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Abstract: The paper is devoted to the guaranteeing estimation of parameters in the uncertain
stochastic nonlinear regression. The loss function is the conditional mean square of the estimation
error given the available observations. The distribution of regression parameters is partially unknown,
and the uncertainty is described by a subset of probability distributions with a known compact
domain. The essential feature is the usage of some additional constraints describing the conformity of
the uncertain distribution to the realized observation sample. The paper contains various examples
of the conformity indices. The estimation task is formulated as the minimax optimization problem,
which, in turn, is solved in terms of saddle points. The paper presents the characterization of both
the optimal estimator and the set of least favorable distributions. The saddle points are found via
the solution to a dual finite-dimensional optimization problem, which is simpler than the initial
minimax problem. The paper proposes a numerical mesh procedure of the solution to the dual
optimization problem. The interconnection between the least favorable distributions under the
conformity constraint, and their Pareto efficiency in the sense of a vector criterion is also indicated.
The influence of various conformity constraints on the estimation performance is demonstrated by
the illustrative numerical examples.

Keywords: mathematical modeling; estimation; minimax techniques; pareto optimization; regression
analysis; statistical uncertainty

1. Introduction

The problems of the heterogeneous parameter estimation in the regression under the
model uncertainty are considered intensively from the various points of view. The guar-
anteeing (or minimax) approach gives one of the most prospective tools to solve these
problems. For the proper formulation of an estimation problem in minimax terms one
usually needs:

• A description of the uncertainty set in the observation model;
• A class of the admissible estimators;
• An optimality criterion (a loss function) as a function of the argument pair “estimator–

uncertain parameter value”.

The problem is to find the estimator that minimizes the maximal losses over the whole
uncertainty set.

In the related literature, the parametric uncertainty set is specified either by geometric [1–7],
or by statistical [8–15] constraints. In the former case, the uncertain parameters are treated as non-
random but unknown ones lying within the fixed uncertainty set. In the latter case, the parameters
are supposed to be random with unknown distribution, and the uncertainty set is formed by all
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the admissible distributions. In both cases, the guaranteeing estimation presumes a solution to
a two-person game problem: the first player is “a statistician”, and the performer of the second,
“external” player role is dictated by the problem statement—it might be nature, another human or
device. Nevertheless, the guaranteeing approach suggests the unified prescription: finding the best
estimator under the worst behavior of the uncertainty. In practice, such a universality leads to a
loss of some prior information.

Let us explain this point by an example: the statistician knows that the source of the
uncertainty is nature. This means he/she “should bear in mind that nature, as a player, is
not aiming for a maximal win (that is, does not want us to suffer a maximal loss), and in
this sense, it is ‘impartial’ in the choice of strategies” [12]. Hence, in this case, the minimax
approach is too pessimistic and leads to cautious and coarse estimates. Even if we know the
second player is a human, this does not imply his/her “bad will” towards the statistician.
Hopefully, the second player has goal other than maximizing the loss of the statistician.
If the goal of the second player is known, one can change the estimation criterion and
transform the initial problem into a non-antagonistic game [16]. Otherwise, the statistician
can identify the goal indirectly, relying on the available observations. Hence, in the latter
case, it seems natural to introduce additional constraints to the uncertainty set, depending
on the realized observations.

The paper aims to present a solution to the minimax estimation problem under
additional constraints, which are determined by a conformity index of the uncertain
parameters to the available observations.

The paper is organized as follows. Section 2 contains the formal problem statement
with the conformity index based on the likelihood function. The section presents the
assumptions concerning the observation model, which guarantee the correctness of the
stated estimation problem and the existence of its solution. It also contains the comparison
of the problem with the recent investigations.

Section 3 provides the main result: the initial estimation problem is reformulated as
a game problem, which has a saddle point, defining the minimax estimator completely.
Moreover, the point is a solution to a dual finite-dimensional constrained optimization
problem, which is simpler than the initial minimax problem. The form of the minimax
estimator and properties of the least favorable distributions (LFD) is also included in
the section.

Section 4 is devoted to the analysis of the obtained results. First, a numerical algorithm
for the dual optimization problem solution is presented along with its accuracy charac-
terization. Second, some other conformity indices based on the empirical distribution
function (EDF) and sample mean are also introduced. Third, a new concept of the uncertain
distribution choice under a vector criterion is considered. The first criterion component,
being the loss function introduced in Section 2, describes the influence of the uncertainty on
the estimation quality. The second component is the conformity index, which characterizes
the accordance of the unknown distribution of γ and the realized observations Y = y. We
present an assertion that the LFD in the minimax estimation problem is Pareto-efficient in
the sense of the introduced vector criterion.

Section 5 presents the numerical examples, which illustrate the influence of various confor-
mity constraints on the estimation performance. Section 6 contains concluding remarks.

The following notations are used in this manuscript:

• B(S) is the Borel σ-algebra of the topological space S (is S is the whole space) or its
contraction to the set S (if S is a set of the topological space);

• col(A1, . . . , An) is a column vector formed by the ordinary or block components
A1, . . . , An;

• row(A1, . . . , An) is a row vector formed by the ordinary or block components A1, . . . , An;
• 〈a, b〉 is a scalar product of two finite-dimensional vectors;
• C(X ) is a set of all continuous real-valued functions with the domain X;
• ‖x‖ is the Euclidean norm of the vector x;
• PF{A} is the probability of the event A corresponding to the distribution F;
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• EF{X} is a mathematical expectation of the random vector X with the distribution F;
• conv(S) is a convex hull of the set S.

2. Statement of Problem
2.1. Formulation

Let us consider the following observation model:

Y = A(X, γ) + B(X, γ)V. (1)

Here:

• γ ∈ C ∈ B(Rm) is an unobservable random vector, having an unknown cumulative
distribution function (cdf) F;

• X ∈ Rn is a random unobservable vector with a known cdf Ψ(dx|γ) dependent on
the value of γ;

• Y ∈ Rk is a vector of observations;
• V ∈ Rk is a random vector of observation errors with the known probability density

function (pdf) φV(v);
• A(·) : C ×Rn → Rk is a nonrandom function characterizing the observation plant;
• B(·) : C ×Rn → Rk×k is a nonrandom function characterizing the observation error

intensity.

The observation model is defined on the family of the probability triplets {(Ω,F ,PF)}F∈F,
where:

• The outcome space Ω , C ×Rm ×Rk contains all admissible values of the compound
vector col(γ, X, V);

• σ-algebra is determined as F , B(C ×Rm ×Rk);
• The probability measures PF are determined as:

PF{γ ∈ dq, X ∈ dx, V ∈ dv} , Ψ(dx|q)F(dq)ϕV(v)dv. (2)

Using the generalized Bayes rule [17], it is easy to verify that the function:

L(y|q) ,
∫

Rn
|det(B(q, x))|−1φV(B−1(q, x)(y− A(q, x)))Ψ(dx|q) (3)

is the conditional pdf of the observation Y given γ: PF{Y ∈ dy|γ = q} = L(y|q)dy.
Furthermore, the function:

L(y, F) ,
∫

C
L(y|q)F(dq) (4)

defines the pdf of the observation Y under the assumption that the distribution law of γ
equals F:

L(y, F) =
PF{Y ∈ dy}

dy
=
∫

C
L(y|q)F(dq). (5)

Below in the paper we refer to the function L(y, F) as the sample conformity index based
on the likelihood function.

Our aim is to estimate the function h(γ, X) : C ×Rm → Rl of (γ, X), and the admissi-
ble estimators are the functions h(Y) : Rk → Rl of the available observations.

The loss function is a conditional mean square of estimate error given the available
observations:

J(h, F|y) , EF

{
‖h(γ, X)− h(Y)‖2|Y = y

}
, (6)

and the corresponding estimation criterion:

J∗(h|y) , sup
F∈FL

J(h, F|y) (7)
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characterizes the maximal loss for a fixed estimator h within the class FL of the uncertain
distributions of γ, for which L(y, F) > L.

The minimax estimation problem for the vector h is to find an estimator ĥ(·), such that:

ĥ(y) ∈ Argmin
h∈H

J∗(h|y), (8)

where H is a class of admissible estimators.

2.2. Necessary Assumptions Concerning Observation Model

To state the minimax estimation problem (8) properly and guarantee the existence of
its solution we have to make additional assumptions concerning the uncertainty of γ, the
observation model (1) and the estimated vector h:

(i) The set C is compact.
(ii) Let F be a family of all probability distributions with a support lying within the set C.

The set FL is itself a convex ∗–weakly compact [18] subset of F.
(iii) The constraint

L(y, F) > L (9)

holds for all F ∈ FL. The inequality (9) is called the conformity constraint of the level L
based on the likelihood function (or, shortly, likelihood constraint).

(iv) The set FL is nonempty.
(v) A(·, ·), B(·, ·), h(·, ·) ∈ C(C ×Rn).
(vi) pdf φV(v) > 0 for ∀v ∈ Rk; φV(v) ∈ C(Rk); the function Ψ(dx|q) is a regular version

of the conditional distribution for ∀ q ∈ C.
(vii) The observation noise is uniformly non-degenerate, i.e.,

min
(q,x)∈C×Rn

B(q, x)BT(q, x) > λ0 I > 0.

(viii) The inequalities ∫

Rk
‖v‖2φV(v)dv < ∞,

sup
q∈C

∫

Rn
‖A(q, x)‖2Ψ(dx|q) , KA < ∞,

sup
q∈C

∫

Rn
‖h(q, x)‖2Ψ(dx|q) , Kh < ∞

are true.
(ix) The set of admissible estimators H contains only the functions h(·) : Rk → Rl ,

for which:
sup
q∈C

∫

Rk
‖h(y)‖2L(y|q)dy < ∞. (10)

2.3. Argumentation

First, we discuss the sense of the assumptions in the subsection above.
Conditions (i)–(iv), describing the set FL, have the following interpretation.
The requirement for C to be compact (i.e., fulfillment of condition (i)) is standard

for the minimax estimation problems (see, e.g., [2,3]). In the case the prior information
about the vector γ limited by the knowledge of its domain C only, it is rather natural
to treat γ as a random vector with an unknown distribution F ∈ F. In practice we
often have some additional prior information concerning the moment characteristics
of γ, hence the entire uncertainty set F can be significantly reduced. If, for example,
µ(q) = col(µ1(q), . . . , µN(q)) : C → RN is a vector of convex moment functions, and
we know the vector µ , col(µ1, . . . , µN) ∈ RN of their upper bounds, then the set of ad-
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missible distributions takes the form
{

F ∈ F :
∫
C µj(q)F(dq) 6 µj, j = 1, N

}
. The ∗-weak

compactness and convexity can be easily verified for this subset. Further in the presenta-
tion, we do not stress the explicit form of the “total” constraints other than (9) forming the
subset FL: they should just guarantee the closure and convexity for FL. That is the sense of
condition (ii).

The conditional pdf L(y|q) (3) can also be treated as the likelihood function of the pa-
rameter γ, calculated at the point q given the observed sample Y = y. This likelihood value
reflects the relevance of the parameter value q to the realized observation y. By analogy,
the function L(y, F) can be considered as some generalization of the likelihood function
that evaluates the correspondence between the uncertain distribution F and the realized
observation y. The following lower and upper bounds for this value are obvious:

0 < L(y) , min
q∈C
L(y|q) 6 L(y, F) 6 max

q∈C
L(y|q) , L(y).

Below in the paper we suppose that the likelihood level L lies in [L(y),L(y)]. The
subset formed by constraint {F ∈ F :

∫
C L(y|q)F(dq) > L} is called a distribution subset

satisfying the likelihood conformity constraint of the level L. It is nonempty because it contains
at least all distributions with the support lying within the set {q ∈ C : L(y|q) > L}.

Adjusting the level L, we can vary the uncertainty set FL, choosing the distributions
F, which are more or less relevant to the realized observations Y = y. That is an essence
of condition (iii). Condition (iv) is obvious: all the constraints, defining the set FL, should
be feasible.

Condition (v) is technical: it provides correctness of a subsequent change of measure.
The condition is non-restricting because the broad class of the functions A, B and h can
be approximated by the continuous functions. Conditions (vi) and (vii) guarantee correct
utilization of the Fubini theorem and an abstract variant of the Bayes formula [19]. In
practice these conditions are usually valid. Condition (viii) guarantees finite variance for
both the observations and estimated vector independently of the distribution F.

Condition (ix) guarantees a finite variance of the estimate h(Y) independently of
F ∈ FL.

The solution to (8) is obvious in the case of the one-point set FL = {F}. This means
the distribution F of the parameter γ is known, and the initial problem is reduced to the
traditional optimal in the mean square sense (MS-optimal) estimation problem. The case of
the one-point set C = {q} is quite similar. In both cases the optimal estimator is completely
defined by the conditional expectation (CE): ĥ(y) = EF{h(γ, X)|Y = y} in the case of a
known distribution F, and ĥ(y) = E{q}{h(q, X)|Y = y} in the “one point” case.

In the general case of FL this result is inapplicable, because the CE EF{h(γ, X)|Y = y}
is a functional of the unknown distribution F.

The stated estimation problem has a transparent interpretation. First, under prior
uncertainty of the distribution F the replacement of the loss function (6) by guaranteeing
analog looks natural. Second, utilization of the CE in the criterion means that the desired
estimate should be calculated optimally for each observed sample. The criteria in the
form of the CE appear often in estimation and control problems [11,17,20–22]. Mostly,
the estimation is the preliminary stage in the solution to the optimization and/or con-
trol problem under incomplete information. The random disturbances/noises in such
observation systems represent:

• A result of natural (non-human) impacts;
• A randomized (or generalized) control [23,24], used in the dynamic system;
• A result of some uncontrollable (parasitic) input signals of “the external players”.

The impact of the two latter types is not necessarily the nonrandom functions of
available observations, but some “extra generated” random processes with distributions
dependent on the observations. This type of control is used in the areas of telecommuni-
cations [25,26], cellular networks [27], technical systems [28], etc. The proposed minimax
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criterion allows inhibiting the negative effect of the “additional randomness” in the external
signals (the third type of disturbances mentioned above) to the estimation quality.

The additional comprehension of the natural gaps, which are inherent to the mini-
max estimation paradigm, and the ways of their partial coverage can be revealed by the
following interpretation. It is well-known that in the case a minimax estimation problem
can be reduced to a two-person game with a saddle point, the minimax estimator is the
best one calculated for the LFD. The form of the LFD can be very strange and artificial.
Moreover, the conformity degree of the LFD to the realized observations can be too low.
Thus, the utilization of various sample conformity indices (particularly the ones based on
the likelihood function) admits all to describe this degree, restrict it from below, implicitly
reduce the distribution uncertainty set and exclude “exotic” variants of the LFDs.

Minimax estimation of the regression parameters is an investigation object in the
various settings. Mostly, the observation model is a linear function of the estimated param-
eters corrupted by an additive Gaussian noise. The optimality criterion is a mathematical
expectation of some loss function. In [29], the problem is solved by engaging the framework
of the fuzzy sets. The authors of [30,31] used the criterion other than the traditional mean
square one, and the estimated vector was random with the uncertain discrete distribution.
In [32], the Gaussian noises have an uncertain but bounded covariance matrix. The pa-
pers [33–35] are also devoted to the minimax Bayesian estimation in the regression under
various geometric and moment constraints of the estimated parameters. The criterion
functions are `p norms of the estimation errors.

The optimality criterion in the form of CE and the admissibility of nonlinear estimates
distinguish the proposed estimation problem from the recently considered ones [2,3,5–7,9].
A closely related problem considered in [11] has an essential difference. The uncertain
parameter in [11] was treated as unknown and nonrandom, and hence the initial minimax
problem could not be solved in terms of the saddle points. Moreover, the statistic uncer-
tainty in [11] gave no possibility to take into account any additional prior and posterior
information about the moment characteristics, conformity indices, etc. The paper [14] was
devoted to the particular case of the likelihood constraints only. An idea to use confidence
sets, calculated by the available statistical data, as the uncertainty sets of the distribution
moments was used in [36] for the conditionally-minimax prediction.

3. The Main Result

As is known, the CE is determined in a non-unique way, hence we should specify a
version of the CE so as to use it in further inferences. If the distribution F of the vector γ is
known, then the CE of an integrable random value h(γ, X) : C ×Rm → R can be calculated
by the abstract variant of the Bayes formula:

ĥF(y) =

∫
C×Rn h(q, x)|det(B(q, x))|−1φV(B−1(q, x)(y− A(q, x)))Ψ(dx|q)F(dq)∫
C×Rn |det(B(q′, x′))|−1φV(B−1(q′, x′)(y− A(q′, x′)))Ψ(dx′|q′)F(dq′)

, (11)

i.e., EF{h(γ, X)|Y = y} = ĥF(y) (11) PF − a.s. Below in the presentation we use the CE
version, defined by (11). It should also be noted that if ĥ(·) is the desired minimax estimator,
then the inclusion (8) must be satisfied point-wise for any sample y ∈ Rk.

Further in the paper the function:

J∗(F|y) , min
h∈H

J(h, F|y) = J(ĥF, F|Y) = ‖̂h‖2
F
(y)− ‖ĥF(y)‖2 (12)

is called the dual criterion for J∗ (7). All CEs in (12) are calculated by (11).
Using (3) for the calculation of L, the notation:

ν(q, x|y) , |det B(q, x)|−1φV(B(q, x)−1(y− A(q, x))), (13)
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and the CE version (11), the loss function (6) can be rewritten in the form:

J(h, F|y) =
∫
C×Rn ‖h(q, x)− h(y)‖2ν(q, x|y)Ψ(dx|y)F(dq)∫

C L(y|q′)F(dq′)
. (14)

As can be seen from (14), the function J(h, F|y) is neither convex nor concave in F,
which complicates the solution to the estimation problem (8). Moreover, the argument F
lies in the abstract infinite-dimensional space of the probability measures. Nevertheless,
the problem can be reduced to a standard finite-dimensional minimax problem with a
convex–concave criterion.

First, we introduce a new reference measure F′ and verify that the loss function (14)
represents a functional, which is linear in F′.

Let:

F′(F, dq|y) , L(y|q)F(dq)∫
C L(q′|y)F(dq′)

. (15)

Lemma 1. If conditions (i)–(ix) are satisfied, then the following assertions are true.

1. F′(F, dq|y) is a probability measure for ∀ y ∈ Rk, and F′(F, ·|y) ∼ F(·). The transformation
(15) is a bijection of F into itself, and its inversion F′′ has the form:

F′′(F′, dq|y) , L−1(y|q)F′(dq)∫
C L−1(q′|y)F′(dq′)

. (16)

2. The set F′L of all distributions obtained from FL by the transformation (15):

F′L , {F(·) : ∃ F ∈ FL, F(·) = F′(F, ·|y)} (17)

is convex and ∗-weakly closed.

The proof of Lemma 1 is given in Appendix A.
Applying the Fubini theorem and keeping in mind (11) and (15), we can rewrite the

loss function (14) in the form:

J(h, F|y) =

∫
C

∫
Rn ‖h(q,x)−h(y)‖2ν(q,x|y)Ψ(dx|y)

L(y|q) L(y|q)F(dq)
∫
C L(q′|y)F(dq′)

=
∫

C

∫
Rn ‖h(q, x)− h(y)‖2ν(q, x|y)Ψ(dx|y)

L(y|q) F′(F, dq|y) = J(h, F′|y). (18)

To reduce the initial problem to some finite-dimensional equivalent, we also introduce
the vectors:

w(y|q) , col(w1(y|q), w2(y|q)) ∈ R`+1 :

w1(y|q) , EF

{
‖h(γ, X)‖2|Y = y, γ = q

}
=

∫

Rn
‖h(q, x)‖2ν(q, x)Ψ(dx|y)

L(y|q) ,

w2(y|q) , EF{h(γ, X)|Y = y, γ = q} =

∫

Rn
h(q, x)ν(q, x)Ψ(dx|y)

L(y|q) ;

(19)

w(F|y) , col(w1(F|y), w2(F|y)) ∈ R`+1 :

w1(F|y) , EF

{
‖h(γ, X)‖2|Y = y

}
=
∫

C
w1(y|q)F′(F, dq|y),

w2(F|y) , EF{h(γ, X)|Y = y} =
∫

C
w2(y|q)F′(F, dq|y),

(20)
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and their collections generated by the subsets C and FL:

W(C|y) , {w(y|q) : q ∈ C},
W(FL|y) , {w(F|y) : F ∈ FL}.

(21)

Here and below the notation H(y) also stands for the whole set of the estimate values
h ∈ H calculated for the fixed argument y.

The set W(FL|y) ∈ B(R`+1) is compact; moreover (see [37]), the inclusion W(FL|y) ⊆
conv(W(C|y)) holds.

On the set R` ×R`+1 we prepare the new loss function:

J(η, w) , w1 − 2〈η, w2〉+ ‖η‖2 = w1 − ‖w2‖2 + ‖η − w2‖2. (22)

It is easy to verify that the loss function (18) can be expressed via (22):

J(h, F|y) =
∫

C
J(h(y), w(y|q))F′(F, dq|y) = J(h(y), w(F|y)).

The corresponding guaranteeing criterion takes the form:

J∗(η|y) , sup
w∈W(FL |y)

J(η, w), (23)

and its dual can be determined as:

J∗(w) , min
η∈H(y)

J(η, w) = J(w2, w) = w1 − ‖w2‖2. (24)

The finite-dimensional minimax problem is to find:

ĥ(y) ∈ Argmin
η∈H(y)

J∗(η|y). (25)

From the definitions of W(FL|y), H(y) and criterion (23) it follows that the problem (25)
is equivalent to the initial minimax estimation problem (8):

min
h∈H

J∗(h|y) = min
η∈H(y)

J∗(η|y) , J (y), (26)

Argmin
h∈H

J∗(h|y)
∣∣∣
y
, {ĥ(y) : J∗(ĥ|y) = J (y)} = Argmin

η∈H(y)
J∗(η|y) (27)

for ∀ y ∈ Rk.
The following theorem characterizes the solution to the finite-dimensional minimax

problem in terms of a saddle point of the loss function J.

Theorem 1. For ∀ y ∈ Rk, the loss function J(η, w) (22) has the unique saddle point (ĥ(y), ŵ(y))
on the set H(y)×W(FL|y). The second block subvector ŵ(y) = col(ŵ1(y), ŵ2(y)) ∈W(FL|y)
of the saddle point is the unique solution to the finite-dimensional dual problem:

{ŵ(y)} = Argmax
w∈W(FL |y)

J∗(w), (28)

and ĥ(y) = ŵ2(y) is the second sub-vector of this optimum ŵ(y).

The proof of Theorem 1 is given in Appendix B.
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By the definition of W(FL|y), for any vector ŵ(y) there exists at least one distribution
F̂ such that:

ŵ1(y) = EF̂

{
‖h(γ, X)‖2|Y = y

}
, ŵ2(y) = EF̂{h(γ, X)|Y = y}. (29)

F̂ is an LFD, and the whole set of the distributions satisfying (29) is denoted by F̂L.
Theorem 1 allows to obtain a solution to the initial minimax estimation problem.

The result is formulated as:

Corollary 1. The estimator ŵ2(y) introduced in Theorem 1 is a solution to the minimax estimation
problem (8), i.e., ĥ(y) = ŵ2(y) point-wise. The set {(ĥ, F̂)}F̂∈F̂L

presents the saddle points of the

loss function J (6) on the set H× FL. The estimator ĥ(y) is invariant to the LFD choice: if F̂′ and
F̂′′ are different LFDs then EF̂′{h(γ, X)|Y = y} = EF̂′′{h(γ, X)|Y = y} = ŵ2(y).

The following assertion characterizes the key property of the LFD set F̂L.

Corollary 2. There exists a variant of the LFD F̂L ∈ F̂ concentrated at most at dim(W(FL|y))+ 1
points of the set C.

The proof of Corollary 2 is given in Appendix C.
The presence of the discrete version of LFD is a remarkable fact. Let us remind the

reader that initially, we suppose that the uncertain vector γ lies in the set C. The determin-
istic hypothesis concerning γ hopelessly obstructed the solution to the minimax estimation
problem. To overcome this obstacle we provide the randomness of γ: the vector keeps
constant during the individual observation experiment, and the stochastic nature of γ
appears from experiment to experiment only. The existence of a discrete LFD returns us
partially to the primordial situation. The point is that there exists a set of γ values that are
the most difficult for estimation. Tuning to these parameters we can obtain estimates of γ
with the guaranteed quality.

Theorem 1 and Corollary 1 simplify the solution to the initial problem (8), reducing
it to the maximization of the finite-dimensional quadratic function (28) over the convex
compact set.

4. Analysis and Extensions
4.1. Dual Problem: A Numerical Solution

To simplify presentation of the numerical algorithm of problem (28)’s solution, we
suppose that the uncertainty set FL takes the form FL = {F ∈ F : L > L}, i.e., it is
restricted by the conformity constraint only.

Let us consider the case C , {qj}j=1,M ⊂ Rm, which corresponds to the practical
problem of Bayesian classification [10,38]. Here the dual problem (28) has the form
ŵ(y) = Argmax

w∈conv(W(C|y))
J∗(w). Its solution can be represented as ŵ(y) = ∑M

j=1 P̂j(y)w(qj|y),

where P̂(y) , row(P̂1(y), . . . , P̂M(y)) is a solution to the standard quadratic programming
problem (QP problem):

P̂(y) ∈ Argmin
p1,...,pM>0:

∑M
j=1 pj=1




M

∑
j=1

pjw1(qj|y)−
M

∑
j,j′=1

pj pj′〈w2(qj|y), w2(qj′ |y)〉


. (30)

Consequently, in the case of finite C the minimax estimation problem can be reduced
to the standard QP problem with well-investigated properties and advanced numerical pro-
cedures.

Utilization of the finite subsets C(·) instead of the original domain C allows to calculate
the “mesh” approximations for the solution to (8).
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Let:

• εn ↓ 0 be a decreasing nonrandom sequence characterizing the approximation accu-
racy;

• {C(εn)}n∈N: C(ε1) ⊆ C(ε2) ⊆ C(ε3) ⊆ . . . ⊆ C be a sequence of embedded subdivi-
sions;

•
ωε

1(y) , max
q1,q2∈C :
‖q1−q2‖<ε

|w1(q1|y)− w1(q2|y)|,

ωε
2(y) , max

q1,q2∈C :
‖q1−q2‖<ε

‖w2(q1|y)− w2(q2|y)‖
(31)

be modulus of continuity for w1(y|q) and w2(y|q).
The assertion below characterizes the divergence rate of the approximating solutions

to the initial minimax estimate.

Lemma 2. If {ŵ(n|y)}n∈N are corresponding solutions to the problems:

ŵn(y) = Argmax
w∈conv(W(C(εn)|y))

J∗(w)

then the following sequences are convergent as εn ↓ 0:

ŵn(y)→ ŵ(y),
J (y)− max

w∈conv(W(C(εn)|y))
J∗(w) 6 ωεn

1 (y) + K[ωεn
2 (y)]2 ↓ 0 (32)

with some constant 0 < K < ∞.

The proof of Lemma 2 is given in Appendix D.

4.2. The Least Favorable Distribution in the Light of the Pareto Efficiency

The minimax estimation problem under the conformity constraints is tightly inter-
connected with the choice of the distribution F̂ that is optimal in the sense of a vector-
valued criterion. On the one hand, the solution to the considered estimation problem
is grounded on the evaluation of the distribution F̂, maximizing the dual criterion (12):
I1(F|y) , J∗(F|y) → maxF. On the other hand, the distribution F should conform to the
realized sample Y = y, and the maximization of the conformity index leads to the following
optimization problem: I2(F|y) , L(y, F)→ maxF.

Obviously, the criteria I1 and I2 are conflicting; hence the proper choice of F requires
the application of the vector optimization techniques.

Let:

• F̂0 be a set of the LFDs in the estimation problem (8) without conformity constrains
(i.e., as L = 0);

• L̃(y) , maxF∈F̂0
L(y, F);

• M ∈ [L̃(y),L(y)] be an arbitrary fixed conformity level;
• ŵ(y) = Argmaxw∈W(FM |y) J∗(w) be a solution to the finite-dimensional dual problem;

• F̂M be the set of corresponding LFDs.

Lemma 3. Any least favorable distribution F̂M ∈ F̂M is Pareto-efficient with respect to the
vector-valued criterion (I1, I2).

The proof of Lemma 3 follows directly from the Germeyer theorem [16].
Consideration of the constrained minimax estimation problem in light of the optimiza-

tion by the vector criterion is somehow close to the one investigated in [31], where the
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estimation quality is characterized by the `2 norm of the error, and the Shannon entropy is
characterized as a measure of the statistical uncertainty of the estimated vector.

4.3. Other Conformity Indices

First, we consider the conformity constraint (9) thoroughly. It admits the following
treatment. Let F̃ ∈ F be some reference distribution. The constraint L(y, F) > L(y, F̃)
is a specific case of (9); the feasible distributions F should be relevant to the available
observations Y = y no less than the reference distribution F̃ is. One more treatment is also
acceptable. Let q̃ ∈ C be some “guess” value of the uncertain parameter γ, and α > 0 be a
fixed value. The constraint:

L(y, F)
L(y|q̃) > α (33)

is a specific case of (9): it means that the likelihood ratio of any feasible distribution F to
the one-point distribution at q̃ should be no less that the level α. Obviously, the guess value
q̃ could be chosen from the maxima of the function L, i.e., q̃ ∈ Argmaxq∈C L(y|q), but cal-
culation of these maxima is itself a nontrivial problem of likelihood function maximization.
In Section 5 we use some modification of (33):

L(y, F)−minq∈Cn L(y|q)
maxq∈Cn L(y|q)−minq∈Cn L(y|q)

> r (34)

where Cn ⊆ C is a known subset, and r ∈ (0, 1) is a fixed parameter. This form is important,
because in the case of C = Cn it guarantees for the constraint (34) to be active in the
considered minimax optimization problem for each r ∈ (0, 1).

Furthermore, the proposed conformity index L(y, F) (9) is a non-unique numerical
characteristic that describes the interconnection between F and Y. For example, an alterna-
tive conformity index can be defined as

∫
C f (L(y|q))F(dq), where f (·) : R → R is some

continuous nondecreasing function. Another way to introduce this index is to set it as∫
S(y) L(y

′, F)dy′ = PF{Y ∈ S(y)}, i.e., as a probability that the observation Y lies in the

confidence set S(y) ∈ B(Rk).
For a particular case of the observation model (1) we can propose one more conformity

index that is based on the EDF. Let us consider the observation model with the “pure
uncertain” estimated parameter γ:

Yt = A(γ) + B(γ)Vt, t = 1, T. (35)

Here:

• YT , col(Y1, . . . , YT) are available observations;
• γ ∈ C ∈ Rm is a random vector with unknown distribution F;
• VT , col(V1, . . . , VT) are the observation errors that are i.i.d. centered normalized

random values with the pdf φV(v).

If the value γ is known, the observations {Yt}t=1,T can be considered as i.i.d. random
values, whose pdf is equal to φV(v) after some shifting and scaling. The EDF of the sample
{Yt}t=1,T has the form:

F∗T(y) ,
1
T

T

∑
t=1

I(y−Yt). (36)

On the other hand, the cdf FY(y) of any observation Yt for a fixed distribution F can
be calculated as:

FY(y) ,
∫ y

−∞

∫

C
φV

(
u− A(q)

B(q)

)
F(dq)du. (37)

The sample conformity index based on the EDF is the following value:
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M(YT , F) , ‖F∗T − FY‖∞ = sup
y∈R
|F∗T(y)− FY(y)|. (38)

The new uncertainty set FM describing all admissible distributions F satisfies condi-
tions (i), (ii) and (iv) above, but condition (iii) is replaced by the following one:

(x) the constraint
M(YT , F) 6 M (39)

This holds for all F ∈ FM and some fixed level M > 0. It is called the constraint based
on the EDF.

The proposed conformity index represents the well known Kolmogorov distance used
in the goodness-of-fit test. One also knows the asymptotic characterization of M(YT , F):

lim
T→∞

P

{
M(YT , F) <

x√
T

}
=

+∞

∑
−∞

(−1)je−2j2x2
.

Furthermore, the value M(YT , F) can be easily calculated, because the function F∗T is
piece-wise constant while FY is continuous:

M(YT , F) = max
16t6T

max(|F∗T(Yt)− FY(Yt−)|, |F∗T(Yt)− FY(Yt)|),

and the cdf FY is calculated by (37).
The distribution set determined by (39) takes the form:
{

F ∈ F : −M + F∗T(Yt) 6
∫ Yt

−∞

∫

C
φV

(
u− A(q)

B(q)

)
F(dq)du 6 M + F∗T(Yt−), t = 1, T

}
. (40)

Using the variational series Y(T) , col(Y(1), . . . , Y(T)) of the sample YT , and recalling
F∗T(Y(t)) =

t
T , F∗T(Y(t)−) = t−1

T , (40) can be rewritten in the form:
{

F ∈ F : −M +
t
T

6
∫ Y(t)

−∞

∫

C
φV

(
u− A(q)

B(q)

)
F(dq)du 6 M +

t− 1
T

, t = 1, T
}

. (41)

It can be seen that this set is a convex closed polyhedron, lying in F, with at most
2T facets. All assertions formulated in Section 3 are valid after replacing the uncertainty
set FL, generated by the likelihood function, by the set FM, generated by the EDF. More-
over, the mesh algorithm for the dual optimization problem solution, presented above in
Section 4.1, can also be applied to this case.

Let us consider the observation model (35) again. We can use the sample mean
Y , 1

T Yt as one more conformity index. Let us remind the reader that due to the model
property, the random parameter γ(ω) is constant for each sample YT . For rather large

T values, the central limit theorem allows to treat the normalized value
√

T(Y−A(γ))
|B(γ)| as

a standard Gaussian random one. We then fix a standard Gaussian quantile cα of the
confidence level α and exscind the subset:

Cα ,
{

q ∈ C : Y− cα |B(γ)|√
T

6 A(q) 6 Y + cα |B(γ)|√
T

}
⊆ C.

If Cα is compact then the set Fα of all probability distributions with the domain lying
in Cα is called the set of admissible distributions satisfying the sample mean conformity constraint
of the level α.

The comparison of the minimax estimates, calculated under various types of the
conformity constraints, is presented in the next section.
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5. Numerical Examples
5.1. Parameter Estimation in the Kalman Observation System

Let us consider the linear Gaussian discrete-time (Kalman) observation system:

{
Xt = aXt−1 + bVt, t = 1, T, x0 ∼ N (0, P0),
Yt = cXt + f Wt, t = 0, T,

(42)

where:

• XT , col(X0, . . . , XT) is an unobservable state trajectory (the autoregression Xt is
supposed to be stable);

• YT , col(Y0, . . . , YT) are available observations;
• VT , col(V1, . . . , VT) and WT , col(W0, . . . , WT) are vectorizations of independent

standard Gaussian discrete-time white noises;
• P0, c and f are known parameters;
• γ , col(a, b) is an uncertain vector lying in the fixed rectangle C , [a, a]× [b, b].

Our goal is to calculate the proposed minimax estimates of the uncertain vector γ and
analyze their performance depending on the specific form of the loss function (6). To vary
the loss function we can either specify the estimated test signal h(·) or determine different
Euclidean weighted norms. We choose the second approach and define the following norm
‖ · ‖ξX ,ξγ

for the compound vector: Z , col(XT , γ):

‖Z‖ξX ,ξγ
,

√√√√ξ2
X

T

∑
t=1

X2
t + ξ2

γ(a2 + b2),

and the corresponding loss function takes the form:

JξX ,ξγ
(Z, F|YT) , EF

{
‖Z− Z(YT)‖2

ξX ,ξγ
|YT

}
. (43)

In the case ξγ = 1 and ξX = 0 we obtain “the traditional” case of the mean-square loss
conditional function J0,1(Z, F|YT) = EF

{
‖γ− γ(YT)‖2|YT

}
, and the estimation quality

of γ(·) is determined directly through the loss function. Using ξγ = 0 and ξX = 1 we
transform the loss function into J1,0(Z, F|YT) = EF

{
‖X− X(YT)‖2|YT

}
, and the estimation

of γ appears indirectly via the estimation of the state trajectory XT .
The minimax estimation is calculated by the numerical procedure introduced in

Section 4.1 with the uniform mesh Cha ,hb
of the uncertainty set C; ha and hb are correspond-

ing mesh steps along each coordinate.
We calculate the minimax estimate with the likelihood conformity constraint of the

form:
L(YT , F)−min(a,b)∈Cha ,hb

L(YT |(a, b))

max(a,b)∈Cha ,hb
L(YT |(a, b))−min(a,b)∈Cha ,hb

L(YT |(a, b))
> r,

where r ∈ (0, 1) is a confidence ratio.
We compare the proposed minimax estimate with some known alternatives.
The calculations have been executed with the following parameter values: C =

[−0.1; 0.1] × [0.1; 1], a = −0.1, b = 0.1, P0 = 0.5, c = 1, f = 0.5, T = 1000, ha = 0.01,
hb = 0.045. The choice of the parameters can be explained by the following facts. First,
the point (−0.1; 0.1) of actual parameter values belongs to the domain of the LFD for
both loss functions J0,1 and J1,0. This means the appearance of just the LFD for both cases.
Second, in spite of sufficient observation length, the signal-to-noise ratio is rather small,
which prevents high performance of the asymptotic estimation methods.

Figure 1 presents the evolution of the minimax estimates â0,1(r) and â1,0(r) of a drift
coefficient depending on the confidence ratio r ∈ (0, 1). The minimax estimates are
compared with;
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• The estimate aMS(YT) calculated by the moment/substitution method [12]:

aMS =
T

∑
t=1

yt−1yt

/
(

T

∑
t=1

y2
t − T f 2), b

MS
=

√√√√ 1
c2

(
1− (aMS)2

)
(

T

∑
t=1

y2
t − T f 2);

• The Bayesian estimate âF1(YT) (11) calculated under the assumption that prior distri-
bution F1 of γ is uniform over the whole uncertainty set C;

• The Bayesian estimate âF2(YT) (11) calculated under the assumption that the prior
distribution F2 of γ is uniform over the vertices of C;

• The estimate aEKF(YT) calculated by the extended Kalman filter (EKF) algorithm [39]
and subsequent residual processing;

• The maximum likelihood estimate (MLE) aMLE(YT) calculated by the expectation/maximization
algorithm (EM algorithm) [17].

Figure 2 contains a similar comparison of the diffusion coefficient estimates b̂0,1(r)
and b̂1,0(r).

0 0.2 0.4 0.6 0.8 1

ï0.3

ï0.2

ï0.1
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Figure 1. Estimation of the drift coefficient a.

0 0.2 0.4 0.6 0.8 1
 

0.05

0.1

0.15

0.2

 

 

b
M S

b̂F1 b̂F2 b
EK F

b
M LE b̂1,0(r ) b̂0,1(r )

Figure 2. Estimation of the diffusion coefficient b.
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The results of this experiment allow us to make the following conclusions.

1. Both minimax estimates (â0,1(r), b̂0,1(r)) and (â1,0(r), b̂1,0(r)) converge to the MLE

(aMLE, b
MLE

) as r → 1. Nevertheless, the rate of convergence depends on the specific
choice of the loss function (J0,1 or J1,0 in the considered case).

2. Both minimax estimates are more conservative than the MLE, because they take into
account a chance for other points of the LFD domain to be realized.

3. Under an appropriate choice of the confidence ratio r, both minimax estimates become
more accurate than other candidates, except for the MLE.

5.2. Parameter Estimation under Additive and Multiplicative Observation Noises

We consider the observations YT , col(Y1, . . . , YT):

Yt = aXt + Vt, t = 1, T. (44)

Here:

• a is an estimated value;
• XT , col(X1, . . . , XT) is a vector of the i.i.d. unobservable random values (multiplica-

tive noise): X1 ∼ R[0, 1];
• VT , col(V1, . . . , VT) is a vector of the i.i.d. unobservable random values (additive

noise): V1 ∼ N (0, σ).

We assume that the parameter a is random with unknown distribution, whose support
set lies within the known set C , [c1, c2]. The loss function has the form:

J(a, F|YT) = EF

{
‖a− a(YT)‖2|YT

}
.

In this example our goal is to compare the minimax estimates of the parameter a under
conformity constraint based either on the likelihood function or on the EDF.

The minimax estimations are calculated for the following parameter values: a = 2,
T = 20, C = [2, 3], σ = 0.1. We use the proposed numerical procedure under a uniform
mesh Ch of the set C with the step h = 0.005. The example has some features. First, the ob-
servation model contains both the additive (VT) and multiplicative (XT) heterogeneous
noises. Second, the available observed sample is not too long to provide the high quality
for the consistent estimates. Third, the exact value of a is equal 2; meanwhile under the
constraint absence there exists a discrete variant of the LFD with the finite support set
{2, 3}. This means that the LFD is realized only in the considered observation model.

The likelihood conformity constraint looks similar to the one from the previous
subsection:

L(YT , F)−minq∈Ch L(YT |q)
maxq∈Ch L(YT |q)−minq∈Ch L(YT |q)

> r, (45)

where r ∈ (0, 1) is a confidence ratio.
Figure 3 contains comparison of the minimax estimate â(r) with its actual value a,

the (consistent asymptotically Gaussian) M-estimate asub , 2
T ∑T

t=1 Yt, obtained by the
moment/substitution method [12] and the MLE aMLE.

Next, we investigate minimax posterior estimates under the conformity constraint
based on the EDF. The constraint is of the form:

maxF∈FCh
M(YT , F)−M(YT , F)

maxF∈FCh
M(YT , F)−minF∈FCh

M(YT , F)
> r, (46)

where r ∈ (0, 1) is some fixed confidence ratio, and FCh is a “mesh” approximation of the
set FC corresponding to the uniform “mesh” Ch. The form (46) of the conformity constraint
provides that it is active in the minimax optimization problem for any r ∈ (0, 1).
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Figure 3. Estimation of the coefficient a under conformity constraint based on the likelihood function.

Figure 4 contains:

• The EDF F∗Y(y) calculated by the sample YT ;

• The cdf’s Fq
Y(y) =

∫ y
−∞ φV

(
u−A(q)

B(q)

)
du of Y, corresponding to the one-point distribu-

tion concentrated at the point q (q = 2, 3);
• The cdf FY(y) FY(y) ∈ ArgminF∈FCh

M(YT , F), closest to the EDF F∗Y(y) within the

set FCh .

Note that F2
Y(y) is a cdf of Y corresponding to the actual value of a.
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Figure 4. The EDF of Y and different cdf’s of Y under various choices of a.

Figure 5 contains a comparison of the minimax estimate â(r) under the conformity
constraint, based on the EDF, with its actual value a, the moment/substitution estimate
asub and the MLE aMLE.

The results of this experiment allow us to make the following conclusions.

1. The minimax estimate â(r) under the conformity constraint, based on the EDF, does
not converge to the MLE aMLE as r → 1.

2. Under an appropriate choice of the confidence ratio r, the minimax estimate under
the EDF constraint becomes more accurate than other candidates, including the MLE.
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Figure 5. Estimation of the coefficient a under conformity constraint based on the EDF.

6. Conclusions

The paper contains the statement and solution to a new minimax estimation problem
for the uncertain stochastic regression parameters. The optimality criterion is the condi-
tional mean square of the estimation error given the realized observations. The class of
admissible estimators contains all (linear and nonlinear) statistics with finite variance. The a
priori information concerning the estimated vector is incomplete: the vector is random
and the part of its components lies in the known compact. The key feature of the consid-
ered problem is the presence of the additional constraints for the statistical uncertainty,
restricting from below the correspondence degree between the uncertainty and realized
observations. The paper presents various indices, characterizing this conformity via the
likelihood function, the EDF and the sample mean.

We propose a reduction of the initial optimization problem in the abstract infinite-
dimensional spaces to the standard finite-dimensional QP problem with convex constraints
along with an algorithm of its numerical realization and precision analysis.

The minimax estimation problem is solved in terms of the saddle points, i.e., besides
the estimators with the guaranteed quality, we have a description of the LFDs. First,
the investigation of the LFDs’ domains allowed us the detection of the uncertain parameter
values, which are the worst for the estimation. Second, the consideration of the performance
index pair “conformity index–guaranteed estimation quality” uncovered rather a new
conception of the parameter estimation under a vector optimality criterion. The paper
contains an assertion, which states that the LFDs are Pareto-optimal for the vector-valued
criterion above.

The paper focuses mostly on the conformity indices related to the likelihood function;
thus, it is obvious that the performance of the minimax estimate is compared with the
one of the MLE. In general, the MLE has several remarkable properties, in particular the
asymptotic minimaxity under some additional restrictions [12]. However, the estimate
is non-robust to the prior statistical uncertainty. The proposed minimax estimate can
be considered as a robustified version of the MLE, which is ready for application in the
cases of the short non-asymptotic samples or the violation of the conditions for the MLE
asymptotic minimaxity.

The conformity constraints are not exhausted by the likelihood function. In the paper,
we present other conformity indices based on the EDF and sample mean. We demonstrate
that the minimax estimates with the EDF conformity constraint are better than the MLE.
One of the points of the paper is that the flexible choice of the conformity indices and design
of the additional conformity constraints for each individual applied estimation problem
allows obtaining a tradeoff between the prior uncertainty and available observations.
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The reason to choose one or another conformity index depends not only on the condi-
tions of the specific practical estimation problem solved under the minimax settings. One
of the essential conditions is the possibility of its quick computation for the subsequent
verification of the conformity constraint. For example, calculation of the likelihood confor-
mity constraint (33) with the guess value L(y|q) = maxq L(y|q) tends to necessarily solve
the auxiliary maximization problem for the likelihood function, which is nontrivial itself.
Thus, the conformity indices based on the EDF or sample moments look more prospective
from the computational point of view.

The applicability of the proposed minimax estimate also depends on the presence
of the analytical formula of the estimates w(y|q), or the fast numerical algorithms of its
calculation. In turn, this possibility is a base for the subsequent effective solution to the QP
problem and specification of the LFD.

Finally, the key indicator affecting the estimate calculation process and its precision is
the number of the mesh nodes in the approximation C(εn) of the uncertainty set C. It is a
function of “the size of C / the mesh step εn” ratio and dimensionality m of C.

All of the factors above characterize the limits of possible applicability of the proposed
minimax estimation method for the solution to one or another practical problem.
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The following abbreviations are used in this manuscript:

cdf cumulative distribution function
CE conditional expectation
EDF empirical distribution function
EKF extended Kalman filter
EM algorithm expectation/maximization algorithm
LFD least favorable distribution
MLE maximum likelihood estimate
MS-optimal optimal in the mean square sense
pdf probability density function
QP problem quadratic programming problem

Appendix A

Proof of Lemma 1. Conditions (v)—(viii) imply fulfillment of the inequalities:

L(y|q) 6 sup
x∈Rn

ν(q, x|y) 6 1

λk/2
0

max
x∈Rn

φV(x) , M < ∞.

Furthermore, for ∀ ε (0 < ε < 1) there exists a compact set S(ε) ∈ B(Rn), such that∫
S(ε) Ψ(dx|q) > 1− ε, and by the Weierstrass theorem m(y) , min(q,x)∈C×S(ε) ν(q, x|y) >

0. Each measure F ∈ F can be associated with the measure µF(dq|y) , L(y|q)F(dq).
Obviously, µF � F, and µF is finite, i.e., 0 < m(y) 6

∫
C µF(dq|y) 6 M < ∞. Hence,

∀ y ∈ Rk and ∀ F ∈ F. The measure F′(F, dq|y) (15) is probabilistic; moreover F′ � F.
The measure F′′(F′, dq|y) (16) is also a probabilistic one defined on (C,B(C)), F′′ � F,
and the denominator in (16) has the following lower and upper bounds:
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0 <
1
M

6
∫

C
L−1(y|q)F(dq) 6

1
m(y)

< ∞.

From (15) and (16) it follows that F ∼ F′, and the corresponding measure transforma-
tions are mutually inverse, i.e., ∀ F ∈ F the identity F′′(F′(F)) ≡ F′(F′′(F)) ≡ F holds, and,
moreover, {F′(F) : F ∈ F} = {F′′(F) : F ∈ F} = F. Assertion (1) of Lemma 1 is proven.

The set F′L is ∗-weakly closed, because the set F′L is, and the function L(y|q) is non-
negative, continuous and bounded in q ∈ C.

Let F′1, F′2 ∈ F′L be two arbitrary distributions from F′L, and F′α , αF′1 + (1− α)F′2 be
its convex linear combination with a fixed parameter α ∈ [0, 1]. We should prove that
F′α ∈ F′L. By the definition of F′L there exist distributions F1, F2 ∈ FL such that F′1 = F′(F1)
and F′2 = F′(F2). Furthermore, for the convex combination Fβ = βF1 + (1− β)F2 with

β ,
αL(F2|y)

αL(F2|y) + (1− α)L(F1|y)
∈ [0, 1],

we can verify easily that F′α = F′(Fβ), i.e., F′α ∈ F′L. Assertion (2) of Lemma 1 is proven.

Appendix B

Proof of Theorem 1. The set H(y) = R` by condition (ix); thus it is convex and closed.
The set F′L is convex and ∗-weakly closed due to Lemma 1. From this fact and (20) it
follows that W(FL|y) is also a convex closed set. Moreover, it is bounded due to condition
(viii). The function J (22) is strictly convex in η and concave (affine) in w. These conditions
are sufficient for the existence of a saddle point [40]. It should be noted that both the set
H(y)×W(FL|y) and the saddle point (ĥ(y), ŵ(y)) depend on the observed sample y. For
the saddle point the following equalities are true:

J(ĥ(y), ŵ(y)) = min
η∈H(y)

max
w∈W(FL |y)

J(η, w) = max
w∈W(FL |y)

min
η∈H(y)

J(η, w) = max
w∈W(FL |y)

J∗(w),

i.e., ŵ(y) ∈ Argmax
w∈W(FL |y)

J∗(w).

Now we prove the uniqueness of the saddle point ŵ(y). Let w′(y) = col(w′1(y), w′2(y))
and w′′(y) = col(w′′1 (y), w′′2 (y)) be two different saddle points, and J (y) , J∗(w′(y)) =
J∗(w′′(y)) and w′′′(y) , αw′(y) + (1− α)w′′(y) be arbitrary convex combinations of the
chosen points (0 < α < 1). After elementary algebraic transformations we have:

J∗(w′′′(y)) = J (y) + α(1− α)‖w′(y)2 − w′′2 (y)‖2 > J (y),

which contradicts our assumption that w′(y) and w′′(y) are two different solutions to the
finite-dimensional dual problem. Theorem 1 is proven.

Appendix C

Proof of Corollary 2. The set W(FL|y) ∈ B(R`+1) is compact, and W(FL|y) ⊆
conv(W(C|y)). By the Krein–Milman theorem [37], each point of the set W(FL|y)
can be represented as a convex combination at most of dim(W(FL|y)) + 1 extreme points
of the set W(FL|y).

Obviously, all extreme points of W(FL|y) belong to the set W(C|y). Hence, for the
point ŵ(y) which is a solution to the finite-dimensional dual problem (28), there exists
a finite set {qs(y)}s=1,S ⊆ C, 1 6 S 6 dim(W(FL|y)) + 1 of parameters, and weights
{Ps(y)}s=1,S (Ps(y) > 0, ∑S

s=1 Ps(y) = 1) such that:

ŵ(y) =
S

∑
s=1

Ps(y)w(qs(y)|y). (A47)
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The parameters and weights define the reference measure (15) on the space (C,B(C)):

F̂′(dq|y) ,
S

∑
s=1

Ps(y)δqs(y)(dq).

We can establish the initial measure by (16):

F̂(dq|y) =
∑S

s=1 L−1(qs(y)|y)Ps(y)δqs(y)(dq)

∑S
s′=1 L−1(qs′(y)|y)Ps′(y)

.

It is easy to verify that EF̂

{
‖h(γ, X)‖2|Y = y

}
= w1(y) and EF̂{h(γ, X)|Y = y} =

w2(y), i.e., F̂ is the required LFD. Corollary 2 is proven.

Appendix D

Proof of Lemma 2. Without loss of generality we suppose each εn-mesh contains at least
dim(W(F|y)) + 2 points. By Corollary 2 the solution to problem (28) can be represented in
form (A1). By the condition of Lemma 2 there exists a set {q̂s(εn|y)}s=1,S ⊆ C(εn), such
that max

16s6S
‖q̂s(y)− qs(εn|y)‖ 6 εn. For the vector w(εn|y) , ∑S

s=1 P̂s(y)w(qs(εn|y)|y) the

inequalities

|ŵ1(y)− w1(εn|y)| 6
S

∑
s=1

P̂s(y)|w1(q̂s(y)|y)− w1(qs(εn|y)|y)| 6 ω1(εn|y),

‖ŵ2(y)− w2(εn|y)‖ 6
S

∑
s=1

P̂s(y)‖w1(q̂s(y)|y)− w1(qs(εn|y)|y)‖ 6 ω2(εn|y)

hold. Furthermore, the sequence of inequalities

max
w∈conv(W(C(εn)|y))

J∗(w) = J (y)− min
w∈conv(W(C(εn)|y))

(ŵ1(y)− w1 + ‖w2‖2 − ‖ŵ2(y)‖2) >

> J (y)−
[
|ŵ1(y)− w1(εn|y)|+ ‖ŵ2(y)− w2(εn|y)‖2 − 2〈ŵ2(y), ŵ2(y)− w2(εn|y)〉

]
>

> J (y)−
[

ω1(εn|y) +
(

ω2(εn|y) + 2
M

m(y)
Kh

)
ω2(εn|y)

]

proves the convergence maxw∈conv(W(C(εn)|y)) J∗(w) ↑ J (y) as εn ↓ 0.
Let ŵ(n|y) 9 ŵ(y) as εn ↓ 0. Then there exists a subsequence {εnk}nk∈N, such

that ŵ(nk|y) → w(y) 6= ŵ(y). This means that J∗(ŵ(y)) = J∗(w(y)), which contradicts
the uniqueness of the solution to the finite-dimensional dual problem (28). Lemma 2 is
proven.
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