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Abstract: In this paper, we present an age-structured SEIR model that uses contact patterns to reflect
the physical distance measures implemented in Portugal to control the COVID-19 pandemic. By
using these matrices and proper estimates for the parameters in the model, we were able to ascertain
the impact of mitigation strategies employed in the past. Results show that the March 2020 lockdown
had an impact on disease transmission, bringing the effective reproduction number (R(t)) below 1.
We estimate that there was an increase in the transmission after the initial lift of the measures on 6
May 2020 that resulted in a second wave that was curbed by the October and November measures.
December 2020 saw an increase in the transmission reaching an R(t) = 1.45 in early January 2021.
Simulations indicate that the lockdown imposed on the 15 January 2021 might reduce the intensive
care unit (ICU) demand to below 200 cases in early April if it lasts at least 2 months. As it stands,
the model was capable of projecting the number of individuals in each infection phase for each age
group and moment in time.

Keywords: epidemiological models; SEIR type compartmental model; COVID-19; mathematical
modelling; contact matrices

1. Introduction

On the 11th of March 2020, the World Health Organisation declared the global public
health emergency epidemic of COVID-19 a pandemic. The first confirmed case in Portugal
occurred on 2nd of March 2020. During the following days, the number of infections
increased significantly, a fact that led the policy makers to act. Schools closed on the
16th March, followed by the implementation of a state of emergency on the 22nd. This
lockdown severely restricted movement of individuals within the country as well as
instating a mandatory stay-at-home order for the population. Some exceptions were made
for individuals working in industries that were essential. Borders had restrictions but were
not closed.

This lockdown led to a decline in the incidence of SARS-CoV-2 infection cases from
early April until late May, when some of the mitigation measures were lifted, and the
number of infections stabilised. The end of summer led to a resurgence in cases, which
happened throughout Europe, and the number of new cases has risen ever since, having
only stabilised in the last few days of November. Portugal entered into a state of calamity
on the 15th of October, followed by the mandatory use of face masks outdoors on the 4th
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of November and county-specific measures, depending of the 14-day cumulative incidence
in each county.

Since the appearance of the first cases in Wuhan, China, in late December of 2019,
several research teams have employed the use of mathematical and statistical techniques
to ascertain the course of the disease spread. Common mathematical tools to describe such
phenomena are systems of ordinary differential equations. The most notable are the SIR
and SEIR models, first developed by Kermack and McKendrick (1927). Throughout the
course of the COVID-19 pandemic, these models have been adapted from the SEIR model
to study an array of different epidemic questions. During the early months, these models
were employed to nowcast and forecast the national spread of SARS-CoV-2 [1]. Similar
models were also used to estimate the case ascertainment rate [2]. This is of note regarding
the transmission dynamic since it has been shown that a percentage of infected individuals
do not develop symptoms [3], but are still capable of infecting others [4]. One of the main
purposes of these modelling techniques is to evaluate the impact of contagion mitigation
measures, such as the closure of schools and lockdowns [5].

In this work, we use a SEIR-type model that takes into account the contact mixing
between different age groups depending on contact patterns at work, home, school and
other locations. Furthermore, it includes asymptomatic transmission, hospitalisation,
recovery and death. Contact tracing with isolation and isolation compliance and detection
were also implemented in the model framework. Upon proper parameter estimation,
it is possible to simulate the effect of non-pharmaceutical-interventions (NPI), such as
the closure of schools, mask usage, shielding of elderly individuals, reducing effective
contacts in workplaces, on the number of hospitalised individuals, or individuals who
require intensive care. Additionally, we were also able to estimate the effect that the NPIs
implemented up to 15th of January 2021 had on the disease transmission.

The paper is organised as follows: Section 2 pertains to the model description and
model analysis. Here we start by describing the model’s architecture. We explain each
compartment and respective flows. We also present the system of ordinary differential
equations. In this section, we consider two types of models: the homogeneous model and
the heterogeneous model. The former represents the model with random mixing, the lat-
ter pertains to the model with heterogeneous mixing among age-groups. Reproduction
numbers are derived in this chapter for each model. In Section 3, we detail the data used
to fit the model. We present estimates for each fixed parameter and their sources. Results
are presented in Section 4, where we detail the fitting of the model and estimate the effect
that the NPIs implemented so far had on the disease transmission and create scenario
simulations to forecast the effect of the lockdown measures instated on the 15th of January
2021. In Section 5 we discuss the model results, its strengths and limitations.

2. Materials and Methods
2.1. Model Description

In our model formulation we assumed Portugal to be a closed system with constant
population during the epidemic. An individual starts off as susceptible (S). After becoming
infected, but not yet infectious, it can either move into the exposed traced (Et), or exposed
non traced compartment (Ent), that is, individuals that have been traced and individuals
not caught in contact tracing, respectively. Considering the homogeneous model, that
is, the case where no age stratification is considered, individuals become Et at a rate qλ,
where λ is the force of infection and q represents the proportion of individuals that are
identified in the contact tracing process and are isolated.

An infected individual becomes infectious at ε rate. These individuals become either
asymptomatic (IA and IAq ) with probability p or symptomatic (IS and ISq ).

Isolated individuals are assumed to have reduced contacts during their infectious
period. Some of the individuals in the latter stage might refuse to comply with isolation
demands, hence a fraction (1 − c) of the traced individuals progress to non isolation
infectious compartments IS or IA. A proportion (d) of infected individuals whom are not
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isolated, might decide to self-isolate before they become infectious. This behavior might
stem from an individual’s risk perception.

Asymptomatic individuals infect others at a reduced rate αA, although not negligible,
since it has been shown that asymptomatic transmission makes up a large portion of
infections [4]. Asymptomatic and symptomatic individuals are removed at ra and rs rates,
respectively. A proportion of symptomatic individuals, θ, will develop a more serious
form of the disease which will require hospitalisation (H). Asymptomatic individuals are
assumed to always recover from the disease. Hospitalised individuals are removed at a ρ
rate. These individuals can either require critical care (HICU) with probability π, die (M)
with probability τ or recover (R and Robs). Immunity to reinfection is assumed for the time
window studied here (beginning February 2020 until mid January 2021).

S′ = −λS, (1)

E′t = qλS− εEt , (2)

I′A = pεEnt + (1− c)pεEt − ra IA , (3)

I′S = (1− d)(1− p)εEnt + (1− c)(1− p)εEt − rs IS , (4)

E′nt = (1− q)λS− εEnt , (5)

I′Aq = cpεEt − ra IAq , (6)

I′Sq = c(1− p)εEt + d(1− p)εEnt − rs ISq , (7)

H′ = θrs(IS + ISq)− ρH , (8)

H′ICU = πρH −ωHICU , (9)

M′ = µωHICU + τρH , (10)

R′obs = (1− θ)rs ISq + ra IAq + (1− π − τ)ρH + (1− µ)ωHICU , (11)

R′ = (1− θ)rs IS + ra IA. (12)

In the homogeneous model case, that is, the case where the population is not divided
into age groups and random mixing is assumed, the force of infection is given as λS =
β(αSCS IS + αACA IA + αSqCSq ISq + αAqCAq IAq)

S
N , where αi and Ci, for i = S, A, Sq, Aq,

are the relative transmission and contacts of infectious classes IA, IAq , IS and ISq .
A schematic diagram of the transmission model is represented in Figure 1.
For the heterogeneous version of the model we divide each compartment in n age

classes. Later on we discuss the possibility of parameters to be considered age dependent.
The force of infection of age-group j onto age-group i is:

Siλij = βSi

[
αSC

S
ij ISj/Nj + αAC

A
ij IAj/Nj + αSqC

Sq
ij ISqj/Nj + αAqC

Aq
ij IAqj/Nj

]
,

where αk and Ck
ij, for k = S, A, Sq, Aq, i, j = 1, ..., n, are the relative transmission and

contact matrices of infectious classes. Each contact matrix is of the form:

Ck = UkCw + WkCsch + YkCh + ZkCo, (13)

with Uk, Wk, Yk and Zk, for k = S, A, Sq, Aq, are n× n diagonal matrices with positive
entries which are used to change the number of contacts in each location and between age
groups, and Cl , for l = w, sch, h, o, correspond to contact matrices at work (w), school
(sch), home (h) and other social contacts (o). Hence if we consider n age-groups the force
of infection exerted onto age-group i is described as:

λi. = β
n

∑
j=1

αSC
S
ij ISj/Nj + αAC

A
ij IAj/Nj + αSqC

Sq
ij ISqj/Nj + αAqC

Aq
ij IAqj/Nj,
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meaning that individuals in age-group i become infected depending on their contacts with
all the age groups [6].

S

Et

IAq

ISq

Ent

IS

IA

H Hicu

M

Robs

R

qλS

(1− q)λS

cpε

c(1− p)ε

(1− c)(1− p)ε

(1− c)pε

pε

(1− d)(1− p)ε

θrs

(1− θ)rs

ra

ra

θrs

(1− θ)rs

πρ

d(1− p)ε
µω

(1− µ)ω

(1− π − τ)ρ

τρ

Figure 1. Schematic diagram of the homogeneous COVID-19 transmission model. Disease transmission is λS = β(αSCS IS +

αACA IA + αSqCSq ISq + αAqCAq IAq)
S
N , where αi and Ci, for i = S, A, Sq, Aq, are the relative transmissibility and contacts

of infectious classes.

2.2. Model Analysis
2.2.1. Homogeneous Model

Our compartmental model for COVID-19 infection transmission is a 12 equation
system (1)–(12). It can be seen as three variables system assuming s(t) = S a source
variable, i(t) = [Ent IA IS Et IAq IAq H HICU ]

T a transient variable and r(t) = [M R Robs]
T

a cumulative variable, as in a typical SIR epidemic model.
The population is kept constant over the time, since it verifies S′(t) + E′nt(t) + I′A(t) +

I′S(t) + E′t(t) + I′Aq(t) + I′Sq(t) +H′(t) +H′ICU(t) +M′(t) + R′0bs(t) + R′(t) = N, where N
is the total population.

Given an initial condition S(0), Ent(0), IA(0), IS(0), Et(0), IAq(0), ISq(0), H(0), HICU(0),
M(0), Robs(0), R(0) ≥ 0, summing to N, all possible equilibria are disease free of the form
(S, 0, 0, 0, 0, 0, 0, 0, 0, M, R, Robs), meaning that S ≥ 0, Ent = 0, IA = 0, IS = 0, Et = 0,
IAq = 0, ISq = 0, H = 0, H ICU = 0, M ≥ 0, Robs ≥ 0 and R ≥ 0, with S+ M+ R+ Robs = N.

We first study the asymptotic behavior of the model and linearise system (1)–(12)
around the disease-free steady state. Following the next generation approach in [7], the re-
sulting linearised sub-system for the 6 infected classes is of the form

X′ = (F−V)X, where X = [Ent IA IS Et IAq ISq]
T ,

where the F matrix corresponds to new infections:
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F =



0 qβαAqCAq
S
N qβαSqCSq

S
N 0 qβαACA

S
N qβαSCS

S
N

0 0 0 0 0 0
0 0 0 0 0 0
0 (1− q)βαAqCAq

S
N (1− q)βαSqCSq

S
N 0 (1− q)βαACA

S
N (1− q)βαSCS

S
N

0 0 0 0 0 0
0 0 0 0 0 0


, (14)

and V describes the other transitions between compartments

V =



ε 0 0 0 0 0
−cpε ra 0 0 0 0

−c(1− p)ε 0 rs −d(1− p)ε 0 0
0 0 0 ε 0 0

−(1− c)pε 0 0 −pε ra 0
−(1− c)(1− p)ε 0 0 −(1− d)(1− p)ε 0 rs

. (15)

The next generation matrix, FV−1, is

β S
N



qA q
αAq
ra

CAq q
αSq
rs

CSq qB q αA
ra

CA q αS
rs

CS
0 0 0 0 0 0
0 0 0 0 0 0

(1− q)A (1− q)
αAq
ra

CAq (1− q)
αSq
rs

CSq (1− q)B (1− q) αA
ra

CA (1− q) αS
rs

CS
0 0 0 0 0 0
0 0 0 0 0 0


, (16)

where

A =
(1− c)pαA

ra
CA +

cpαAq

ra
CAq +

(1− c)(1− p)αS
rs

CS +
c(1− p)αSq

rs
)CSq

and

B =
pαA
ra

CA +
(1− d)(1− p)αS

rs
CS +

d(1− p)αSq

rs
CSq.

The reproduction number is then the spectral radius of the next generation matrix
FV−1

R = ρ(FV−1) = β

[
pαACA

ra
((1− q) + q(1− c)) +

pαAqCAq

ra
qc+

+
(1− p)αSCS

rs
((1− c)q + (1− q)(1− d)) +

(1− p)αSqCSq

rs
(qc + d(1− q))

]
S
N

= β

[
p
ra
[((1− q) + q(1− c))αACA + qcαAqCAq)]+

+
1− p

rs
[(q(1− c) + (1− q)(1− d))αSCS + (qc + d(1− q))αSqCSq]

]
S
N

= R0
S
N

. (17)



Mathematics 2021, 9, 1084 6 of 16

Hence, for

R0
S
N

< 1, (18)

the disease free equilibrium is locally asymptotically stable and it is unstable otherwise.
Based on the linearized system we also define a time dependent effective reproduction
number as:

R(t) = R0
S(t)
N

, (19)

where R0 can be obtained from (17).
Finally, the basic reproduction number of this system, assumed as the average number

of infected cases produced by one infected individual during the infectious period assuming
a fully susceptible population (S = N) and q = 0 is then

R0 =β

[
pαACA

ra
+

(1− d)(1− p)αSCS
rs

+
d(1− p)αSqCSq

rs

]
(20)

=β

[
pαACA

ra
+

(1− p)
rs

((1− d)αSCS + dαSqCSq)

]
.

2.2.2. Heterogeneous Model

In the heterogeneous version of our COVID-19 model, we consider that each com-
partment is divided into n age classes to accommodate differences in contacts. We can
also assume other disease related parameters depending on age, further details will be
discussed in Section 3.

Once more, all possible equilibria are disease free of the form (Si, 0, 0, 0, 0, 0, 0, 0, 0, Mi,
Ri, Robsi

), with Si + Mi + Ri + Robsi
= Ni and

n

∑
i
(Si + Mi + Ri + Robs)i = N,

where Ni is the population size of age-group i.
We first study the asymptotic behavior of the model and linearize system (1–12)

around the disease-free steady state. Following the next generation approach as previously
we construct matrices F and V. F is a n× n block matrix where each block is of the form:

Fij =



0 qβαAqC
Aq
ij

Si
Nj

qβαSqC
Sq
ij

Si
Nj

0 qβαAC
A
ij

Si
Nj

qβαSC
S
ij

Si
Nj

0 0 0 0 0 0
0 0 0 0 0 0

0 (1− q)βαAqC
Aq
ij

Si
Nj

(1− q)βαSqC
Sq
ij

Si
Nj

0 (1− q)βαAC
A
ij

Si
Nj

(1− q)βαSC
S
ij

Si
Nj

0 0 0 0 0 0
0 0 0 0 0 0


, (21)

where Si is the susceptible at the disease free equilibrium considered of age class i, Nj is
the total population of age class j, with i, j = 1, . . . , n and n is the number of age classes
considered. V is a diagonal n block matrix where each block if of the form:

V =



ε 0 0 0 0 0
−cpε ra 0 0 0 0

−c(1− p)ε 0 rs −d(1− p)ε 0 0
0 0 0 ε 0 0

−(1− c)pε 0 0 −pε ra 0
−(1− c)(1− p)ε 0 0 −(1− d)(1− p)ε 0 rs

. (22)
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Hence, each 6× 6 block of the next generation matrix FV−1, (FV−1)ij has the form:

β



qA q
αAq
ra

C̃
Aq
ij q

αSq
rs
C̃

Sq
ij qB q αA

ra
C̃A

ij q αS
rs
C̃S

ij
0 0 0 0 0 0
0 0 0 0 0 0

(1− q)A (1− q)
αAq
ra

C̃
Aq
ij (1− q)

αSq
rs
C̃

Sq
ij (1− q)B (1− q) αA

ra
C̃A

ij (1− q) αS
rs
C̃S

ij
0 0 0 0 0 0
0 0 0 0 0 0


, (23)

where

A =
(1− c)pαA

ra
C̃A

ij +
cpαAq

ra
C̃

Aq
ij +

(1− c)(1− p)αS
rs

C̃S
ij +

c(1− p)αSq

rs
)C̃

Sq
ij

and

B =
pαA
ra

C̃A
ij +

(1− d)(1− p)αS
rs

C̃S
ij +

d(1− p)αSq

rs
C̃

Sq
ij ,

for C̃k
ij = Ck

ij
Si
Nj

, k = A, Aq, S, Sq. The basic reproduction number (q = 0, c = 1) and the
reproduction number for the complete heterogeneous model are then the spectral radius of
the corresponding next generation matrices FV−1.

If we assume that matrix V does not depend on the age classes we can get more
detailed expressions due to the block structure of the matrices

Rhet
0 = ρ(FV−1) = βρ

([
pαA
ra

C̃A
ij +

(1− d)(1− p)αS
rs

C̃S
ij +

d(1− p)αSq

rs
C̃

Sq
ij

])
(24)

and in order to compute the effective reproduction number, whenever q 6= 0, we obtain:

Rhet
0 = ρ(FV−1) = β ρ

([
pαA
ra

((1− q) + q(1− c)) C̃A
ij +

pαAq

ra
qc C̃Aq

ij +

+
(1− p)αS

rs
((1− c)q + (1− d)(1− q)) C̃S

ij +
(1− p)αSq

rs
(qc + d(1− q)) C̃Sq

ij

])
. (25)

3. Data

We fixed some disease related parameters according to available data. We used Por-
tuguese data whenever possible. The proportion of asymptomatic individuals was obtained
from the first wave of the Portuguese COVID-19 serological survey [3]. The reduced rate at
which asymptomatic individuals infected others was obtained in [8]. Data on the duration
of the latent and infectious period were assumed to be the same as in [9].

Contact data was obtained from [10], where the authors estimated the Portuguese
contact patterns based on the POLYMOD study [11] using a Bayesian hierarchical model
and data from health surveys. Figure 2 presents the contact matrices for each setting ,
which correspond to the matrices Ch, Csch, Cw and Co described in (13). Values for the
Portuguese population for each age-group was obtained in Statistics Portugal (INE), using
projected population for the year of 2019. Data on the mean duration of hospitalisations (ρ)
and ICU admissions (ω), the proportion of individuals who need intensive care (π) and the
proportion of individuals who die in each hospitalisation category due to COVID-19 (τ,µ)
was obtained in BIMH SPMS/ACSS. The proportion of hospitalised individuals in each
age-group was obtained in [12]. The parameter β was obtained from (25) by fixing all other
parameters and assuming R0 = 2.5 [13]. Parameter values can be found on Appendix A.
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Figure 2. Portuguese synthetic contact patterns for school, home, work and other locations prior to the pandemic ([10,11]).

Time series data for hospitalisation, ICU and deaths was extracted each day from the
Portuguese General-Directorate of Health COVID-19 online situation report [14].

4. Model Fit Strategy, Results and Simulations

The model has been fitted to the time series of the total number of individuals in
ICU for each day in Portugal from 10th of February 2020 to the 15th of January 2021.
This data was extracted from the Portuguese General-Directorate of Health COVID-19
online situation report [14]. ICU can be considered a more robust indicator than incidence
data, since it is not tied to testing strategy and capacity. To our knowledge, in Portugal,
the criteria to admit a COVID-19 patient to ICU has not changed. Due to the lack of reliable
data, for the present work, we considered a simpler form of the model, by assuming that
q = 0 and d = 0. Future work will address contact trace, compliance and case detection
when more detailed data is available.

We assumed that the infectious period, in symptomatic and non-symptomatic in-
dividuals, was the same. Day 0 was assumed to be the 10th of February 2020, since it
was an incubation period (approximately 5 days), [15], prior to the first disease onset in
Portugal [16]. Initial conditions were estimated for the first influx of infected but not yet
infectious individuals. It was assumed that these individuals belonged to the 45–49 age
group. The number of susceptible individuals at the start of the epidemic was obtained
from INE, the remaining initial conditions were set to 0. We fit the model until the 15th of
January 2021.

In order to estimate the changes in disease transmission that occurred due to the
implementation or lifting of NPIs, we divided the Portuguese COVID-19 epidemic in 6
periods. Each period starts and ends with a significant change in transmission:

1. Starts at the 10th of February 2020 (day zero) and encompasses the first exponential
growth phase of the epidemic, which was curbed by the implementation of the closure
of schools and state-of-emergency NPIs.
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2. Covers the first descendent incidence phase. Schools were closed and state-of-
emergency was in effect. Ends with the phase out of the state of emergency during
May-June. Schools were closed during this period.

3. This period covers the transition from the state-of-emergency to the summer. This
period ends as the new exponential growth phase beginning and schools opening.

4. Covers the second exponential growth phase after the summer is over. During this
period several softer NPIs were imposed during October and November. Schools are
opened during this period.

5. This period takes into account the short window between the reduction in infectious
contacts caused by the NPI implemented during October and November to the end
of the year.

6. This period starts with the third exponential phase of the Portuguese epidemic during
the Christmas holidays and continues until the 15th of January.

Although changes in the transmission are related to the implementation and lifting
of NPIs, it is usually not expected that these take effect immediately. Hence, it is im-
portant to estimate when these changes occurred and what was their relative change in
the transmission.

For the period prior to the epidemic, we assume the Portuguese baseline contact
pattern as in [10]. In the following periods we assumed that this pattern changed. Meaning
that matrix parameters Uk, Yk, Wk and Zk, for k = S, A, changed in time. Thus, following a
method similar to the one described in [9], we assumed these matrices to be of the form
α(t)I, where I is the identity matrix and αj(t) is a piecewise function of the form:

αj(t) =


1 , t < brj1

αji , brji ≤ t < brj(i+1)

αj5 , t ≥ brj5

, i = 1, 2, 3, 4; j = Uk, Yk, Wk, Zk, (26)

where brji is the moment in time where most likely occurred a change in disease transmis-
sion due to the occurrence i in the setting j, that is, these parameters set the beginning and
ending of an epidemic period and are calibrated in the model fitting procedure. The param-
eter αji represents the relative change in contacts. Since no data is available on the different
contact patterns in the work, home and other locations settings, during the COVID-19
pandemic, we assumed the same function for the contact matrices of these locations. For the
school contact matrix we assumed no contacts between the closure of schools starting in
16 March 2020 and ending in the 15 September. The same was assumed for the Christmas
holidays. Upon opening, we assumed a reduction in the schools reflecting the measures
implemented, such as, the use of face mask (47% effectiveness), the alternated schools
schedules (33% less contacts) and overall compliance to mask usage (90%). The effective-
ness of the mask usage was based on a meta analysis study which pooled eight studies
that measured the reduction in infection risk associated with mask usage by non-health
workers [17].

The model was numerically solved via the lsoda function in the deSolve package in
the R language and environment for statistical computing, version 4.0.3 [18]. Model was
fitted to the ICU prevalence data (HICUobs ) and fitting was performed via the differential
evolution algorithm using the R package DEoptim [19] by minimising the square root of the
sum of squares presented below:

argmin
φ

=

√
1
m ∑

t
(HICU(t, φ)− HICUobs)

2,

where HICUi (t) represents the total number of ICU individuals at a time t as given by the
model, m is the number of days considered in the fit and φ is the set of parameters we want
to calibrate. We ran the differential evolution algorithm for 250 iterations, resulting in a
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√
MSE = 27.998. Figure 3 displays the model fit to the data, as well as, the hospitalised

and death observed and model values.

Figure 3. Model fit to ICU data since the start of the epidemic (top left). Model fit to ICU data from the 1st of October 2020
to the 15th of January 2021 (top right). Observed and model values for hospitalised individuals (bottom left) and deaths
(bottom right). Solid lines represent the model, the dots represent observed values (data available in [14]).

The first epidemic period corresponds to the initial growth phase of incident cases with
an effective reproductive number ranging from 2.22 to 2.5. On the 18th of March the model
estimates a change in disease transmission, as seen on Figure 4, reducing overall contacts
in work, home and other settings by 69% and bringing the effective reproduction number
below 1. This change coincides with the announcement of the state of emergency, which
began on the 22nd of March 2020, schools had been closed since the 16th of this month. This
decrease in incident cases lasted until the 10th May. During this period, a gradual lifting of
the lockdown measures started. The phase down of measures occurred on the 4th of May,
18th of May and 1st of June. The model estimates that on the 10th of May the effective
reproduction number changed to 1.00, indicating an increase in transmission, probably due
to the start of the phase out. This phase lasted for several months, where Portugal went
into a low and steady incidence rate which in turn resulted in low hospitalisations, ICU
cases and deaths.

By the end of the summer of 2020 Portugal saw an increase in the transmission.
The model estimates that on the 18th of August there was an increase in the transmission
(R(t) = 1.26) which increased with the opening of schools on the 15th of September
(R(t) = 1.35). This increase in the transmission coincided with the end of the summer
holidays and back to school and work periods. During this period there was also an
increase in overall mobility of the population [20]. Finally the model estimates a reduction
in infection transmission on the 2nd of November which coincides with the mitigation
measures implemented during October and early November of 2020.
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Figure 4. Evolution of the effective reproduction number given by the model. The solid vertical lines correspond to the date
of the implementation of a NPI and the dashed lines mark the relaxation of the NPIs in place.

Schools closed for Christmas holidays on 18th of December. Although the number of
hospitalised and ICU individuals was high, both were stable. On the 23rd of December the
model estimates a significant change in transmission. The effective reproduction number
goes from 0.88 to 1.37. It is important to note that this is probable due to the softening of
gathering restrictions during this period. This transmission change was further exacerbated
by the opening of schools on the 4th January 2021.

The model also estimates that approximately 8% of the population had been infected
by the virus by 15 January 2021. This low number demonstrates the efficacy of the public
health transmission prevention measures implemented so far, and also shows that the
changes in the effective reproduction number were due to a change in contacts which were
a reflection of the implemented measures. However, these results should be compared to
seroprevalance data, mainly due to the uncertainty related to asymptomatic cases and its
importance in the disease transmission dynamics.

On the 15th of January 2021 the Portuguese government instated a new state of
emergency similar to the one implemented in March of 2020 in order to curb the high
number of incident cases, hospitalisations and deaths related to COVID-19. Schools were
also closed on the 22nd January. In order to evaluate the impact of these interventions and
measure their future effect on ICU admissions we consider the following simulation: (a)
we assumed that the lockdown and school closure had the desired effect in transmission
reduction on the same day of their implementation; (b) we assumed that the reduction in
contacts upon implementation to be the same as the one estimated for the first lockdown in
March of the previous year; (c) we created scenarios for no interventions, 1 month, 45 days
and 2 months of school closure plus lockdown; (d) we assumed that once the lockdown
was over and schools reopened the increase in contacts was the one estimated for August
of 2020. Figure 5 depicts this simulation.
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Figure 5. School closure and lockdown simulations on the number of ICU cases. The dotted vertical lines depict the imple-
mentation of the lockdown and the closure of schools. The simulation in red represents the scenario with no interventions.

The results show that the one month and 45 days scenarios are not enough to bring the
number of individuals in ICU below 200. The two month scenario shows that this number
is achieved in early April. It is important to note that the public health system is heavily
burden by the disease, meaning that a short lockdown might not be enough to reduce this
burden. All the scenarios show an increase in the number of ICU cases after the end of the
lockdown. This is expected since the number of susceptible individuals in the population
is high.

Uncertainty in these estimates was obtained by assuming that the number of prevalent
cases in ICU followed a Negative Binomial distribution with mean equal to the number of
cases given by the model and a dispersion parameter that was obtained via the maximum
likelihood method.

5. Discussion

The model depicted a good fit to the data. It was able to ascertain the impact of the
implementation of past NPIs in the disease transmission. The model also served as a tool to
create simulation scenarios for the effect of possible new interventions and their duration.
In this way being able to forecast proper control strategies.

However, there are several obstacles in ascertaining the proper parameter estimation.
Firstly, we assume that by changing contacts in the school setting there is no interference
in the contacts in the remaining settings. During the initial lockdown in March, it was
observed that mobility changed significantly [20], especially in the household setting.
However, individuals in households have contacts with the same individuals each day,
something that cannot be considered in the model. Information on contact patterns during
the pandemic is key to understanding which settings were most affected by the inter-
ventions, in order to properly create scenarios for future change in disease transmission.
Secondly, it was not possible to obtain most of the data by age-group for the period consid-
ered, which resulted in not being able to estimate age-dependent model parameters. Hence
it was assumed that individuals in the population only varied according to their mixing
patterns and hospitalisation risk.
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Some studies have reported that young children are less susceptible to infection [21].
However, no study in Portugal at the present time reports such findings. Hence, it is
assumed in the model that all individuals are equally susceptible to infection. It is important
to note that, if in fact children are less susceptible to infection, it will greatly affect the
impact of school opening and closure. Thirdly, in the data fitting procedure we assumed
that the number of prevalent individuals in ICU, reported each day corresponded to the
number of ICU beds occupied the day before, which means that we assumed that there is a
reporting delay of 1 day in this process.

We estimate that changes in the transmission occurred concurrently with either the
implementation of new mitigation measures, the lifting of set measures or with an increase
of population mobility [20]. After the schools closed and the implementation of a country-
wide lockdown, the model estimates that the basic reproduction number dropped from 2.5
to 0.69, which indicates that the implemented measures reduced disease transmission by
72%. This was the result of the schools closing on the 16th of March and the mandatory
‘stay-at-home’ from 22nd of March to the beginning of May 2020. During this period,
individuals were only allowed to leave home to work, whenever it could not be done from
home. Similar measures were adopted in other countries which also saw a reduction in the
number of new cases [13]. The phase out of the measures during May and June of 2020
saw an increase in transmission. We estimate that disease transmission increased after 10
May, though with an effective reproduction number of 1, indicating a steady number of
incident cases. The end of the summer saw an increase in disease transmission up until
November. This increase was probably a result of a reduction in risk perception of infection
during the summer, the movement of the population during the holidays and the returning
to school and work in September. Although with an R(t) much lower than the R0, this
increase happened slowly and steadily, as reported by [16], resulting in a second and higher
wave of cases and consequently an increase in ICU cases as depicted in Figure 3. 15th of
October, 4th and 9th of November saw measures implemented to fight this increase in
transmission. We estimate that a significant reduction in infectious contacts occurred after 2
November. December 2020 saw an increase in transmission on the 23rd, which might result
from the usual gatherings during the holidays and new year’s eve. This led the effective
reproduction rise to 1.45 in the beginning of January 2021, which in turn resulted in more
than 3500 hospitalised individuals and more than 600 individuals in ICU by mid January.

The results presented in this paper are similar to those described in [16]. The model
shows that the effective implementation of NPIs curbed the increase of new cases and
consequently, hospitalisations, ICU cases and deaths. The model’s simulations also indicate
that a short lockdown might not be enough to reduce the disease burden on public health
services. A combination of a longer lockdown with an effective vaccination strategy
might reduce the number of hospitalisations and deaths and help maintain the effective
reproduction number below 1.

In this paper, we do not address the use of the isolated portion of the model, that is we
do not consider the case q > 0. These individuals can be considered to only have contacts
within their household and therefore contribute to a less extent to the disease transmission.
However, this parameter is highly dependent on the efforts of public health official to trace
and isolate infected contacts or on the perception of individuals of the population to self
isolate upon exposure, hence it is expected that this value is inversely proportional to the
number of new cases. This parameter could be used in tandem with the contact matrices
to hypothesise an ideal strategy for epidemic control, that is, when incidence is low we
can remove stringent lockdown measure and reinforce contact tracing teams and promote
self-isolation. This topic will be further studied as new data becomes available.
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Appendix A

In Table A1 we describe the model’s parameters description, values and the source.
Table A2 describes the moments and description of the lifting/introduction of NPIs.

Table A1. Description, value and source for the parameters used in the model.

Parameter Description Value Source

β transmission probability 0.068 (taken from R0 = 2.5) [13]

ε latent period 1/3.8 days−1 [9]

rs/ra infectious period 1/3.4 days−1 [9]

θ probability of hospitalisation 5.1% for 0–49 years; [12]
(age-dependent) 10.11 % for 50–59 years;

21.99 % for 60–69 years;
40.00 % for 70+ years;

p proportion of asymptomatic 44.5% [3]

ρ rate of progression out of H 1/9 days−1 ACSS/SPMS

π fraction of hospitalized 12.6% ACSS/SPMS
individuals progressing to ICU 7.9% from 11/25 to 12/31
(time dependent) 11.2% from 12/31 onwards

τ proportion of hospitalization deaths 19.2% ACSS/SPMS

ω rate of progression out of ICU 1/20 days−1 ACSS/SPMS

µ proportion of ICU deaths 26.7% ACSS/SPMS

αA, αAq asymptomatic reduction in transmission 50% [22]

https://covid19.min-saude.pt/relatorio-de-situacao/
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Table A1. Cont.

Parameter Description Value Source

αS, αSq symptomatic reduction in transmission 0% assumed

Schoolr contact reduction in schools 33% assumed

Schoolc school mask use compliance 90% assumed

Maske f f mask effectiveness 47% [17]
in reducing transmission

S0 initial conditions for S [436,202 455,843 504,940 545,322 INE
550,444 547,680 566,594 672,422
784,224 789,733 745,178 740,141
676,762 622,912 549,591 1,107,921]t

E.nt0 initial condition for E [0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0]t estimated

br1H;W;O change in transmission 1 2020-03-18 (t = 37) estimated

br2H;W;O change in transmission 2 2020-05-10 (t = 90) estimated

br3H;W;O change in transmission 3 2020-08-18 (t = 190) estimated

br4H;W;O change in transmission 4 2020-11-02 (t = 266) estimated

br5H;W;O change in transmission 5 2020-12-23 (t = 317) estimated

α1H;W;O change in contacts after br1H;W;O 69% estimated

α2H;W;O change in contacts after br2H;W;O 55% estimated

α3H;W;O change in contacts after br3H;W;O 43% estimated

α4H;W;O change in contacts after br4H;W;O 58% estimated

α5H;W;O change in contacts after br5H;W;O 35% estimated

Table A2. Introduction and lifting of NPI adopted in Portugal, dates and descriptions. Lockdown
refers to a mandatory stay-at-home order. In Portugal this refers to a declaration of “state-of-
emergency” by the Portuguese government to provide a response to a national crisis. This state
allows the implementation of severe measures to fight disease spread. “state of contingency” refers
to the introduction of milder measures and “state of calamity” corresponds to a state in between
contingency and emergency.

Date Description

2020-03-12 announcement of schools closure
2020-03-16 closure of schools
2020-03-18 lockdown (“state-of-emergency”) announcement
2020-03-22 lockdown goes into effect
2020-04-28 announcement of lockdown phase-out
2020-05-04 first wave of lockdown phase-out
2020-05-18 second wave of lockdown phase-out
2020-06-01 third wave of lockdown phase-out
2020-09-15 “state of contingency” goes into effect
2020-10-15 “state of calamity” goes into effect
2020-10-28 outdoor obligatory use of mask
2020-11-04 lockdown measures on weekends for counties above 480/100,000 incidence
2020-11-09 “state of emergency”
2020-12-24 relaxation of measures during Christmas
2020-01-15 lockdown (“state of emergency”)
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