applied on two public data sets [12,13]. For comparison
studies, four well-known algorithms are tested on the same samples. The novel algorithms
give remarkable results over well-known algorithms. The proposed method can help filling
the gap in increasing demand for research in complex HAR.

This paper consists of Section 1 Introduction, Section 7 Conclusion and five more
sections. Section 2 consists of two subsections in which the two main contributions of
this paper are presented. Section 2.1 presents a novel clustering algorithm with no prior
assumption of the number of clusters. In Section 2.2 additional clustering algorithm when
the number of clusters given beforehand is presented. In Section 3, a new measure for the
evaluation of clustering results is presented—the Accuracy of formed clusters. In Section
4 string sequences formation and measure of similarity are displayed. Section 5 consists
of three subsections. Section 5.1 shows the processing of data sets. In Section 5.2, results
of testing are displayed and the parameters for the evaluation of clustering results are
calculated. In Section 5.3, the comparative results of various algorithms and methods for
clustering human activities are shown. Section 6 presents the discussion.

2. Graph Clustering

In this section, the clustering of a complete weighted graph is considered. First, a
novel intruder-based clustering algorithm (IBC1) in the case with no prior assumption of
the number of clusters is introduced. Second, in a case when the number of clusters is
given beforehand, an additional algorithm (IBC2) is proposed.

Primarily, the terms used in this segment should be defined. Weighted graph edges,
whose vertices are in the same cluster, are named intra-cluster edges and those whose
vertices are in different clusters are named inter-cluster edges. The weight of some inter-
cluster edge may be less than the weight of some intra-cluster edge. That type of inter-
cluster edge is called an intruder edge. Now, the definition of an intruder of some vertex
will be stated.

Let it be given a set K = {x1, ..., xn, x̂}, whose elements are vertices of a weighted
graph where K0 = {x1, ..., xn} is a cluster. With d(a, b) the distance of graph vertices a and
b is denoted, i.e., the weight of the edge (a, b). Let

d = max{d(xi, xj), xi, xj ∈ K0}. (1)

Then x̂ is an intruder that corresponds to the vertex xk ∈ K0, if the following conditions
are met:

d(xk, x̂) < d, x̂ 6= xi, i = 1, 2, ..., n. (2)

Two factors can affect the appearance of an intruders. First, pairs of vertices in a cluster
with a relatively large distance between them. Second, pairs of vertices from different
clusters with a relatively small distances between them. The goal is to create an algorithm
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for graph clustering that is suitable for graphs with significant inter-cluster similarities. For
the measure of the said similarity, the number of intruders can be used. Vertices of such
graph have a significant number of intruders. Since the numbers of vertices in clusters is
unknown, it is more appropriate to use the percentage than the number of intruders.

In this paper, graphs are observed, whose number of intruders corresponding to
the vertex x of the cluster Kx, can be no more than p% of the total number of vertices
of cluster Kx. Some intruders might be correspondent for more than one vertex of Kx.
Furthermore, for every vertex, is left the p% possibility of removal of intra-cluster edges
during the algorithm. The basic idea is recognition and removal of all inter-cluster edges.
Naturally, the heaviest edges are examined first. During the iteration process, edge by edge
is removed. The entire structure, all mutual adjacent vertices of the examined edge vertices,
is analyzed. That structure, if in a cluster, should be strongly interconnected, with a limited
number of additional edges (intruder edges) connected to it.

2.1. Graph Clustering with No Prior Assumption of the Number of Clusters

Let V be the set of all vertices of the weighted graph G. If vertices a and b (a, b ∈ G)
are connected with an edge, then that edge is denoted with an unordered pair (a, b). Let

k = ((a1, b1), (a2, b2), ..., (am, bm)) (3)

be a sequence of graph edges so that weights of edges form a non-descending sequence
(further in the text, a non-descending sequence of edges). Furthermore, the mapping
is defined

Fk : V −→ P(V), (4)

where P(V) is a power set of a set V, in a following way:

Fk(x) = {x} ∪ {xi ∈ V | (x, xi) is from the sequence k (3)}. (5)

In continuation Fk(x) is denoted as X. Thus, to every vertex x a set X is assigned, whose
elements are that vertex and all its adjacent vertices from the edge sequence k (3).

Furthermore, description of IBC1 algorithm is given.
Step one: The weight-based non-descending sequence of edges is established. Then, the

average distance between all graph vertices (arithmetic mean of edge weights) is calculated.
It is considered that pair of vertices, whose distance is greater than average are not similar,
i.e., they do not belong to the same cluster. Vertices, whose distances from other vertices is
greater than average, are single-member clusters. Let c be a non-descending sequence of
edges whose weight is less than average.

Step two: The heaviest edge is selected, specifically the best candidate for an inter-
cluster edge from the edge sequence

c = ((a1, b1), (a2, b2), ..., (aM, bM)). (6)

Three cases are distinguished:

(A) The weight of the last edge (aM, bM) in the sequence differs from the weights of the
other edges of a sequence and that edge is marked with (x, y).

(B) The last r edges in a sequence

(aM−(r−1), bM−(r−1)), ..., (aM, bM) (7)

have the same weight and

card(Ai ∩ Bi), (i = M− (r− 1), ..., M) (8)

has the unique smallest value, where Ai = Fc(ai) and Bi = Fc(bi). Let that smallest
value correspond to the edge that is marked with (x, y).
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(C) The last r edges (7) in a sequence have the same weight and a few (8) have the same
smallest value. From the edges that have the same smallest value, one edge is selected
that is marked with (x, y).

Let the (x, y) edge be determined in any of the previous three cases. No two cases can
occur simultaneously

Let
Fc(x) = X = {x, y, x1, ..., xn, x̂1, x̂2, ..., x̂k} (9)

Fc(y) = Y = {x, y, x1, ..., xn, ŷ1, ŷ2, ..., ŷs} (10)

Some of the sets {x1, ..., xn}, {x̂1, x̂2, ..., x̂k}, {ŷ1, ŷ2, ..., ŷs} can be empty sets.
Step three: A set of cluster candidates is formed

Z = X ∩Y = {x, y, x1, ..., xn}. (11)

Set Z is not empty since it contains vertices x and y at least. Vertices from sets X and Y,
that do not belong to Z, are candidates for intruders. Furthermore, two alternatives are
distinguished:

(i) If
k > (n + 2)

p
100

or s > (n + 2)
p

100
. (12)

Then, it is considered that vertices x and y do not belong to the same cluster. Edge (x, y) is
removed from the sequence. After the removal, a new sequence that has one edge less is
gained and it will be marked with c, again. Then the return to the second step follows.

(ii) If
k 6 (n + 2)

p
100

and s 6 (n + 2)
p

100
. (13)

Then, it is examined if any of the edges (x, ŷj), j = 1, ..., s, (y, x̂i), i = 1, ..., k is intra-cluster,
that is removed throughout algorithm execution. For each remaining element x̂i from X
and ŷj from Y, if any, it is checked if it is contained in (100− p)% sets assigned to elements
of the set Z. All the vertices that do not satisfy the previous condition are intruders. To
every vertex x̂i, that is ŷj, the set X̂i = Fc(x̂i) is assigned, that is Ŷj = Fc(ŷj). Then the set
is determined

Ẑ =
{

x̂i | card(Z \ X̂i) 6 card(Z)
p

100

}
⋃ {

ŷj | card(Z \ Ŷj) 6 card(Z)
p

100

}
. (14)

New set of candidates for a cluster is

Z+ = Z ∪ Ẑ, (15)

where Ẑ can be an empty set. Then, for every xi ∈ Z+ it is checked to what extent it is
connected to other vertices from Z+. That is why the sets are determined

Xi = Xi ∩ Z+, (16)

where Xi is a set assigned to vertex xi ∈ Z+. The overlaps of the sets Z+ and Xi are checked.
Set Z+ may contain intruders common to x and y. Additionally, there may have been a
previous removal of intra-cluster edges that contain vertex xi. Additionally, it is checked
whether the number of intruders corresponding to the vertex xi is within the presumed
limits. It is examined in the following way. If

card(Z+ \ Xi) > card(Z+)
p

100
∨ card(Xi \ Xi) > card(Xi)

p
100

, (17)
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it is considered that vertex xi does not belong to the cluster of the vertex x. Then it
is determined

KX =
{

xi ∈ Z+ | card(Z+ \ Xi) 6 card(Z+)
p

100

}
⋂ {

xi ∈ Z+ | card(Xi \ Xi) 6 card(Xi)
p

100

}
. (18)

Except the common intruders for x and y, all the other elements from Z+ are in KX. It is
resumed examining whether it is

card(Z+)− card(Kx) > card(Kx)
p

100
. (19)

If the inequality (19) holds, it is considered that Kx is not a cluster and that edge (x, y)
is inter-cluster. The edge (x, y) is removed from the sequence. After the removal, a new
sequence that has one edge less is obtained and it will be marked with c again. Then return
to the second step follows.

If the inequality (19) does not hold, it is considered Kx to be a cluster containing the
vertex x. All the edges containing some of the vertices of a formed cluster are removed
from the sequence. After the removal, a new sequence with fewer edges is gained which
will be marked with c again. If all clusters are not formed (i.e., not all edges are removed
from sequence), the return to the second step follows.

The first and second steps of this algorithm are based exclusively on the distance
between the two vertices. The third step is based solely on the connectivity of the vertices.

2.2. Graph Clustering When the Number of Clusters Is Given Beforehand

Furthermore, description of IBC2 algorithm is given.
In the algorithm described in the preceding segment, it is assumed that the number

of clusters is unknown. Provided that the number of clusters is known, let it be said
n, the previous algorithm determines the clusters that serve as the starting point (base
clusters) for more precise determination of final clusters. It is assumed that the clusters
have approximately the same number of vertices. If the number of base clusters is less than
n, the described algorithm cannot determine the required clusters.

First step: If the number of base clusters is equal to n, all base clusters are final clusters
as well. Furthermore, only the case when the number of base clusters is greater than n is
considered.

Let
(K1, K2, ..., Km) (20)

be a sequence of all base clusters where

(card(K1), card(K2), ..., card(Km)) (21)

is a non-ascending sequence. Two cases are distinguished:
1. There is j where

j = min
n6i<m

card(Ki) 6=card(Ki+1)

i (22)

In this case, candidates for new base clusters are following

K1, K2, ..., Kj. (23)

2. If such j does not exist, then the last k (k > m− n) base clusters in the sequence (20)
have the same number of vertices. For each of the last k base clusters from the sequence, the
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average distance between all its vertices is determined. Candidates for new base clusters
remain all the base clusters except for the one with largest average distance.

Second step: Furthermore, for each vertex of the base clusters, which are not a candidate
after the first step, the average distance from all vertices of each candidate separately is
determined. If the observed vertex has a minimum average distance from one or more
candidates, that vertex is added to one of those candidates at the end of the check. After this
step, all the candidates become the new base clusters. Then return to the first step follows.

This additional algorithm is based exclusively on distance between two vertices.

3. Evaluation Measures

First, a novel external evaluation measure, the Accuracy of formed clusters, is introduced.
Let all the clusters C1, C2, ..., Cn of a complete weighted graph be given and let

{K1, K2, ..., Kn} be a collection of sets defined in the following way:
1. Using the process of clustering, if a derived cluster is obtained, which contains more

than 50% vertices of the cluster Ci and no more than 50% vertices of some other cluster Cj,
than the cluster Ki is equal to that derived cluster.

2. Using the process of clustering, if a derived cluster is obtained, which contains
more than 50% vertices of the cluster Ci and more than 50% vertices of some other cluster
Cj and i 6 j than Ki is equal to that derived cluster and Kj = ∅.

Furthermore, only derived clusters, that do not fulfil the conditions previously men-
tioned in cases 1. and 2., are considered.

3. If existing, a derived cluster, containing 50% vertices of the cluster Ci with the
lowest index i, is determined first. Then Ki is equal to the derived cluster. The process
continues with the remaining given and derived clusters.

4. Ki sets, which are not obtained using the previous process, are empty.
If Ki is not an empty set, then Ki is formed cluster that corresponding to Ci. The

accuracy of formed clusters (T) is determined in the following way:

T =

n
∑

i=1
card(Ci ∩ Ki)

n
∑

i=1
card(Ci)

· 100% (24)

For evaluation of clustering results, besides the presented measure, the following
evaluation measures are used.

The Rand Index (RI)computes how similar the derived clusters (returned by the
clustering algorithm) are to the ground truth clusters. It can be computed using the
following formula

RI =
TP + TN

TP + FP + FN + TN
(25)

where TP (number of true positives) is the number of pairs of points that are clustered
together in the derived and ground truth partition, TN (number of true negatives) is the
number of pairs of points that are in different clusters in the derived and ground truth
partition, FP (number of false positives) is the number of pairs of points that are clustered
together in the derived but not in the ground truth partition, and FN (number of false
negatives) is the number of pairs of points that are clustered together in the ground truth
but not in the derived partition.

Precision P =
TP

TP + FP
(26)

Recall R =
TP

TP + FN
(27)

Balanced F-measure F =
2PR

P + R
(28)
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The presented evaluation measure T (24) gives the percentage of common vertices
of both given and corresponding formed clusters out of all the vertices. It has a certain
similarity with Purity, which is a measure of the extent to which clusters contain a single
class. Purity can be calculated as follows: for every observed cluster, it counts the number
of data points of the most common class in that cluster. Then, sums over all clusters and
divides by the total number of data points. Drawback of this measure is that in the case
of great number of derived clusters, it can give high purity. For example, a purity score
is 1 if each data point is in a single-member derived cluster. The measure T removes the
said drawback.

Measures (25)–(28) are based on pairs of data points and therefore are not directly
comparable with the proposed measure T. If pairs of data points from the same class belong
to different derived clusters, then those pairs are considered true positive. By analogy with
the proposed principle, true positive pairs of data points are only those true positive pairs
belonging to formed clusters.

4. String Sequences Formation, Measure of Similarity of Two String Sequences

As a theoretical base for forming the sequences of strings, the following consideration
can be used.

Let Ik = {1, 2, ..., k}, Jn = {1, 2, ..., n}, represent sets where k, n ∈ N and k, n > 2.
Mapping is defined on a set Ik × Jn :

p : Ik × Jn −→ R, (29)

where p(i, j) = pij ∈ R. Using the mapping p is a determined matrix

P =


p11 p12 . . . p1n
p21 p22 . . . p2n
. . . . . . . . . . . .
pk1 pk2 . . . pkn

 (30)

Relations M and m are defined on a set Ik × Jn in the following way:

i M j⇐⇒


pij > p(i+1)j if i = 1
pij > p(i−1)j if i = n
p(i−1)j < pij ∧ pij > p(i+1)j if 1 < i < n,

(31)

i m j⇐⇒


pij < p(i+1)j if i = 1
pij < p(i−1)j if i = n
p(i−1)j > pij ∧ pij < p(i+1)j if 1 < i < n.

(32)

It is clear that the following holds

(∀i, j)¬(i M j ∧ i m j). (33)

Using introduced relations, the mapping is defined

f : Ik × Jn −→ S, (34)

where
S = {M1, m1, M2, m2, ..., Mn, mn, ε} (35)

is a set of symbols, in a following way:

f (i, j) =


Mj if τ(i M j) = >
mj if τ(i m j) = >
ε otherwise.

(36)
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By mapping f the matrix is determined:

F =


f (1, 1) f (1, 2) . . . f (1, n)
f (2, 1) f (2, 2) . . . f (2, n)

. . . . . . . . . . . .
f (k, 1) f (k, 2) . . . f (k, n)

. (37)

And let the mapping be defined

ϕ : F −→ (S1, S2, ..., Sk)
T (38)

so that
Si = f (i, 1)⊕ f (i, 2)⊕ · · · ⊕ f (i, n), (39)

where ⊕ stands for concatenation. In that way a sequence of strings is gained, whose
symbols belong to the set S. Finally,the symbol ε is omitted in each string, as well as all the
strings that contained only symbol ε. This way, a sequence of strings is gained

a = (Ŝ1, Ŝ2, ..., Ŝk̂)
T (40)

where k̂ 6 k.
Different parameters (e.g., angular velocity, instantaneous acceleration, absolute orien-

tation), the values of which are obtained via measurement units, are used for the analysis
of human activities.

Data from measurement units, arranged in temporal order, are shown in matrix P (30).
The element pij, i = 1, 2, . . . , k; j = 1, 2, . . . , n, of the matrix P, is the value of the parameter
with the ordinal number j at the time point i. These n parameters have their local extrema
(maxima and minima). The procedure for assigning symbols to these extrema is described.
At the observed point in time, several parameters can have extreme values. From all the
symbols assigned to the extrema, a string is formed at the observed time point. Strings
arranged in temporal order form a sequence of strings.

The widely acknowledged Levenshtein distance (λ) [14] can be used as the measure of
similarity between two strings. Informally, it is defined as the minimum number of single-
character editing operations (deletion, insertion and substitution) needed to transform one
string into the other. By the described symbol-based modeling of signals from measurement
units, strings were obtained instead of characters, and a sequence of strings instead of
string. Therefore, the adaptation of editing operations of Levenshtein distance is needed.

The adapted Levenshtein distance [10] used in this approach quantifies the similarity
between two sequences of strings (40).

5. Evaluation

To apply the described algorithm to human activities clustering, symbols gained by
modeling of spatiotemporal signals are needed, which are then used to form sequences of
strings. Sequences of strings can be understood as weighted graph vertices, whereby the
weight of an edge presents a modified Levenshtein distance between its vertices.

5.1. Databases, Preprocessing

To evaluate the proposed approach in a realistic environment, Carnegie Mellon Uni-
versity Multimodal Activity (CMU-MMAC) database [12] and RealWorld data set [13]
are used. The first database presents complex, while the second presents simple human
activities.

CMU-MMAC database contains recordings of human subjects preparing various
recipes in the kitchen. One of the modalities found in this database is noted by the
three-axis IMU (MicroStrain’s 3DM-GX1), containing an accelerometer, gyroscope and
magnetometer, which enable the measurement of absolute orientation, angular velocity and
instantaneous acceleration. The signals were gyro-stabilized and recorded at a frequency
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of 125 Hz. Twelve human subjects (S40, S41, S42, S43, S44, S4, S50, S51, S52, S53, S54, S55)
are chosen, each of whom was recorded while preparing four different recipes (brownies,
scrambled eggs, pizza and sandwich) i.e., performing four different activities. One of these
48 subject–activity pairs, subject S52 making brownies (S52, brownies) contained errors and
was therefore excluded. All selected subjects are right-handed, so it is decided to observe
signals collected from IMU placed on their right hand. At the signal level, angular velocity
and instantaneous acceleration along three axes (six parameters in total) are specifically
considered. As an illustration, the values of the parameters sampled in five consecutive
time points that represent a minuscule fragment of the subject–activity pair (S51, Eggs),
are given in Table 1. Aiming for efficiency, the data are down-sampled to a frequency of
1.25 Hz.

Table 1. Illustration of the input inertial measurement data.

Acceleration Angular Velocity
Count System Time

ax ay az Roll Pitch Yaw

0.003632 −0.500534 −0.183935 −0.005648 −0.555695 −0.629118 27,683 10:04:02:440

0.041871 −0.545610 −0.146977 0.278318 −0.599623 −0.668340 27,684 10:04:02:448

0.064516 −0.616962 −0.1523187 0.566050 −0.675871 −0.678695 27,685 10:04:02:456

0.085452 −0.758171 −0.182867 0.872607 −0.746784 −0.638845 27,686 10:04:02:464

0.096561 −0.878231 −0.172826 1.147788 −0.850643 −0.479762 27,687 10:04:02:472

RealWorld data set contains recordings of 15 human subjects (age 31.9 ± 12.4, height
173.1 ± 6.9, weight 74.1 ± 13.8, eight males and seven females) performing fundamental ac-
tivities of which four are considered: walking, climbing up the stairs, jumping and running.
Two modalities found in this database—the three-axis accelerometer and gyroscope—are
used. The signals are recorded at a frequency of 50 Hz. Due to the nature of analyzed
activities, it is decided to observe signals collected from wearable device placed on the
shin. At the signal level, angular velocity and instantaneous acceleration along three axes
(six parameters in total) are considered. For efficiency, the sample is selected so that all
activities last for 90 s. Additionally, selected data are down-sampled to a frequency of
2.5 Hz.

5.2. Results

Subject–activity pairs can be interpreted as vertices of a weighted graph. Each sub-
ject–activity pair has one corresponding sequence of strings. The set of vertices corre-
sponding to the same activity forms a cluster (class). To perform clustering, it is needed to
input the parameter p, which represents the maximum percentage of intruders, which is
not known.

First, the results obtained from CMU-MMAC database are presented. The recipes
for the dishes prepared by human subjects are not precisely defined, so different indi-
viduals prepare the same recipes in different manners. Additionally, there are a series
of actions that are very similar in preparing different recipes. Based on the preceding,
it is reasonable to assume that the percentage of intruders is not small. So that the pa-
rameter p can be determined more precisely, that is the upper bound of the percentage
of intruders, the set of subjects is divided into two disjunct subsets. The first subset is
{S40, S41, S42, S43, S44, S45}, and the second is {S50, S51, S52, S53, S54, S55}. The first
subset, containing 24 subject–activity pairs, is used for training. The second subset is
used for testing; it contains 23 subject–activity pairs. During the training, the criterion
Accuracy of formed clusters was used to estimate the parameter p. According to this
criterion, a result was obtained that was within the expected range, i.e., p = 30. Operating
with the same sample, two tests are performed. The first test was performed using the



Mathematics 2021, 9, 1089 10 of 17

IBC1 algorithm Section 2.1, with no prior assumption of the number of clusters. Then, the
testing was performed on the same sample using the IBC2 algorithm Section 2.2, when the
number of clusters is given beforehand, i.e., in the observed sample is four. The results of
clustering are shown in Tables 2 and 3, in cases with no prior assumption on the number
of clusters and when the number of clusters is given beforehand, respectively. To make
the evaluation more complete, the Rand Index, precision, recall and balanced F-measure
are calculated. Values of evaluation parameters are displayed as follows: Table 4 in a case
with no prior assumption on the number of clusters; Table 5 in a case when the number of
clusters is given beforehand.

Table 2. Clustering results, with no prior assumption of the number of clusters, obtained by IBC1
algorithm using CMU-MMAC database.

Subject, Activity
Clusters

C1 C2 C3 C4 C5 C6

S50, Brownie x

S51, Brownie x

S53, Brownie x

S54, Brownie x

S55, Brownie x

S50, Eggs x

S51, Eggs x

S52, Eggs x

S53, Eggs x

S54, Eggs x

S55, Eggs x

S50, Pizza x

S51, Pizza x

S52, Pizza x

S53, Pizza x

S54, Pizza x

S55, Pizza x

S50, Sandwich x

S51, Sandwich x

S52, Sandwich x

S53, Sandwich x

S54, Sandwich x

S55, Sandwich x
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Table 3. Clustering results, when the number of clusters is given beforehand, obtained by IBC2
algorithm using CMU-MMAC database.

Subject, Activity
Clusters

C1 C2 C3 C4

S50, Brownie x

S51, Brownie x

S53, Brownie x

S54, Brownie x

S55, Brownie x

S50, Eggs x

S51, Eggs x

S52, Eggs x

S53, Eggs x

S54, Eggs x

S55, Eggs x

S50, Pizza x

S51, Pizza x

S52, Pizza x

S53, Pizza x

S54, Pizza x

S55, Pizza x

S50, Sandwich x

S51, Sandwich x

S52, Sandwich x

S53, Sandwich x

S54, Sandwich x

S55, Sandwich x

Table 4. Evaluation of clustering results obtained by IBC1 algorithm using CMU-MMAC database.

Accuracy of Formed Clusters T = 86.96%

True positives TP = 41 Rand index RI = 0.941

True negatives TN = 197 Precision P = 0.976

False positives FP = 1 Recall R = 0.745

False negatives FN = 14 Balanced F-measure F = 0.845
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Table 5. Evaluation of clustering results obtained by IBC2 algorithm using CMU-MMAC database.

Accuracy of Formed Clusters T = 95.65%

True positives TP = 50 Rand index RI = 0.960

True negatives TN = 193 Precision P = 0.909

False positives FP = 5 Recall R = 0.909

False negatives FN = 5 Balanced F-measure F = 0.909

Furthermore, the results obtained from RealWorld data set are presented. The set of
subjects, each of whom was recorded while performing four different activities (walking,
climbing up the stairs, jumping and running) is divided into two disjunct subsets. The first
subset is {S1, S2, S3, S4, S5, S6, S7, S8}, and the second is {S9, S10, S11, S12, S13, S14, S15}.
The first subset, containing 31 subject–activity pairs (data for subject S3 is missing for
one activity), is used for training. The second subset, is used for testing; it contains 28
subject–activity pairs. By applying the criterion, Accuracy of formed clusters, the parameter
p = 15 is obtained. Operating with the same sample, two tests are performed. First, using
the IBC1 algorithm with no prior assumption of the number of clusters, then, using the
IBC2 algorithm where it is assumed that the number of clusters is four.

The results of clustering are given in Figure 1.

Figure 1. Clustering results obtained by IBC1 and IBC2 algorithms, using RealWorld data set.

For more comprehensible evaluation, the Rand Index, precision, recall and balanced
F-measure are presented in Tables 6 and 7; in a case with no prior assumption of the number
of clusters and when the number of clusters is given beforehand, respectively.

Table 6. Evaluation of clustering results obtained by IBC1 algorithm using RealWorld data set.

Accuracy of Formed Clusters T = 89.29%

True positives TP = 67 Rand index RI = 0.955

True negatives TN = 294 Precision P = 1

False positives FP = 0 Recall R = 0.798

False negatives FN = 17 Balanced F-measure F = 0.888
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Table 7. Evaluation of clustering results obtained by IBC2 algorithm using RealWorld data set.

Accuracy of Formed Clusters T = 96.43%

True positives TP = 78 Rand index RI = 0.966

True negatives TN = 287 Precision P = 0.918

False positives FP = 7 Recall R = 0.929

False negatives FN = 6 Balanced F-measure F = 0.923

5.3. Comparative Results

To assess the performance of the novel algorithm, the following graph-based algo-
rithms: single-link, complete-link, group-average agglomerative clustering algorithms [8]
and clustering algorithm for graph-based image segmentation (GBIS) [6] are applied on
the obtained graphs, in a case when the number of clusters is given beforehand. Compar-
ative clustering results can be seen in Figures 2 and 3. Comparative results of clustering
evaluation can be seen in Tables 8 and 9.

Figure 2. Comparing clustering results, when the number of clusters is given beforehand, using
CMU-MMAC database.

Table 8. Comparing evaluation parameters using CMU-MMAC database.

T RI P R F

Single-linkage clustering algorithm 65.22% 0.802 0.535 0.691 0.603

Complete-linkage clustering algorithm 91.30% 0.913 0.780 0.836 0.807

Group-average clustering algorithm 82.61% 0.854 0.661 0.673 0.667

GBIS clustering algorithm 82.61% 0.834 0.607 0.673 0.638

IBC2 algorithm 95.65% 0.960 0.909 0.909 0.909
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Figure 3. Comparing clustering results, when the number of clusters is given beforehand, using
RealWorld data set.

Table 9. Comparing evaluation parameters using RealWorld data set.

T RI P R F

Single-linkage clustering algorithm 67.86% 0.852 0.646 0.738 0.689

Complete-linkage clustering algorithm 89.29% 0.913 0.800 0.810 0.805

Group-average clustering algorithm 85.71% 0.881 0.729 0.738 0.733

GBIS clustering algorithm 85.71% 0.899 0.762 0.762 0.762

IBC2 algorithm 96.43% 0.966 0.918 0.929 0.923

6. Discussion

Algorithms for automatic human activity recognition are, for the most part, intended
to analyze types of activities that are relatively simple and significantly different from
each other, including body postures, simple task-oriented and fundamental behaviors
(e.g., sitting, standing, walking, running, swimming, dressing, walking upstairs, walking
downstairs, clapping, waving etc.) [3]. Contrary to that, the described algorithm allows the
recognition of given complex actions that are not precisely defined. Specifically, different
human subjects perform the same type of activity in different ways (e.g., preparing a dish
without precise recipe), i.e., individual segments of a complex action are quite different
or are performed in a different order. Additionally, different types of complex actions can
have the same segments. The presented approach enables successful clustering of such
complex human activities.

First, the performance of the novel IBC1 algorithm is analyzed. In Table 2, the results
of complex human activities (CMU-MMAC database) clustering are presented. When dis-
cussing these results, it can be seen that 23 subject–activity pairs are grouped in six clusters,
relate to four ground truth clusters. All four required clusters are formed, containing 20 of
23 pairs, with the Accuracy of formed clusters T = 86.96%, with only one false positive.
Satisfactory clustering results are confirmed by the evaluation parameters shown in Table 4:
Rand Index RI = 0.941, precision P = 0.976, recall R = 0.745 and balanced F-measure
F = 0.845. In IBC1 of Figure 1, the results of fundamental human activities (RealWorld
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data set) are presented. Twenty-eight subject–activity pairs are grouped in seven clusters,
which may appear as significantly more than the four ground truth clusters. However, 25
of 28 pairs are correctly clustered in four clusters, and there are no false positives. All four
required clusters are formed with the Accuracy of formed clusters T = 89.29%. The satisfy-
ing clustering results are confirmed by the evaluation parameters shown in Table 6: Rand
Index RI = 0.955, precision P = 1, recall R = 0.798 and balanced F-measure F = 0.888. The
performance of the proposed algorithm is satisfactory on both data sets. Significance of this
algorithm is confirmed by, above all, good results of clustering complex human activities.

Furthermore, the performance of the IBC2 algorithm is discussed. For a more thor-
ough evaluation, the following graph-based algorithms: single-link, complete-link, group-
average agglomerative clustering algorithms [8] and clustering algorithm for graph-based
image segmentation (GBIS) [6], are tested on same samples, in a case when the number of
clusters is given beforehand. Comparative results, in the case of complex human activities
(CMU-MMAC database) are displayed in Figure 2. It can be concluded that by applying all
the algorithms, all four clusters are formed, except in a case with the single-link clustering
algorithm. Comparative evaluation results of clustering are displayed in Table 8. The best
evaluation results by all parameters are obtained for IBC2 algorithm: The Accuracy of
formed clusters T = 95.65%, Rand Index RI = 0.960, precision P = 0.909, recall R = 0.909
and balanced F-measure F = 0.909. Comparative results, in the case of fundamental human
activities (RealWorld data set), are illustrated in Figure 3. The conclusion is that by applying
all the algorithms all four clusters are formed, except for single-link clustering algorithm,
which tends to merge clusters. The best results of all evaluation parameters are obtained
for IBC2 algorithm. The Accuracy of formed clusters T = 96.43%, Rand Index RI = 0.966,
precision P = 0.918, recall R = 0.929 and balanced F-measure F = 0.923.

To complete comparative analysis, gained results are compared with the results ob-
tained by two different methods used to cluster human activities. According to review [15],
most used methods are K-means, and Sub-clustering. In the same review, most significant
results gained by aforementioned methods is presented, for each used dataset. The best
results published in journals are presented in Table 10.

Table 10. Comparing methods.

Method Dataset RI References

VanKasteren 0.872 [16]
WISDM 0.710 [17]

K-means Liara 0.860 [18]
Opportunity 0.868 [19]

MHealth 0.786 [20]
UCI HAR 0.794 [21]

VanKasteren 0.894 [22]
Sub-clustering Casas Aruba 0.898 [23]

Casas Kyoto 0.891 [9]

IBC2 RealWorld 0.966

The proposed method with IBC2 algorithm gives the best clustering results rated by
the Rand Index.

Most clustering algorithms are based solely on the distances between the pair of
points, or on the connectivity. The proposed IBC1 algorithm combines these two principles.
Furthermore, a metric is not required. Its principal characteristic is capacity to analyze
graphs with overlapping clusters, as well as with significant inter-cluster similarities. High
in time complexity for many data points is a disadvantage to this algorithm. IBC2 algorithm
is inefficient when the number of points per cluster is uneven.
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7. Conclusions

With insight into the results obtained by novel algorithms, it can be concluded that
they are immensely satisfactory, particularly when the number of clusters is known. The
percentages of given cluster vertices belonging to the corresponding formed clusters are
T = 86.96% (CMU-MMAC database), T = 89.29% (RealWorld data set) with no prior
assumption of the number of clusters; that is, T = 95.65% (CMU-MMAC database),
T = 96.43% (RealWorld data set) when the number of clusters is given beforehand.

In further research it would be interesting to find answers to the following questions:

1. Would using of new features derived from the original features (e.g., velocity and
relative position can be derived from acceleration data)or using more sensors placed
on different body parts of subjects, yield better results?

2. How to find a method for determining the appropriate percentage value of intruders,
in unsupervised scenario?

These issues will be addressed in further work.

Author Contributions: N.B. (Nebojsa Budimirovic) and N.B. (Nebojsa Bacanin) proposed the idea.
The research project was conceived by N.B. (Nebojsa Budimirovic) and supervised by N.B. (Nebojsa
Bacanin). The original draft was written by N.B. (Nebojsa Budimirovic) Review and editing was
performed by N.B. (Nebojsa Bacanin). Both authors participated in training and testing the described
algorithms and in the discussion of the results. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by Ministry of Education, Science and Technological Develop-
ment of Republic of Serbia, Grant No. III-44006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data used
in this paper was obtained from kitchen.cs.cmu.edu and the data collection was funded in part by
the National Science Foundation under Grant No. EEEC-0540865.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity Recognition Using Inertial Sensing for Healthcare,

Wellbeing and Sports Applications: A Survey. In Proceedings of the 23rd International Conference on Architecture of Computing
Systems 2010, Hannover, Germany, 22–25 February 2010; pp. 1–10.

2. Hussain, Z.; Sheng, M.; Zhang, W.E. Different Approaches for Human Activity Recognition: A Survey. arXiv 2020,
arXiv:1906.05074. [CrossRef]

3. Jobanputra, C.; Bavishi, J.; Doshi, N. Human Activity Recognition: A Survey. Procedia Comput. Sci. 2019, 15, 698–703. [CrossRef]
[PubMed]

4. Sousa Lima, W.; Souto, E.; El-Khatib, K.; Jalali, R.; Gama, J. Human activity recognition using inertial sensors in a smartphone:
An overview. Sensors 2019, 19, 3213. [CrossRef]

5. Vanneste, P.; Oramas, J.; Verelst, T.; Tuytelaars, T.; Raes, A.; Depaepe, F.; Noortgate, W. Computer Vision and Human Behaviour,
Emotion and Cognition Detection: A Use Case on Student Engagement. Mathematics 2021, 9, 287. [CrossRef]

6. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient Graph-Based Image Segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [CrossRef]
7. Li, Y.; Wu, H. A Clustering Method Based on K-Means Algorithm. Phys. Procedia 2012, 25, 1104–1109.
8. Manning, C.; Raghavan, P.; Schutze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008;

Chapter 17. [CrossRef]
9. Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an effective intrusion detection system using the modified density peak

clustering algorithm and deep belief networks. Appl. Sci. 2019, 9, 238.
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