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Abstract: Wind energy is one of the most promising alternatives as energy sources; however, to
obtain the best results, producers need to forecast the wind speed, generated power and energy price
in order to provide the appropriate tools for optimal operation, planning, control and marketing both
for isolated wind systems and for those that are interconnected to a main distribution network. For
the present work, a novel methodology is proposed for the forecasting of time series in wind energy
systems; it consists of a high-order neural network that is trained on-line by the extended Kalman
filter algorithm. Unlike most modern artificial intelligence methods of forecasting, which are based
on hybridizations, data pre-filtering or deep learning methods, the proposed method is based on
the simplicity of implementation, low computational complexity and real-time operation to produce
15-step-ahead forecasting in a time series of wind speed, generated power and energy price. The
proposed scheme has been evaluated using real data from open access repositories of wind farms.
The results show that an on-line training of the neural network produces high precision, without the
need for any other information beyond a few past observations.

Keywords: wind energy; energy price; artificial neural networks; renewable energy systems; time
series forecasting; extended Kalman filter learning

1. Introduction

Nowadays, the demand for electricity is growing rapidly as a result of social, economic
and industrial development, while the reserves of fossil fuels for power generation are
rapidly reducing and pollution is increasing. As a result of this contradiction, humanity
is looking for renewable, clean and pollution-free energy sources [1]. Wind energy meets
the above requirements despite the high cost of wind energy over that of fossil fuels.
Wind energy may become an important source of energy in the near future, especially for
supplying small loads at power plants in remote places where there is a rich wind energy
resource making it the preferred location to extract kinetic energy from the wind [2].

Unfortunately, wind speed is considered one of the most difficult climatic parameters
to model and forecast due to the complex parameter structures that strongly affect the
wind, such as topographic properties of the earth, the rotation of the world, and the
difference in temperature and pressure [2–4]. Due to the continuous increase of wind
energy implementation in power systems, the problems caused by the volatile nature of
wind speed and the occurrences in system operations, such as scheduling and dispatch,
have drawn the attention of system operators, public services and researchers, for the
development of state-of-the-art power, wind speed and price forecasting methods. These
methods have the necessary ability to reduce the influence of intermittent wind energy on
system operations, as well as the capability to harvest wind energy efficiently [5].

Research in wind energy is a very active area and is yielding results for generators,
electrical system operators and market operators. In this sense, the rapid expansion of wind
generation capacity in the last 20 years has led to advances in wind forecasting techniques,
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which in turn have been driven by advances in the affordability and power of computer
technology. Furthermore, continuous innovations in statistics and machine learning has
resulted in increased accuracy, allowing the use of more sophisticated techniques and more
accurate forecasting tools. Forecasting techniques have also paid dividends, particularly
for forecasting on very short and short-term timescales, to drive future developments in
wind forecasting technology and current plans to greatly increase wind capacity: however,
improvements are still needed in the existing forecasting models [6].

Time series forecasting in wind energy, which includes wind speed, power output and
energy price, can be useful in various areas; for example, using the wind speed forecast
makes it possible to optimize the maintenance planning according to periods of weak
wind speed. Using power forecasting helps to optimally tune the wind turbine controller
since the turbine curve provided by the manufacturer is unable to give a real value of the
generated power. Turbine curve modeling can also be used to account for the amount of
energy loss while the wind turbine is shut down for maintenance. Additionally, very short-
term forecasting is used to plan turbine control actions, while long-term forecasting allows
issues to be properly handled with regard to energy marketing and reducing financial and
technical risk [7]. Wind power forecasting tools are invaluable because they allow better
dispatch, scheduling, unit engagement of thermal and hydroelectric generators and energy
storage plants, as well as provide a more competitive market. Therefore, if the error in
forecasting wind power is reduced, electricity markets can trade with greater certainty [6].
Hence, the existence of an accurate global forecast of the time series of wind energy reduces
the financial and technical risk of the uncertainty of the wind in energy production for all
participants in the electricity market by integrating wind energy with easier tasks [6].

Therefore, for the wind energy market to work efficiently, it is evident that forecasting
wind energy production in the near future is crucial for both isolated wind systems and
interconnected wind systems. Thus, having efficient tools for the forecasting of wind
energy time series helps producers make decisions for the operation, programming and
marketing of wind energy systems [2,8]. To that end, research efforts have recently been
directed towards the design of new combined algorithms and combination methods that
exploit different single forecasting models and improve forecasting performance while
providing reasonable computation time.

Most of the wind forecasting techniques can be classified into two main groups,
namely, physical methods and statistical methods [5]. In summary, the first group takes
into account physical considerations, such as location, wind farm design and temperature,
to reach the estimate and uses the output from numerical weather forecasting models that
provide weather forecasts using the mathematical model of the atmosphere. The second
group aims to describe the relationship between the historical time series of wind speed
(or power or price) in the place of interest by generally recursive techniques, whether
statistical or based on artificial intelligence [5]. In [5,6], an in-depth analysis was performed
regarding the state-of-the-art of forecasting methods for time series in wind systems. In the
case of forecasting methods based on artificial intelligence, fuzzy logic, artificial neural
networks, support vector machines, Bayesian networks, and genetic programming are
generally adopted for time series forecasting of wind systems.

Forecasting methods based on artificial intelligence are simplified models of biological
intelligence and have proven to be efficient forecasting techniques due to their capabilities,
such as self-learning, easy implementation and the establishment of nonlinear relationships
between input and output data sets with a high degree of precision. According to the review
of forecasting approaches for wind energy and power carried out in [5], a large number
of recent publications have used artificial neural networks (NN) instead of conventional
statistical models, as they are based on linear assumptions and are therefore deficient in
the adequate modeling of the nonlinearity of the relationship. On the other hand, artificial
intelligence methods, mainly artificial NN, learn from experience, using data, which is
called a data-driven approach. Among these, we can mention [9], where a 6 h wind speed
forecast was made, equivalent to six steps forward with the linear autoregressive–moving
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average model. In addition, wavelets pre-filtering was previously carried out in the
data set to obtain better results. Similarly, in [10], the forecasting was carried out using
wavelet theory to filter the low-frequency parts of the whole wind speed and then the
autoregressive–moving average model was used to forecast the wind speed of filtered
data. The data set corresponds to a total of 120 points, where each sample point was taken
every hour and 90 samples were used for training. The remaining 30 points were for the
forecasting test.

As previously mentioned, NNs are a promising approach for forecasting wind energy,
power and price because they present better results than other techniques [6]. Among the
works that use NNs, we can name the one presented in [2], where an empirical mode
decomposition-based multilayer feed-forward neural network was used to perform the
wind speed forecast, which uses two types of data: mean monthly wind speed and mean
daily wind speed. For the first case, up to 36 observations were used to train the network,
and forecasting of up to 12 samples were made with this technique. For the second case,
113 observations were used as the training set and 10 samples were forecasted. Using a
nonlinear autoregressive neural network, the wind speed of a 5-day horizon was forecasted,
and energy production was estimated. The data used were 4320 samples for training and
720 for testing [7]. Aqsa et al. proposed a deep neural network both as a base-regressor and
as a meta-regression with 24 time series delays. In that work, a wind power and wind speed
dataset was used, where 90% of the data was used for training and only 10% for testing [11].
In the work presented by Erasmo et al., good results were achieved for forecasting the wind
speed by implementing a multilayer neural network, where it proposes an architecture
of two hidden layers; in addition, the iterative strategy was used to forecast up to three
steps forward with two delays as the input [12]. Two different wind speed time series are
used in [13], and a hybrid model based on the empirical mode decomposition and an NN
is implemented. It also considers four time series delays as input to the neural network,
and as a result, a forecasting of one, two and three steps forward of wind speed is obtained.
Gong Li et al. [14] present a robust two-step methodology for wind speed forecasting
based on a Bayesian combination algorithm, and three types of feed-forward NNs, i.e.,
an adaptive linear element network, backpropagation network, and radial basis function
network. All NNs receive eight past observations as inputs. Another work where data
are pre-filtered to forecast wind speed is presented in [15], which uses a backpropagation
neural network with a Levenberg–Marquardt algorithm. The wind speed data are filtered
into two components, i.e., low-frequency and several high-frequencies, by the wavelet
decomposition method. Then, the NN forecasts every component, and the forecasting
components are reconstructed to obtain the forecast of wind speed. A total of 251 data
values were used for training and 10 data values for testing. The wind speed and wind
power forecasting problems are approached through a backpropagation NN, wavelet
backpropagation NN and a support vector machine in Reference [16], and the best results
were found with wavelet NN. Wang et al. [17] propose an interesting method using a
backpropagation NN model based on cluster analysis, where the data are classified into
subsets with similar characteristics, which are used for the training of an NN for each
subset. Afterward, for wind power forecasting, the model determines in which class the
data falls into, and then an NN is chosen corresponding to the subclass. In Reference [18],
the possible vulnerability in the forecasting of the wind energy load is explored. An NN
trained off-line is used and then tested on a data series with added noise. The results are
compared between the clean and noisy data, corroborating that off-line trained networks
may present a vulnerability in the forecasting of wind energy load. A statistical-based wind
power forecasting is carried out in Reference [19]. It consists of two stages: (1) wavelet
decomposition of wind series is carried out, and then adaptive wavelet NN is used to
forecast wind speed 30 h ahead; (2) a feed-forward NN transforms the forecasted wind
speed to wind power forecasting. Recently, a multilayer NN was proposed to forecast the
prices of wind energy, which was carried out for one step and multiple steps forward, and
the NN training was performed by the extended Kalman filter [20]. Similarly, using the
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extended Kalman filter, a recurrent multilayer perceptron NN was trained to forecast the
wind speed [21]; here, the parameters of the Kalman filter are optimized by an evolutionary
algorithm, with which to significantly improve the forecasting results. The abductive
network based on the group method of data handling to model and forecast the mean
hourly wind speed was proposed in [3]. With this method, it can forecast up to 6 h and
24 h based only on previously measured values of the wind speed. Very short-term wind
speed forecasting is carried out by an artificial neural network–Markov chain model in [22].
In this work, two NNs are proposed; the first is a multilayered perceptron, which performs
a primary forecasting, and for this, 10 past observations are necessary. Then, the Markov
state is computed. Finally, a second MLP is used, involving six input variables from the first
wind speed forecasting and their transition probability values. Dario et al. [23] propose
intelligence techniques to forecast the production of energy in a wind farm 1 h ahead,
which is computed using four past observations of wind speed. The models used were
artificial NN, support vector machines and adaptive neuro-fuzzy inference system models.
The best results are presented by the adaptive neuro-fuzzy inference system. Another work
using the NN multilayer perceptron feed-forward is presented in [24]. The training method
implemented is the backpropagation algorithm, which uses various past observations
of different phenomena, such as temperature, precipitation, and time velocity, to carry
out the forecast for wind speed. Recently, a convolutional NN was proposed for the
forecasting of wind speed 3 days ahead [25]. For the input of the NN, 7 days of past data
is used to make the forecasting. One more work where the Wavelet transform is used to
pre-filter the original data at different frequencies is proposed in [26]. In this work, the
convolutional NN is also used, and the forecasting horizons range from 15 min to 8 h
ahead. Other research approaches, in which the use of forecasting methods with very
high computational complexity is privileged, are mainly based on deep learning or hybrid
and compound forecasting methods [2,5–7]. Most of the aforementioned works present
complicated methods to forecast wind speed, and in a few of them, the power generated
by wind farms is estimated. We can also highlight that the models are trained off-line,
use most of the data for training and need several past observations to forecast. This
paper presents an approach that is capable of improving forecasting ability using fewer
input parameters and simulation time; that is, this paper focuses on the development of a
simplified and efficient forecasting method for time series in wind energy systems (speed,
power and price), which is very important for future wind energy system planning and
also crucial for control, scheduling, maintenance and resource planning of wind energy
conversion systems.

The main contribution of this paper is the development of a simple methodology for
time series forecasting applied to wind energy systems with real-world data. The proposed
methodology is based on a recurrent high order neural network (RHONN) trained with
an extended Kalman filter (EKF) with a RHONN for each step to be forecasted. This
methodology, which is different from modern forecasting techniques, has a low compu-
tational complexity and easy implementation with a low number of neurons; moreover,
this methodology is able to capture the nonlinear and chaotic characteristics of energy-
associated time series because of the nonlinear capabilities of the RHONN. Additionally,
due to the stochastic nature of the EKF learning algorithm, the proposed methodology can
deal with noise presented in the used time series.

The rest of this paper is organized as follows: in Section 2, the proposed methodology
for time series forecasting is presented; then, in Section 3, the proposed methodology is
applied for forecasting three different kinds of time series in wind energy systems, i.e.,
wind speed, power and price. Subsequently, the obtained results are discussed, and finally,
the conclusions of this work are stated.

2. Methodology to Forecast Time Series in Wind Energy Systems

There are five strategies for forecasting multiple forward steps. According to [27], these
are: (1) Iterative strategy, in which a single model is trained to obtain a one-step forward
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forecast; (2) direct strategy, which consists of forecasting each horizon independently of the
others; (3) MIMO strategy (multi-input multi-output), which learns a model of multiple
outputs of the time series; (4) DirREC strategy, which combines the structures and principles
underlying the direct and iterated approaches; and finally, (5) DirMO strategy, which
aims to maintain the most attractive aspects of the Direct and MIMO approaches. For a
detailed explanation of each one of these strategies, the reader can refer to [27]. Multiple
studies have compared the different strategies using NN, but it is still not clear which
is the best, and the comparison depends on the input data and the training method [27].
Regardless of which strategy is used, multi-step forward forecasting presents the problem
of accumulation of error and lag, which causes significant performance degradation of
multi-step forward forecasting.

The forecasting of several steps into the future would benefit by readjusting the model
parameters based on information such as the latest observed values and the model’s
previous outputs values, which would help to mitigate error accumulation and time
lag [28]. On-line learning techniques have advantages, such as efficient implementation
at run-time and good performance despite highly variable time series data [28]. In this
work, we propose on-line training to continually adjust the parameters of a recurrent high
order neural network (RHONN), which is used to forecast multiple steps forward by the
recursive strategy.

In the recursive forecasting strategy (also known as iterated or multi-stage), only one
f̂ model is trained to forecast a single step forward [27]:

ŷ(k) = f̂ (y(k− 1), y(k− 2), ..., y(k− d), u(k− 1), ..., u(k− d)) (1)

Then ŷ(k + 1) is forecasted using the same model:

ŷ(k + 1) = f̂ (ŷ(k), y(k− 1), ..., y(k− d + 1), ..., û(k), ..., u(k− d + 1)) (2)

Subsequently, the forecasted value is used to forecast the next steps. MSA forecasting
is carried out relating ŷ(k + n) with ŷ(k + n − 1), ŷ(k + n − 2), ..., y(k), y(k − 1)..., and
û(k + n − 1), û(k + n − 2), ..., u(k), u(k − 1). It continues in this way until the values of
ŷ(k + r) from r = 1 to r = n are forecasted.

ŷ(k + n) = f̂ (ŷ(k + n− 1),
ŷ(k + n− 2), ..., y(k), ...y(k− d + 1),
û(k + n− 1), û(k + n− 2), ..., u(k), ...u(k− d + 1))

(3)

where n is the MSA forecasting horizon, d represents delays in the output and input. Since
y(k) is measured directly from the system, x(k) = y(k) is considered a state variable, so
X(k) = [x(k), ..., x(k− d + 1)]. Thus, (2) can be rewritten as:

x̂(k + 1) = f̂ (X(k), U(k)) (4)

where U = [u(k), ..., u(k − d + 1)]. Then, time series forecasting can be considered as a
modeling problem [20]. The unknown mapping f̂ in (3) is modeled by a RHONN, and
this kind of artificial neural network is deeply described in [29]. The following equation is
defined in such work, and it is important to note that this kind of artificial neural network
does not consider a hidden layer structure as defined in [29]; therefore, in [29], RHONN
are described by:

χ̂i(k + 1) = wT
i zi(X(k), U(k)) i = 1, ..., nx (5)

where χ̂ is the state of the i-th neuron for the X state, wi is the vector of adapted weights, U
is the input vector to the RHONN, with zi defined as:
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zi(X(k), U(k)) =


zi1
zi2
...

ziLi

 =



∏
j∈I1

ξ
d(1)ij
ij

∏
j∈I2

ξ
d(2)ij
ij

...

∏
j∈ILi

ξ
d
(Li)
ij

ij


(6)

where Li is the number of higher-order connections, {I1, I2, ..., Ii} is a collection of un-
ordered subsets of {i = 1, 2, ..., nx + m}, nx is the state dimension, m is the number of
inputs. With dij(k) being non-negative integers. ξij is expressed as follows:

ξi =



ξi1
...

ξi1
ξinx+1

...
ξinx+m


=



S(x1)
...

S(xxn)
u1
...

um


(7)

where S(·) is the hyperbolic tangent function, represented by the following equation:

S(ς) = µitanh(βiς) (8)

where ς is a real value variable, and µ, β are positive constants.

Learning Process for a RHONN

The availability of information for NN training is traditionally clustered into two
classes: information available a priori and information obtained in real-time, i.e., observa-
tions or measurements. In the first case, a training dataset is previously known, and in the
second case, the information is produced as the learning process occurs, which would be
the case closest to reality [30]. Likewise, according to the availability of the information,
it can be presented to the NN in two ways: training by epoch (also named as batch) or
by pattern. The first case is the most used to train neural networks and is probably the
best known; however, it is further away from biological evidence and only works for static
environments. Its rise occurred because, historically, the processors used to program the
first NN were very limited; however, technological advancements have eliminated this
restriction, which has led to the fact that it is currently the most common use of pattern
training, also known as on-line training or real-time learning [30]. On-line training allows
the information to be supplied to the NN as it is being produced, which means all the
data can be used both as training data and test data. In this type of training, there is no
concept of a learning curve, and it is not practical to analyze the learning curve since, at
any moment, the data that had not been presented before can appear and cause a very high
learning error that can disappear in the next iteration. Therefore, in this type of on-line
training, the convergence of neural networks is analyzed in different ways. In the case of
neural networks with dynamic models, such as the one presented in (5), the most common
practice is to use Lyapunov’s theory. There are also hybrid learning models to combine
training by epoch with training by pattern. In such a way, when the information is known
a priori, it is possible to choose a training by epoch or by pattern, while in the case that
the information is being produced in real-time, the only option is training by pattern, that
is, in real-time or on-line training [30]. In the case that we are presenting in this work,
the training is on-line, simulating that the information of the time series is produced in
such a way, and then, the proposed methodology operates on-line.
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To adjust the weights of the neural network, the extended Kalman filter (EKF) training
algorithm is used. The main purpose of the EKF is to determine the weights of the
RHONN (5), whose optimal values minimize the forecasting error between the neural
network output ŷ and the measured plant output y. This algorithm is defined as:

Ki(k) = Pi(k)Hi(k)[Ri(k) + HT
i (k)Pi(k)Hi]

−1 (9)

wi(k + 1) = wi(k) + ηiKi(k)e(k) (10)

Pi(k + 1) = Pi(k)− Ki(k)HT
i Pi(k) + Qi(k) (11)

with
ei(k) = [yi(k)− ŷi(k)] (12)

Hij(k) =
[

∂ŷ(k)
∂wij(k)

]
wi(k)=wi(k+1)

(13)

where Pi ∈ <Li×Li is the weight estimation error covariance matrix, wi ∈ <Li is the on-line
adapted weight vector, Li is the number of neural network weights, y ∈ <m is the measured
output vector, ŷ ∈ <m is the output of the network, η is a design parameter, Ki ∈ <Li×m

is the Kalman gain matrix, ei(k) is the respective identification error, Qi ∈ <Li×Li is the
covariance matrix associated with the noise of the state, Ri ∈ <m×m is the error noise
covariance matrix, Hi ∈ <Li×Li is a matrix for which each entry (Hij) is the Hessian matrix
used to estimate the Kalman gain, which is presented in (13). Pi, Qi, and Ri are matrices
that contain design values Pi(0),Qi(0), and Ri(0) in their diagonal, respectively.

The real-time training of the recurrent neural network based on the EKF allows
adjusting the weights with the value observed in time k, which is the system information
in y(k) and the neural network output ŷ(k). Consequently, the RHONN represents a
model of the wind speed trend at time k, and the weight adjustment process of the model
is carried out continuously in each new observed sample. In this way, we consider n
RHONN identical to the identified model and to recursively produce a prediction up to
the n prediction horizon.

Then, to prevent the forecasting from guessing near the mean distribution, each neural
network {r = 1, ..., n} adjusts its weights individually through the differences between the
available observed values and those predicted. The prediction error of the RHONN r used
to reinforce the adjustment of the weights is calculated as follows:

er(k) = yr(k)− ŷr(k), r = 1, ..., n, (14)

where er represents the error of each NN, ŷr represents the output forecast value by the
r NN. All the neural networks reinforce their weights using the EKF algorithm with
their respective prediction error er(k) once the observed value can be compared with
the prediction produced. In this way, it is not possible to adjust the weights in the first
prediction steps since the observed value is not available to calculate the error. Figure 1
shows the graphical representation of the implemented structure of the RHONN to forecast
multiple steps forward and the on-line reinforcement of the neural network weights.
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Figure 1. Multi-step-ahead forecasting structure.

3. Results

In this section, the proposed methodology is applied for the forecasting of nine
different time series. For this work, we use freely available datasets, and their application
shows the performance of the proposed methodology in obtaining an accurate performance
for short-term time series forecasting. First, the proposed method is applied to the problem
of forecasting the wind speed and wind-generated power. Then, the proposed approach is
used for forecasting energy price with data from seven different countries.

3.1. Proposed Methodology

In this section, the proposed methodology for time series forecasting in wind energy
systems is explained. The methodology depicted in Figure 1 was modified to be applied
to time series forecasting, and this modification is depicted in Figure 2, which shows the
graphical representation of the proposed methodology for time series forecasting applied
to wind energy systems. To start with the forecasting process, it is necessary to have at least
d past values from time series data. This value is defined as the system dimension, and
in this work, it is defined using the Cao methodology [31]. The input values for the first
RHONN are defined as (y(k− 1), y(k− 2), . . . , y(k− d). With these values, it is possible to
forecast the value ŷ(k), and then, this value feeds the next RHONN to forecast the value
ŷ(k + 1). By applying this methodology successively until to RHONN number n, it is
possible to obtain the forecasting of n future values of the used time series. The value n
depends on the chaotic behavior of the used data and of their application.

The training for each RHONN is developed on-line; therefore, there is no stopping
criterion nor necessary retraining for the proposed RHONNs. It is important to note that for
the proposals of this paper, only the output of the RHONN n is depicted as the n-step-ahead
forecasting result for each one of the used time series, as described in [29]. RHONN are not
defined with a layer structure; they are defined with a dynamic model. Furthermore, it is
relevant to note that, in this case, as the training algorithm works on-line, all data are used
for training as well as for validation, and there is no pre-training stage. Furthermore, due
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to the stochastic nature of the EKF training algorithm, it is not necessary to do any data
pre-processing or normalization as data are used as-obtained from repositories, which is
another highlight of the proposed methodology. The proposed methodology of n RHONN
trained with an EKF- based algorithm was coded in Matlab® 2016a and implemented in
an Intel® Core™ Processor, i7-6820HQ CPU@2.70 GHz, 2701 Mhz, 4 Core(s), 8 Logical
Processor(s) with Microsoft Windows 10 Pro®.

Figure 2. Proposed methodology for forecasting of time series.

3.2. Data Explanation

In order to test the applicability of the proposed methodology, nine different time se-
ries related to wind energy systems were selected, and all of them are considered nonlinear,
chaotic, time-variant and non-stationary [5,6]. The data were recovered from open-access
repositories that can be found in [32,33] for wind speed and energy prices, respectively.
Each dataset is composed of a large amount of data, but in this work, we are only consid-
ering a short period in order to test the applicability of the proposed methodology. It is
relevant to comment that the selected period of the used time series can be easily modified,
and the data were selected only for applicability purposes due to the open-access availabil-
ity. There were no missing data or any abnormal values detected, and the processing of
missing or abnormal data is out of the scope of this work. For a detailed explanation of the
methodology used to obtain and process these datasets, please refer to [32,33].

3.3. Wind Speed and Power Forecasting

The proposed methodology was applied for forecasting time series of wind speed. The
wind speed data are available in [32], and the selected period begins on 1 September 2020 at
01:00:00 with a sampling time of 1 h, with 500 values. This interval was only selected to test
the applicability and can be easily modified. Figure 3 depicts in red the actual values for
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the time series data for wind speed used to test the proposed methodology. For forecasting,
a RHONN (5) was used, which was trained with an EKF based-algorithm (9). The RHONN
was connected, as shown in Figure 2, with 15 RHONNs, with one for each step to be
forecasted. Each of them contains 20 neurons with a hyperbolic tangent activation function.
The EKF parameters were selected as: P(0) = 1.0, R(0) = 1× 10−2 and P(0) = 1× 10−6.
The training was performed on-line with seven past measurements to perform the 15-step-
ahead forecasting. The obtained results for a 15-step-ahead forecasting are presented in
Figure 3, which includes real wind speed values at the top in red, the 15 step-ahead forecast
values at the top in blue and the forecasting error at the bottom.

Now, the forecast of wind speed is used to calculate produced power using a wind
turbine model, as shown in Figure 4. To obtain this estimation, the “Simple Turbine Block”
of Simscape from Simulink of Matlab was used. The Simple Turbine Block converts wind
speed to turbine output power by a simple output power versus wind speed characteristic.
When the wind speed is below the cut-in speed or above the cut-out speed, the machine
generates zero real power [34]. In this case, the selected parameters are defined in Table 1.
Calculated produced power is displayed in Figure 5, which includes emulated wind
power values at the top in red, the 15 step-ahead forecast values at the top in blue and
the forecasting error at the bottom. From Figures 3 and 5, the excellent capability of the
proposed RHONN structure to forecast the performance of time series for speed with
real-world data for a wind energy system can be observed. It is important to note that
this forecasting method gives information about very short and short-term forecasts, and
these data can be used to improve control performance as well as for planning, production,
management and marketing.
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Figure 3. Actual and short-term forecast for wind speed.

Table 1. Wind turbine parameters.

Parameter Value

Rated output power 150 kW
Cut-in speed 3 m/s

Rated output speed 12 m/s
Cut-out speed 23 m/s
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Figure 4. Computation of wind generation potential, based on the wind speed forecasting.
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Figure 5. Actual and short-term forecast total system wind power generation.

3.4. Energy Price Forecasting

Another very useful time series in wind energy systems is the energy price, which
is crucial for management and marketing. This forecast allows the producers to make
adequate decisions regarding the purchase and sale of energy. The used time series
data are available in [33]. The selected period begins on 1 September 2020 at 01:00:00
with a sampling time of 1 h, with 700 values. This interval was only selected to test the
applicability and can be easily modified. The data belong to information of seven different
countries: Denmark, Germany, Ireland, Italy, Norway, Sweden and the United Kingdom.
For forecasting, a RHONN (5) was used and trained with an EKF-based algorithm (9).
The RHONN was connected, as in Figure 2, with 15 RHONNs, with one for each step to be
forecasted. Each of them contains 20 neurons with a hyperbolic tangent activation function.
The EKF parameters were selected as: P(0) = 1.0, R(0) = 1× 10−2 and P(0) = 1× 10−6.
The training was performed on-line with seven past measurements to perform the 15-step-
ahead forecasting. The obtained results for a 15-step-ahead forecasting are presented in
Figures 6–12, and they include real energy price values at the top in red, the 15 step-ahead
forecast values at the top in blue and the forecasting error at the bottom for each one of
the selected time series. For each one of the selected time series, it can be seen that the
forecasting error is near to zero with small variation. These results are analyzed in Section 4.
Furthermore, Figures 6–12 show the excellent capability of the proposed RHONN structure
to forecast the performance of the time series for energy price with real-world data for a
wind energy system.
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Figure 6. Energy price forecasting for Denmark time series data.
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Figure 7. Energy price forecasting for Germany time series data.
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Figure 8. Energy price forecasting for Ireland time series data.
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Figure 9. Energy price forecasting for Italy time series data.
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Figure 10. Energy price forecasting for Norway time series data.
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Figure 11. Energy price forecasting for Sweden time series data.
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Figure 12. Energy price forecasting for the United Kingdom time series data.

4. Analysis and Discussion

In this section, the obtained forecasting results are analyzed. First, Figures 13 and 14
present a box plot for each one of the selected time series. This kind of plot is used to show
the distribution of a dataset [35]. Figure 13 shows wind speed and generated power error
forecasting variations, and it is easy to see that the obtained results present forecasting errors
with a mean value around zero with acceptable variation. Similar results can be seen in
Figure 14 for energy price error forecasting, and in this last figure, it can be seen that the lower
variation was obtained for Norway, and the largest variation was obtained for Denmark.
This could be due to the presence of outliers. Second, in Table 2, statistical information for
the forecasting error is included, which is depicted in Figures 3 and 5–12; moreover, Table 2
includes the mean square error (MSE), root mean square error (RMSE), mean and mean
absolute percentage error (MAPE). From this information, it is easy to see that energy price
forecasting for Norway presents the best performance. The calculations are based on the
relative error e(k) as defined in (12), and the statistical information was calculated in order
to quantitatively determine the best model, according to [2,35], as follows:

MSE =
1
n

n

∑
k=1

(e(k))2 (15)

RMSE =
√

MSE (16)

MEAN =
1
n

n

∑
k=1

(e(k)) (17)

MAPE =
1
n

n

∑
k=1

e(k)
y(k)

(18)

Table 3 presents MAPE. This performance criterion was selected due to the managerial
appeal and is a measure commonly used in forecasting [35]. In this table, the percentile
errors for different forecasting horizons can be seen. It is easy to see that for n ≤ 15, the
percentile error remains below 5% due to the fact that n = 15 is the forecasting horizon
selected in this paper; for n > 15, the obtained performance has percentile error over 5%,
and for the purpose of this paper, it is considered a poor performance.
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Figure 13. Comparison of wind speed and wind generation potential time series forecasting.
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Figure 14. Comparison of energy price time series forecasting for six different countries.

Table 2. Statistical information for time series forecasting errors.

Time Series MSE RMSE MEAN MAPE

Wind speed 1.5880 1.2601 −0.0545 3.7490
Wind power generation 216.0227 14.6977 −0.5101 1.9425

Energy price for Denmark 140.9990 11.8743 −0.1090 2.1913
Energy price for Germany 125.6029 11.2073 −0.0821 3.0339
Energy price for Ireland 5.5595 9.7755 −0.0819 3.3643

Energy price for Italy 51.8081 7.1978 −0.0145 3.7549
Energy price for Norway 0.2137 0.4623 −0.0349 1.2815
Energy price for Sweden 47.0634 6.8603 −0.0977 2.1032
Energy price for the UK 97.4408 9.8712 −0.0475 3.2192

In order to make a comparison of the proposed methodology with respect to existing
ones, it is important to note from Table 3 that, for n = 1, the percentile error is below 0.6%,
and for the same scenario in [21], the reported MAPE is 3%. In addition, the proposed
methodology has a better computational complexity, and in this approach, the forecasting
horizon can be easily extended, as exemplified by the different examples presented in
this paper. These results are important as they show the effectiveness of the proposed
scheme with a high forecasting accuracy. Even for a forecasting horizon beyond this one,
the existence of an accurate and reliable forecasting methodology, such as the proposed one,
allows for the application to energy systems management, planification, energy dispatch
improvements, scheduling and design of control systems, and can provide benefits for
energy producers, users and operators.

Figure 15 shows error histograms for the nine used time series. From this figure, it can
be seen that the obtained forecasting errors do not have a Gaussian distribution. However,
error values are around zero with a low standard deviation, which confirms the information
obtained in Figures 13 and 14 as well as the information contained in Table 2. All of this



Mathematics 2021, 9, 1075 16 of 18

information confirms the forecasting capabilities of the proposed scheme independent of
the nature of the data; thus, it is possible to infer that the proposed methodology can be
applied to forecast a different type of time series.

-150 -100 -50 0 50 100 150

Wind power generation forecasting error

0

100

200

300

In
s
ta

n
c
e
s

-10 -5 0 5 10 15

Wind speed forecasting error

0

20

40

60

80

In
s
ta

n
c
e
s

-100 -50 0 50 100 150

Energy price for Denmark forecasting error

0

50

100

150

200

In
s
ta

n
c
e
s

-100 -50 0 50 100 150

Energy price for Germany forecasting error

0

50

100

150

200

In
s
ta

n
c
e
s

-100 -50 0 50 100 150

Energy price for Ireland forecasting error

0

50

100

150

In
s
ta

n
c
e
s

-100 -50 0 50 100

Energy price for Italy forecasting error

0

50

100

150

200

In
s
ta

n
c
e
s

-5 0 5 10 15 20

Energy price for Norway forecasting error

0

100

200

300

400

In
s
ta

n
c
e
s

-100 -50 0 50 100 150

Energy price for Sweden forecasting error

0

100

200

300

400

In
s
ta

n
c
e
s

-100 -50 0 50 100 150

Energy price for UK forecasting error

0

50

100

150

200

In
s
ta

n
c
e
s

Figure 15. Error histogram for forecasting in each time series.

Table 3. MAPE for time series forecasting for n-step-ahead forecasting.

Time Series n = 1 n = 5 n = 9 n = 13 n = 14 n = 15

Wind speed 0.2311 0.5362 1.1369 1.4593 1.4660 1.9425
Wind power generation 0.5197 0.9413 2.0515 3.3400 3.4838 3.7490

Energy price for Denmark 0.1182 0.8337 1.2443 1.6593 1.8206 2.1913
Energy price for Germany 0.0361 0.7978 1.6035 2.3639 2.4098 3.0339
Energy price for Ireland 0.0156 0.5126 1.8111 3.0727 3.2361 3.3643

Energy price for Italy 0.3171 0.9758 2.1767 3.2619 3.2641 3.7549
Energy price for Norway 0.0636 0.2357 0.5149 0.7972 1.0932 1.2815
Energy price for Sweden 0.2029 0.7103 1.0290 1.9813 1.9871 2.1032
Energy price for the UK 0.0496 0.7558 1.7609 2.3555 2.3973 3.2192

5. Conclusions

This paper proposes the use of a RHONN trained with an EKF learning algorithm
for energy time series forecasting, which includes wind speed, wind power generated
and energy prices. All results obtained shown in Table 2 present a good performance for
each case. The proposed methodology is simple in structure, which allows an on-line
implementation to forecast multiple steps forward, despite the highly nonlinear nature
of the system, in which it is extremely beneficial to know future values. It is important to
note that, unlike most modern forecasting techniques, the proposed methodology stands
out for its simplicity and for having low computational complexity, producing very good
results, as shown by the included results. The obtained results show that forecasting
for time series on wind energy systems is not a simple task; however, the proposed
neural methodology captures complex dynamics, including nonlinearities, chaos, noise
and uncertainties. The forecasting results help to operate the energy systems, satisfy the
energy demand, optimize the power supplied to the utility grid, maximize the energy
supplied by renewable sources and minimize the energy supplied by non-renewable
sources. It is important to highlight that the forecast results obtained in this work are
relevant because the proposed methodology does not require prior data treatment, nor
does it require information external to the time series data. Because the training is on-line,
only seven past measurements are required to start the forecasting process, being able
to achieve a forecast of up to 15 steps forward. This completely differs from existing
methodologies, which require off-line training to achieve a forecasting horizon beyond this
one, in addition to incorporating external information to the time series. Finally, they are
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models with high computational complexity that require very long processing times and
the use of highly specialized computer equipment, and these are requirements that are not
necessary for the proposed methodology. All these improvements show the importance
of the proposed methodology for time series forecasting. The used data do not contain
missing or abnormal data; therefore, time series with this kind of problem can be considered
in future work. At this time, the authors are working on using the forecasted time series
to simulate a closed-loop wind energy system, including an electric generator dynamic,
gearbox dynamic, converter, main grid parameters and other elements that complete the
whole wind energy system.
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