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Abstract: A new modified Engquist–Osher-type flux-splitting scheme is proposed to approximate the
scalar conservation laws with discontinuous flux function in space. The fact that the discontinuity of
the fluxes in space results in the jump of the unknown function may be the reason why it is difficult
to design a high-order scheme to solve this hyperbolic conservation law. In order to implement the
WENO flux reconstruction, we apply the new modified Engquist–Osher-type flux to compensate for
the discontinuity of fluxes in space. Together the third-order TVD Runge–Kutta time discretization,
we can obtain the high-order accurate scheme, which keeps equilibrium state across the discontinuity
in space, to solve the scalar conservation laws with discontinuous flux function. Some examples are
given to demonstrate the good performance of the new high-order accurate scheme.

Keywords: conservation laws; discontinuous flux; Engquist–Osher-type interface flux; flux-splitting;
WENO reconstruction

1. Introduction

We focus on the high-order accurate schemes for the conservation laws with discon-
tinuous flux in the form

ut + (F(x, u))x = 0, (1)

where u = u(x, t) is an unknown function, (x, t) ∈ DT := R× (0, T), F(x, u) = (1−
H(x))g(u) + H(x) f (u) and H(x) is the Heaviside function. Because of its interesting
features and applications in traffic flows, multiple-phase flow in porus media and clarifier-
thickener units model and so on, equation of this form (1) has been widely investigated in
recent years [1–8].

The discontinuous flux F(x, u) in x results in that the Kruz̆kov-type entropy inequali-
ties [9] do not ensure the uniqueness of solutions to the Cauchy problem of equation of the
form (1). In order to overcome this difficulty, different entropy theories have been imposed
to obtain distinct choice solutions and the reader is referred to [4–7,10–14] for details.

Because of the discontinuity of the flux in the spatial variable x, it is very difficult to
develop an efficient numerical scheme with general numerical fluxes. This implies that
the interface numerical flux plays an important role in designing numerical scheme for
conservation laws with discontinuous flux (1). In recent years, some efficient first-order
schemes have been proposed to prove the uniqueness of weak solutions to the related
model such as conservation laws (1). Based on the Godunov or EO flux, Towers [13,14]
studied conservation laws with a discontinuous spatially varying coefficient or spatially
varying source terms and established the convergence. Adimurthi et al. [15,16] developed
the Godunov-type or DFLU numerical flux to solve scalar conservation laws with discon-
tinuous flux. Then, Sudarshan et al. [17] extended the DFLU interface flux to two-phase
multicomponent polymer flooding model and obtained a second-order scheme through
the MUSCL-type reconstruction. In addition, Mishra [18] considered mixed fluxes of the
convex-concave-type and concave-convex-type in (1) and defined the corresponding in-
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terface Godunov-type flux and Engquist–Osher-type flux. Karlsen and Towers [19] used
the Lax–Friedrichs scheme to study conservation laws with a discontinuous space-time
dependent flux. In particular, Adimurthi et al. [20] claimed that equation of the form (1)
had a contractive semigroup solution in L1 for each so-called connection-(A, B). Then,
Bürger, Karlsen, Towers [21] put forward the entropy solutions of type (A, B) and utilized
the modified EO-type numerical scheme to prove the convergence of this type solution.
Recently, Adimurthi et al. [10,22] proposed some numerical flux, including Godunov,
Engquist–Osher and modified Lax–Friedrichs-type numerical fluxes to define the interface
flux for (A, B)-connection. In the aforementioned work, the numerical simulations show
that the DFLU scheme [15,16,23] and Engquist–Osher-type scheme [21] work better than
others for many models. We also see the modified Local Lax–Friedrichs flux (MLLF) [10,22],
Roe-type flux [24] and application of the DFLU flux [23,25] and the references therein.

One purpose of this paper is to propose a simple and an efficient interface numerical
flux, which can be easily extended to high-order schemes to approximate the conservation
laws with discontinuous flux (1). With the help of the entropy solutions of type (A, B), we
propose a new Engquist–Osher-type interface numerical flux, which can be written as the
split form.

For the high-order accurate schemes for conservation laws with discontinuous flux (1),
it is worth mentioning that Shu and his collaborators [26,27] used the Lax–Friedrichs nu-
merical flux and the WENO reconstruction to approximate the multiclass traffic flow model
on homogeneous or inhomogeneous highway. For the details of the WENO reconstruction
method, we refer to [28–30]. Recently, Bürger, Karlsen and their collaborators [1,2,31]
developed a series of second-order accurate schemes to solve the conservation laws with
discontinuous flux (1). Then, borrowing the idea of flux-total variation diminishing to
conservation laws with discontinuous flux introduced by Towers in [14], Bürger et al. [2]
developed a nonlocal limiter algorithm and proposed a second-order flux-total varia-
tion diminishing scheme to solve the clarifier-thickener model with discontinuous flux.
Adimurthi et al. made a modification of nonlocal limiter algorithm and obtained the
second-order flux-TVD scheme for some interface fluxes as defined in [10]. We also refer
the readers to the high-order Runge–Kutta discontinuous Galerkin scheme [32] and the
semidiscrete central-upwind scheme [33].

However, so far, there are few results on the high-order schemes for (1). To the best
of our knowledge, it is not easy to construct high-order schemes for (1) by using the
reconstruction of the primitive variables. The reason for this may be that the discontinuity
of the flux in the spatial variable x leads to the jump of the unknown function. Fortunately,
the flux F(x, u) = (1− H(x))g(u) + H(x) f (u) in (1) should satisfy the Rankine–Hugoniot
condition

g(u−) = f (u+) (2)

at the discontinuity x = 0, where u± represent the limits on both sides of the discontinuity
x = 0, respectively. Based on this condition, we could apply the proposed Engquis–Osher
type interface flux to connect two fluxes g(u) and f (u) and keep the equilibrium to capture
the steady-state solution. Then, we can make use of the WENO flux reconstruction method,
which introduced in [28–30], to develop an efficient, nonoscillatory and high-order accurate
scheme for (1). This is another purpose of this paper.

The format of the paper is as follows. In Section 2, we give a new modified Engquist–
Osher-type interface numerical flux, which is written into the flux-splitting form. In Section 3,
we propose three high-order schemes for (1) by using the modified Engquist–Osher type
interface flux or DFLU flux and the WENO reconstruction. In Section 4, some numerical
examples are presented. Finally, we make a discussion about three high-order accu-
rate schemes.

2. The Modified Engquist–Osher-Type Interface Numerical Flux

Based on the (A, B)-connection [20] and the entropy solutions of type (A, B) [21], we
suppose that the flux F(x, u) = (1− H(x))g(u) + H(x) f (u) in (1) satisfies:
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(A1) f , g ∈ Lip([0, 1]), f (u) = g(u) = 0 for u = 0, 1, f has a single maximum at
θ f ∈ [0, 1] and g has a single maximum at θg ∈ [0, 1]. The function f (or g) is strictly
increasing on (0, θ f ) (or (0, θg)) and strictly decreasing on (θ f , 1) (or (θg, 1)).

(A2) both f and g are genuinely nonlinear in the sense that f and g are not linear on
any nondegenerate interval.

(A3) there exists at most one point û ∈ (0, 1) such that f (û) = g(û).
For convenience, set

h(u) =
{

g(u), x < 0,
f (u), x > 0.

The corresponding Engquist–Osher numerical flux is

ĥ(u−, u+) =
1
2
(h(u−) + h(u+))−

1
2

∫ u+

u−
|h′(ω)|dω, (3)

which can be written as the flux-splitting form

ĥ(u−, u+) = h+(u−) + h−(u+), (4)

where

h+(u−) = h(0) +
∫ u−

0
max{h′(ω), 0}dω, h−(u+) =

∫ u+

0
min{h′(ω), 0}dω. (5)

As stated above, the interface numerical flux plays a key role in designing the numeri-
cal methods for (1). So, we modify the Engquist–Osher-type interface numerical flux to
approximate (1) with (A, B)-connection.

Under the assumptions (A1)–(A3), without the loss of generality, the graphs of func-
tions g(u), f (u) and the connection (A, B) are shown in Figure 1. Obviously, there exist
Ag, B f ∈ (0, 1) such that they satisfy Ag ≤ θg, B f ≥ θ f and g(Ag) = g(A) = f (B) = f (B f ).
With the following definitions

g̃′(u) =

{
g′(u), if g(u) < g(A),

0, if g(u) ≥ g(A),
f̃ ′(u) =

{
f ′(u), if f (u) < f (B),

0, if f (u) ≥ f (B),
(6)

fg fff

A
g A B B

f
θ

g
θ

f

Figure 1. The graphs of functions f (x) and g(x) and the (A, B)-connection.

We can generalize the Engquist–Osher interface numerical flux (4) and (5) in the form

h̃(u−, u+) = g̃+(u−) + f̃−(u+) (7)
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to capture the entropy solutions of type (A, B), where

g̃+(u−) = g(0) +
∫ u−

0
max{g̃′(ω), 0}dω, f̃−(u+) =

∫ u+

0
min{ f̃ ′(ω), 0}dω. (8)

In this paper, we call formulas (7) and (8) the modified Engquist–Osher interface flux.
By the discussion case by case, we can obtain that the modified Engquist–Osher

interface numerical flux (7) and (8) is equivalent to the interface flux introduced by Bürger,
Karlsen, Towers in [21]. Besides this, the new interface flux-splitting form (7) and (8)
is simple and can be extended to the high-order approximation by using the WENO
reconstruction, see Section 3.

Next, we consider the important properties of the flux h̃(x, y).

Lemma 1. Based on the flux function h̃(x, y), we have:

(1) h̃(x, y) is nondecreasing function in its first variable, nonincreasing function in its second
variable, and Lipschitz continuous on both two arguments.

(2) h̃(x, y) is not consistent, but h̃(0, 0) = 0, h̃(1, 1) = 0, and h̃(A, B) = g(A) = f (B).

Proof. We first demonstrate the statement (1). Based on (6)–(8), we have

∂h̃(x, y)
∂x

= max{g̃′(x), 0} ≥ 0, and
∂h̃(x, y)

∂y
= min{ f̃ ′(y), 0} ≤ 0.

For any (x1, y), (x2, y), (x, y1), (x, y2) ∈ [0, 1], we have

∣∣h̃(x2, y)− h̃(x1, y)
∣∣ =

∣∣∣∣∫ x2

x1

max{g̃′(ω), 0}dω

∣∣∣∣ ≤M|x2 − x1|,

∣∣h̃(x, y2)− h̃(x, y1)
∣∣ =

∣∣∣∣∫ y2

y1

min{ f̃ ′(ω), 0}dω

∣∣∣∣ ≤M|y2 − y1|,

where
M =

{
|g′(u)|, | f ′(u)|

}
, u ∈ [0, 1]. (9)

Thus, the statement (1) is true.
The proof of assertion (2) is trivial. So, we proof the Lemma.

Now, we consider the initial value problem (1) with the initial data

u0(x) =
{

ul , x < 0,
ur, x > 0,

(10)

where ul and ur are some constants. For simplicity, we use a uniform space and time
grid with space size ∆x > 0 and time step ∆t > 0 to approximate solution of (1). Define
the space grid points xj+1/2 = (j + 1/2)∆x and x−1/2 = x1/2. Let Ij = [xj−1/2, xj+1/2],
∆x = xj+1/2 − xj−1/2 for j ∈ Z , j 6= 0. Set λ = ∆t/∆x and tn = n∆t for n = 0, 1, 2, · · · .
Based on (4)–(9), we construct the numerical scheme for (1) as follows

Un+1
j = Un

j − λ
(

F̂n
j+ 1

2
− F̂n

j− 1
2

)
, j 6= 0, (11)

where

F̂n
j+ 1

2
= F̂(un

j , un
j+1) =


ĝ(un

j , un
j+1), for j ≤ −2,

h̃(un
−1, un

1 ), for j = −1, 0,

f̂ (un
j , un

j+1), for j ≥ 1

(12)

In this paper, the first-order accurate scheme (11) and (12) with the CFL condition
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λM≤ 1
2

(13)

is referred to as the modified Engquist–Osher-type numerical scheme, denoted by MEO,
where the mesh ratio λ = ∆t/∆x and the Lipschitz constantM is defined in (9).

3. High-Order Accurate Schemes for Conservation Laws (1)

In this section, we present two types of high-order accurate schemes to solve (1) by
using the idea of WENO reconstruction.

3.1. High-Order WENO Scheme Based on the Modified Interface Engquist–Osher-Type Flux

Although the unknown function u is jump across the discontinuity x = 0 for (1),
the Rankine–Hugoniot condition (2) implies that we could add the interface flux (7) to
connect the two fluxes. So, we can take advantage of the idea of WENO reconstruction of
fluxes to construct high-order scheme, which is of the form

d
dt

uj(t) = L(uj) = −
1

∆x
(
ĥj+ 1

2
− ĥj− 1

2

)
, (14)

in which ĥj+ 1
2

is the numerical flux to be given below.
To ensure the numerical stability and correct upwind biasing, we utilize the Engquist–

Osher-type flux-splitting form (4) and (7) to construct the numerical flux as follows

ĥj+ 1
2
= ĥ+

j+ 1
2
+ ĥ−

j+ 1
2
. (15)

Here, we can adopt the fifth-order WENO reconstruction method [28–30] to construct
ĥ+j+1/2 and ĥ−j+1/2. The procedure includes the following two steps.

Step 1. Away from the discontinuity x = 0.
We give three third-order accurate numerical fluxes for the case h′(u) ≥ 0 as follows

ĥ(1)
j+ 1

2
=

1
3

h+j +
5
6

h+j+1 −
1
6

h+j+2,

ĥ(2)
j+ 1

2
= −1

6
h+j−1 +

5
6

h+j +
1
3

h+j+1, (16)

ĥ(3)
j+ 1

2
=

1
3

h+j−2 −
7
6

h+j−1 +
11
6

h+j .

In this case, we describe the smoothness indicators as

β1 =
13
12

(h+j − 2h+j+1 + h+j+2)
2 +

1
4
(3h+j − 4h+j+1 + h+j+2)

2,

β2 =
13
12

(h+j−1 − 2h+j + h+j+1)
2 +

1
4
(h+j−1 − h+j+1)

2, (17)

β3 =
13
12

(h+j−2 − 2h+j−1 + h+j )
2 +

1
4
(h+j−2 − 4h+j−1 + 3h+j )

2

and give the linear weights

d1 =
3

10
, d2 =

3
5

, d3 =
1
10

.

Then, we use the nonlinear weights

ωk =
αk

∑3
s=1 αs

≥ 0, αk =
dk

(ε + βk)2 , k = 1, 2, 3
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to define

ĥ+
j+ 1

2
=

3

∑
r=1

ωr ĥ(r)
j+ 1

2
. (18)

Here, ε is a small constant and taken as 10−6 to prevent the denominator to be zero.
Performing the mirror symmetric with respect to j+1/2, we can obtain the reconstruction
procedure for the flux ĥ−j+1/2. We omit the details and refer to [28–30] on this issue.

Step 2. Near the discontinuity x = 0.
Since the flux changes when passing the discontinuity x = 0, it is not easy for us to

reconstruct the ĝ±−j−1/2 and f̂±j+1/2 for j = 0, 1, 2. In order to overcome this difficulty, we

could replace g+−1 and f−1 with this g̃+−1 and f̃−1 respectively, as shown in Figure 2. So we set

v̂j =


g+j , j ≤ −2,
g̃+−1, j = −1,
f+j+1, j ≥ 0,

(19)

to construct ĥ+j−1/2 = v̂+j−1/2 for j ≤ 0 and set

v̂j =


g−j , j ≤ −1,
f̃−1 , j = 0,
f−j+1, j ≥ 1,

(20)

to construct ĥ−j−1/2 = v̂−j−1/2 for j ≤ −1 as the procedure in Section 3.1. Similarly, we also

reconstruct ĥ+j+1/2 and ĥ−j−1/2 for j ≥ 1.

un

1
un

−1
un

2 un

3
un

−2
un

−3

g+
−1 f−

1

f+

1
g−
−1 f−

2

f+

2
f−

3

g+

−2

g−
−2

g+
−3

Figure 2. The flux split forms near the discontinuity x = 0.

Now, we apply the third-order TVD Runge–Kutta time discretization introduced by
Shu et al. in [34] to (1) and give

u(1) = un + ∆tL(un),

u(2) =
3
4

un +
1
4

u(1) +
1
4

∆tL(u(1)),

un+1 =
1
3

un +
2
3

u(2) +
2
3

∆tL(u(2)),

(21)

in which the operator L is defined in (14). Combining (14) and (21) gives the high-order
accurate scheme for (1), which is termed as MEO-WENO5.

3.2. High-Order WENO Schemes Based on the Reconstructions of the Unknown Functions

In this subsection, we adopt the so-called DFLU numerical flux introduced in [15,16]
and the WENO reconstruction method to present the other two high-order WENO schemes.

For the fluxes g(u), f (u) and the connection (A, B) shown in Figure 1, the DFLU
numerical fluxes can be defined as the following form

ĥ(x, y) = min
{

h(min(x, θh)), h(max(y, θh))
}

, h = g or f , (22)

h̃(x, y) = min
{

g(min(x, Ag)), f (max(y, B f ))
}

. (23)
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Then, the numerical flux ĥj+1/2 in (14) can be written as

ĥj+ 1
2
=


ĥ(un−

j+ 1
2
, un+

j+ 1
2
), for j 6= −1, 0,

h̃− 1
2
= h̃ 1

2
= h̃(un−

− 1
2
, un+

1
2
), for j = −1, 0,

(24)

where un±
j+1/2 are prescribed as follows.

We directly utilize the unknown functions un
j (j 6= 0) to construct un−

j+1/2 and un+
j−1/2

for j 6= 0. Similar to the procedure in Section 3.1, we set

v̂i =

{
un

i , i ≤ −1,
un

i+1, i ≥ 0.
(25)

and use five variables v̂i, j− 2 ≤ i ≤ j + 2, i ∈ Z+ to reconstruct un−
j+1/2 and un+

j−1/2 for
j ≤ −1 and at the same time set

ṽi =

{
un

i , i ≥ 1,
un

i−1, i ≤ 0.
(26)

to reconstruct un−
j+1/2 and un+

j−1/2 for j ≥ 1. Thus combining (14), (24) and (21) gives the
high-order accurate WENO scheme for (1), denoted by DFLU-WENO5.

It is important to capture steady-state solution and prevent spurious oscillations near
the discontinuity x = 0 for (1). Then, we adopt the idea of the well-balanced method [35–37]
to construct u±j+1/2. Suppose (uA, uB) be a pair of well-balanced solution or steady-state
solution to the initial data problem (1) and (10). Different from the above DFLU-WENO5
method, we use

v̂i =

{
un

i , i ≤ −1,
uA, i ≥ 0,

(27)

satisfying j− 2 ≤ i ≤ j + 2 and i ∈ Z+, to construct un−
j+1/2 and un+

j−1/2 for j ≤ −1 and

ṽi =

{
un

i , i ≥ 1,
uB, i ≤ 0,

(28)

satisfying j− 2 ≤ i ≤ j + 2, i ∈ Z+ to construct un−
j+1/2 and un+

j−1/2 for j ≥ 1. Once again,
we implement (21) to obtain the high-order scheme with the well-balanced method or
preserving the steady-state solution, which is termed as DFLU-WENO5B.

4. Numerical Examples

To demonstrate the efficiency of our methods, we here present some numerical results
of the new first-order MEO scheme, DFLU scheme consisting of numerical fluxes (22)
and (23), and three high-order WENO schemes which are described in Sections 2 and 3
for comparison. For convenience, the first-order MEO scheme and the first-order DFLU
scheme are termed as MEO-1 and DFLU-1, respectively.

Example 1. We consider the case for traffic flow, where the fluxes can be taken as g(u) = u(1− u)
and f (u) = 1.5u(1− u) in (1). We take the initial data as follows

u0(x) =
{

0.8, x < 0,
0.6, x > 0.

(29)
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For this case, the connect-(A, B) can be taken as (0.5, 0.2113) and the steady-state solution is
(uA, uB) = (A, B). The numerical parameter λ = ∆t/∆x = 0.25 and the compute time t = 1.0.
In this case, the exact Riemann solution can be given in follows

u(x, t) =



0.8, x ≤ −0.6 t,

0.5(1− x
t
), −0.6 t < x < 0,

B, 0 < x <
f (0.6)− f (B)

0.6− B
t,

0.6, x >
f (0.6)− f (B)

0.6− B
t.

(30)

The L1-errors computed by the above five methods MEO-1, DFLU-1, MEO-WENO5,
DFLU-WENO5, and DFLU-WENO5B are given in the Table 1. Although L1-errors of the
MEO-1 scheme are slightly larger than those of the DFLU-1 scheme, they have the same
numerical results. However, MEO-WENO5 scheme has smaller L1-errors than DFLU-
WENO5 starting with ∆x = 1/25 and ∆x = 1/50, which indicates that the MEO-WENO5
has better performance than the DFLU-WENO5. In addition, we can observe that the
DFLU-WENO5B scheme has smaller numerical L1-errors than the MEO-WENO5 and
DFLU-WENO5 schemes.

Table 1. L1-errors of two types of MEO and DFLU schemes for Example 1.

∆x
MEO-1 DFLU-1 MEO-WENO5 DFLU-WENO5 DFLU-WENO5B

L1-Error Order L1-Error Order L1-Error Order L1-error Order L1-Error Order

1/25 1.88 × 10−2 1.80 × 10−2 8.36 × 10−3 8.70 × 10−3 8.28 × 10−3

1/50 1.14 × 10−2 0.7230 1.11 × 10−2 0.7025 4.57 × 10−3 0.8727 4.57 × 10−3 0.9278 4.57 × 10−3 0.8567
1/100 6.99 × 10−3 0.7049 6.88 × 10−3 0.6846 2.76 × 10−3 0.7270 2.63 × 10−3 0.7983 2.62 × 10−3 0.8023
1/200 4.48 × 10−3 0.6431 4.46 × 10−3 0.6274 1.93 × 10−3 0.5144 1.96 × 10−3 0.4260 1.89 × 10−3 0.4670
1/400 2.29 × 10−3 0.9681 2.25 × 10−3 0.9840 6.13 × 10−4 1.6555 6.11 × 10−4 1.6794 6.11 × 10−4 1.6329

To further analyze these schemes, we present the numerical solutions with space sizes
∆x = 1/25 and ∆x = 1/50, where the solid line represents exact solutions in the following
figures. Figure 3 shows that the MEO-1 and the DFLU-1 perform equally well and they can
capture the solution to initial value problem (1) and (29). Figure 4 illustrates that the MEO-
WENO5 works better than the DFLU-WENO5 near the discontinuity x = 0. Moreover, we
observe that the numerical solution computed by MEO-WENO5 is in better agreement
with the exact solution than the DFLU-WENO5. The main reason for this situation is
that the DFLU-WENO5 scheme produces spurious oscillations behind the shock and the
discrepancy between the numerical solution and the exact solution can be observed near
the discontinuity x = 0. As the mesh is refined, the above oscillations disappears but the
discrepancy still exists, as shown in Figure 5.
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Figure 3. Example 1: Numerical solutions computed by the MEO-1 and DFLU-1 with the different
meshes. (a): ∆x = 1/25; (b): ∆x = 1/50.
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Figure 4. Example 1 computed by the MEO-WENO5 and DFLU-WENO5 with ∆x = 1/25. (a): the
numerical and exact solutions; (b): the numerical and exact solutions zoomed in.
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Figure 5. Example 1 computed by the MEO-WENO5 and DFLU-WENO5 with ∆x = 1/50. (a): the
numerical and exact solutions; (b): the numerical and exact solutions zoomed in.

We now solve the initial value problem (1) and (29) with space sizes ∆x = 1/25 and
∆x = 1/50 by MEO-WENO5 and DFLU-WENO5B, respectively. The numerical solutions
are shown in Figure 6, from which a good agreement with the exact solution presented
by both two schemes is observed. Moreover, the DFLU-WENO5B does not introduce
the oscillation behind the shock, but the discrepancy mentioned above on the left of the
discontinuity still exists.
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Figure 6. Example 1 computed by the MEO-WENO5 and DFLU-WENO5B with different meshes. (a):
∆x = 1/25; (b): ∆x = 1/50.

Example 2. To investigate the above two aspects, we take the fluxes g = u(1− u)2 and f =
u2(1− u) coming from [21] and the initial conditions u0(x) = 1.0 for x < 0 and u0(x) = 0.0
for x > 0. Set λ = ∆t/∆x = 0.15 and the connection-(A, B) = (1/3, 2/3). So we obtain the
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steady-state solution (uA, uB) = (1/3, 2/3). For the fluxes g(u) and f (u) in this case, there exist
u1 ∈ [A, 1] and u2 ∈ [0, B] such that they satisfy

g′(u1) =
g(1)− g(u1)

1− u1
and f′(u2) =

f(u2)− f(0)
u2 − 0

,

may see Figure 1. Now, we present the exact Riemann solution as

u(x, t) =



1, x ≤ g′(u1) t,

(g′)−1(
x
t
), g′(u1) t ≤ x < 0,

( f ′)−1(
x
t
), 0 < x ≤ f ′(u2) t,

0, x ≥ f ′(u2) t,

(31)

which includes a contact discontinuity connecting two states u1 and 1 and another contact disconti-
nuity connecting two states 0 and u2.

We compute the solution up to t = 1.0 and present the numerical L1-errors of the
above five schemes in Table 2, which shows that the L1-error of MEO-1 is slight smaller
than that of DFLU-1, meanwhile both DFLU-WENO5 and DFLU-WENO5B schemes have
smaller numerical error than the MEO-WENO5 scheme. Next, we further analyze the
numerical solution to explore this situation.

Table 2. L1-errors and orders of two types of MEO and DFLU schemes for Example 2.

∆x
MEO-1 DFLU-1 MEO-WENO5 DFLU-WENO5 DFLU-WENO5B

L1-Error Order L1-Error Order L1-Error Order L1-Error Order L1-Error Order

1/25 6.52 × 10−2 6.68 × 10−2 2.69 × 10−2 2.49 × 10−2 2.18 × 10−2

1/50 4.55 × 10−2 0.5203 4.66 × 10−2 0.5222 1.82 × 10−2 0.5617 1.73 × 10−2 0.5092 1.59 × 10−2 0.4505
1/100 3.17 × 10−2 0.5225 3.23 × 10−2 0.5253 1.36 × 10−2 0.4280 1.31 × 10−2 0.3933 1.24 × 10−2 0.3626
1/200 1.91 × 10−2 0.7295 1.95 × 10−2 0.7269 7.02 × 10−3 0.9496 6.84 × 10−3 0.9427 6.45 × 10−3 0.9428
1/400 1.13 × 10−2 0.7586 1.16 × 10−2 0.7562 3.58 × 10−3 0.9733 3.48 × 10−3 0.9742 3.29 × 10−3 0.9743

We first compute the initial value problem by the MEO-1 and DFLU-1 schemes with
space sizes ∆x = 1/50 and ∆x = 1/100, respectively. It is easy to see that they have similar
behavior, see Figure 7.
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Figure 7. Example 2: Numerical solutions computed by the MEO-1 and DFLU-1 with the different
meshes. (a): ∆x = 1/50; (b): ∆x = 1/100.

Now we present the numerical solutions by the three high-order accurate schemes
with space size ∆x = 1/25, as illustrated in Figure 8. The solution of two rarefactive waves
on both sides of the discontinuity x = 0 has been well approximated by the MEO-WENO5
scheme. However, the numerical solutions computed by the DFLU-WENO5 and DFLU-
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WENO5B are slightly different from the exact solution. Especially, the DFLU-WENO5
scheme gives rise to more oscillations.
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Figure 8. Example 2 computed by the MEO-WENO5, DFLU-WENO5, and DFLU-WENO5B with
∆x = 1/25. (a): the numerical and exact solutions; (b): the numerical and exact solutions zoomed in.

Finally, the numerical solutions are presented in Figures 9 and 10 as mesh refinement
with space size ∆x = 1/50. Figure 9 shows that the DFLU-WENO5 introduces the spurious
oscillations on both sides of x = 0, but Figure 10 illustrates that the oscillation disappears for
the DFLU-WENO5B. In addition, both the DFLU-WENO5 and DFLU-WENO5B perform
better resolution of contact discontinuity away from the discontinuity x = 0 than the
MEO-WENO5. This may be the reason why the L1-errors performed by the DFLU-WENO5
and DFLU-WENO5B are smaller than those performed by the MEO-WENO5.
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Figure 9. Example 2 computed by the MEO-WENO5 and DFLU-WENO5 with ∆x = 1/50. (a): the
numerical and exact solutions; (b): the numerical and exact solutions zoomed in.
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Figure 10. Example 2 computed by the MEO-WENO5 and DFLU-WENO5B with ∆x = 1/50. (a): the
numerical and exact solutions; (b): the numerical and exact solutions zoomed in.
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Example 3 ([15]). Considering the two-phase incompressible flow in a porous medium with a rock
type changing at x = 0. The flux functions g(u) and f (u) have the following form

g(u) =
1
φ

µ1

µ1 + µ2
[q + (c1 − c2)µ2] for x < 0,

f (u) =
1
φ

λ1

λ1 + λ2
[q + (c1 − c2)λ2] for x > 0.

Under the following data

φ = 1, q = 0, c1 = 2, c2 = 1,

µ1 = 50u2, µ2 = 5(1− u)2, λ1 = 10u2, λ2 = 20(1− u)2.

Two fluxes g(u) and f (u) are represented in Figure 1. The initial data is u0(x) = 1.0
for x < 0 and u0(x) = 0.0 for x > 0 with the connection (A, B) = (0.317014, 0.472372).
The difference from the previous Example 2 is that the contact discontinuity on the left
of the stationary discontinuity x = 0 is replaced by the constant state B and a composite
wave consisting of a rarefaction wave and a contact discontinuity. We take the numerical
parameter λ = ∆t/∆x = 0.1 and compute the solution up to time t = 0.5.

We first make use of the MEO-1 and DFLU-1 schemes to compute this problem with
∆x = 1/50 and ∆x = 1/100, respectively. The numerical solutions are illustrated in
Figure 11. It is apparent that the MEO-1 scheme performs as well as the DFLU-1 scheme.

Now, we utilize three high-order schemes to compute this problem with space size
∆x = 1/25 and present the numerical solutions. In Figure 12, we see that the DFLU-
WENO5 scheme gives rise to spurious oscillations and has slight deviation from the exact
solution on the left of x = 0. We easily observe from Figure 13 that both MEO-WENO5
and DFLU-WENO5B schemes are in good agreement with the exact solution. However,
the discrepancy between the numerical solution computed by the DFLU-WENO5B scheme
and the exact solution can still be found in the rarefaction wave region on the left of x = 0.
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Figure 11. Example 3: Numerical solutions computed by the MEO-1 and DFLU-1 with the different
meshes. (a): ∆x = 1/50; (b): ∆x = 1/100.



Mathematics 2021, 9, 1079 13 of 15

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Exact solution

MEO−WENO5

DFLU−WENO5

−1 −0.5 0 0.5 1 1.5

0.3

0.35

0.4

0.45

0.5

0.55

0.6 Exact solution

MEO−WENO5

DFLU−WENO5

(a) (b)

Figure 12. Example 3 computed by the MEO-WENO5 and DFLU-WENO5 with ∆x = 1/25. (a): the
numerical and exact solutions; (b): the numerical and exact solutions zoomed in.
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Figure 13. Example 3 computed by the MEO-WENO5 and DFLU-WENO5B with ∆x = 1/25. (a): the
numerical and exact solutions; (b): the numerical and exact solutions zoomed in.

5. Conclusions

In this paper, we propose the new first-order modified Engquist–Osher-type scheme
(MEO), which performs as well as the DFLU scheme [15,16,25] and the modified EO-
scheme [21]. The new modified EO-type interface flux could be written as the split form
(7) and (8), which contributes to stability of the scheme and could be taken as a building
block for constructing high-order scheme. As mentioned before, the flux F(x, u) = (1−
H(x))g(u) + H(x) f (u) in (1) should satisfy the Rankine–Hugoniot condition (2), thus the
interface numerical flux (7) could be used as a bridge connecting two flux functions g(u)
and f (u). Therefore, we bring this result to the WENO reconstruction of fluxes and achieve
the high-order accurate scheme (MEO-WENO5). Based on the well-balanced method or
the steady-state solution, we apply the WENO method to construct another high-order
accurate scheme (DFLU-WENO5B). In comparison with the DFLU-WENO5 and DFLU-
WENO5B, the MEO-WENO5 makes use of the reconstruction of fluxes, instead of the
reconstruction of unknown functions, which shows its conservative to the discontinuity
and still keeps nonoscillatory, especially in areas near the discontinuity x = 0. However,
the scheme proposed in this manuscript could not be directly generalized to approximate
the system of hyperbolic balance laws involving the discontinuous flux in space, since it
is difficult to define the approximate interface flux. However, by virtue of some special
methods, such as the idea of discontinuous flux, we could solve some special system of
hyperbolic conservation laws involving the discontinuous flux.

In short, the modified Engquist–Osher-type interface flux (7) and (8) and the high-
order accurate MEO-WENO5 scheme have the advantages of being simple, efficient, and
nonoscillatory. In the future work, we extend this method to solve the corresponding
system of hyperbolic equations.
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