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Abstract: Deformable image registration (DIR) is an image-analysis method with a broad range
of applications in biomedical sciences. Current applications of DIR on computed-tomography
(CT) images of the lung and other organs under deformation suffer from large errors and artifacts
due to the inability of standard DIR methods to capture sliding between interfaces, as standard
transformation models cannot adequately handle discontinuities. In this work, we aim at creating
a novel inelastic deformable image registration (i-DIR) method that automatically detects sliding
surfaces and that is capable of handling sliding discontinuous motion. Our method relies on the
introduction of an inelastic regularization term in the DIR formulation, where sliding is characterized
as an inelastic shear strain. We validate the i-DIR by studying synthetic image datasets with strong
sliding motion, and compare its results against two other elastic DIR formulations using landmark
analysis. Further, we demonstrate the applicability of the i-DIR method to medical CT images by
registering lung CT images. Our results show that the i-DIR method delivers accurate estimates of a
local lung strain that are similar to fields reported in the literature, and that do not exhibit spurious
oscillatory patterns typically observed in elastic DIR methods. We conclude that the i-DIR method
automatically locates regions of sliding that arise in the dorsal pleural cavity, delivering significantly
smaller errors than traditional elastic DIR methods.

Keywords: deformable image registration; tissue sliding; lung biomechanics

1. Introduction

Deformable image registration (DIR) is an image-analysis technique used to determine
the optimal transformation that establishes the spatial correspondence of a point between
two images. When constructing a DIR method, three key elements need to be defined:
(i) the transformation model, (ii) the regularizer, and (iii) the similarity measure [1]. These
elements allow for the classification of DIR methods, and the reader is referred to [2] for a
complete review. In particular, in this work we are concerned with the ability of the method
to capture large displacements in the optimal transformation between medical images.
From this perspective, transformation models can be divided into continuous-displacement
transformations [3], which are suitable for small-deformation problems, and incremental
diffeomorphic transformations based on the integration of flow equations [4,5], which
can capture large deformations in DIR problems. While diffeomorphic methods have
proven advantageous in capturing the large-displacement kinematics in DIR, continuous
displacement models have been preferred in the field of medical imaging, as they provide
a simple and efficient computational framework to DIR [6].

DIR has essential applications in radiology, such as the fusion of an anatomical image
with a functional image [7], image-guided radiotherapy [8], and in treatment and surgery
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planning [9]. DIR has proven fundamental in the study of the deformation mechanisms
that take place at a regional level in human lungs, where the primary inputs for deter-
mining regional deformation are deformation measures based on the Jacobian matrix
of the optimal transformation resulting from DIR of lung computed-tomography (CT)
images [6,10]. DIR-based biomechanical analysis has revealed significant spatial differ-
ences in the magnitude, anisotropy, and heterogeneity of regional deformation in the lung
of normal human subjects [10,11], measured in terms of volumetric change expressed
either as a Jacobian determinant [12] or as regional volumetric strain and deformation
invariants that quantify linear and surface changes [13]. Further, spatial patterns of regional
deformation obtained from DIR have been found to significantly differ from normal lungs
in asthmatic patients [14] and patients with chronic obstructive pulmonary disease [15],
highlighting the potential of biomechanical analysis in understanding, and potentially
detecting disease progression. Estimates of volumetric strain have been correlated with
lung inflammation and injury in mechanically-ventilated lungs, suggesting that regional
deformation obtained from DIR can be useful in the prevention of ventilation-induced
lung injury in critical-care patients [16–18]. A fundamental limitation of current DIR tech-
niques and libraries is the poor performance experienced when images display motion
discontinuities such as contact and organ sliding. Sliding typically occur inside the human
body due to the existing lubricated interfaces between internal structures in the thoracic
cage (e.g., lungs, chest wall, heart) [10,19,20]; and between the liver and other abdominal
organs (e.g., kidney, diaphragm) [21,22]. Interestingly, sliding in the lung fissures has
been detected from computed-tomography (CT) images of the lungs using DIR methods,
where supraphysiological levels of shearing deformation colocalize with the fissures [23].
While useful for anatomy detection purposes, no regional tissue distortion is expected
to occur in sliding regions, which invalidates the accuracy of regional deformation es-
timates from traditional DIR methods in the lungs in regions close to fissures and the
pleural cavity. The main responsible for such spurious deformation levels in sliding is the
transformation model that most DIR methods assume, typically constructed using interpo-
lation schemes that deliver globally continuous and smooth transformation mappings [24].
As a consequence, traditional DIR methods cannot capture material interface or motion
discontinuities, thus hindering the accuracy of the image registration and the associated
biomechanical analysis [11].

Traditional DIR techniques have been modified to capture sliding either by using alter-
native regularization terms, as well as enhanced transformation models [24–27]. One exam-
ple of the former is the diffusion-based approach [28], where the normal component of the
displacement field near the sliding boundaries is continuous, and a direction-dependent
regularization term is assumed such that it penalizes jumps in the normal direction but
allows for a discontinuous displacement field in the tangential direction [25]. This direction-
dependent registration model shows good registration accuracy but underperforms when
the intensity contrast near the boundaries is low, which can be the case of lobar fissures
in CT images of the lung. A similar approach that employs local weighting and direction-
dependent anisotropic diffusion smoothing resulted in more realistic displacement fields
than methods using global smoothing regularization [26]. Alternatively, sliding motion
in DIR has been approached by using novel transformation models that allow for discon-
tinuities at predefined boundaries. One such example is the use of a linear combination
of multiple B-spline functions and a sliding constraint [27]. This enhanced formulation
of the classical free-form deformation (FFD) model [3] delivered accurate estimations of
the displacement deformation field in 16 patients with lung cancer. A step further is the
extension of the FFD free-form deformation method, which consists in enhancing B-spline
basis functions with discontinuous functions that have jumps defined at the discontinu-
ity surface [22,24], a formulation that has been termed extended FFD (XFFD). XFFD has
shown to deliver high accuracy when registering synthetic images with strong sliding
discontinuities, as well as lung and liver images where high levels of sliding are present.
While incorporating additional constraints that account for organ sliding results in better
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deformation estimates, several limitations preclude them from their direct applicability
in the analysis of regional strain deformation in the lungs. A key limitation presented by
XFFD models, which is also shared by other B-spline methods [27,29] and diffusion-based
methods [25,26], is the fact that they rely on the definition of the sliding boundaries prior to
the DIR analysis, which is typically done using semi-automatic segmentation methods, and
largely depends on expert knowledge of the spatial location of the discontinuity boundaries.
The a-priori definition of the sliding boundaries and the need for fine grids to capture
curved surfaces where sliding occurs largely limit the applicability of current DIR methods
in registering lung images, where the pleural cavity and fissures have intricate surface
geometries and may not be easy to detect by the non-expert user.

The scientific question that motivates this work reads as follows: Is it possible to
accurately capture sliding motion in DIR without the predefined knowledge of the sliding
boundaries? To answer this question, in this work we aim at proposing and validating an
inelastic DIR (i-DIR) method that allows for the automatic detection of sliding boundaries
and that can handle discontinuous sliding motion on such surfaces.

2. Materials and Methods
2.1. Deformable Image Registration Elastic Formulation

In the following we adopt a variational framework for DIR problems [2,30], which
will be the starting point of the i-DIR formulation. Let Ω ⊂ Rn be a domain of interest
(image support), R : Ω → R be the reference image and T : Ω → R be the target image.
The DIR problem aims to establish an optimal transformation u : Ω → Rn that best
aligns the reference and target images. To this end, we consider the functional space
V := H1(Ω,Rn) and define a similarity functional D : V → R that penalizes differences
between the reference image R and the resampled target image T ◦ (id + u). A popular
choice for the similarity measure in mono-modal applications of DIR [31,32] is the sum of
squared-differences

D[w] :=
1
2

∫
Ω
[T(x + w(x))− R(x)]2dΩ , ∀w ∈ V , (1)

which we will consider throughout this work. We remark that other choices of image simi-
larity models such as those based on cross-correlation and mutual information measures
can also be included in this formulation [30,33]. Further, we define a regularizer S : V → R
that provides smoothness to the optimal transformation as well as it avoids ill-posedness
of the DIR problem. A popular choice due to its physical meaning is the elastic regularizer

S [w] :=
∫

Ω
We(∇w)dΩ, (2)

where the elastic energy density takes the form

We(∇w) := µ‖∇w +∇wT‖2 +
λ

2
(div w)2, (3)

with∇ the gradient operator, div the divergence operator, and λ and µ the Lamé constants.
With these elements, we define the elastic registration functional as

Π[w] := αD[w] + S [w], (4)

where α > 0 is a weighting parameter. Then, the optimal transformation u is the minimizer
of the elastic registration functional, and the DIR problem is formulated as the following
variational problem: Find u such that
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Π[u] = min
w∈V

Π[w]. (5)

We note that the optimal transformation u can be interpreted as a displacement field that
maps a point between its locations in the reference and target images. Moreover, the choice
of the elastic deformation energy as a regularization term confers the DIR problem the
physical interpretation of an elasticity problem [34], which has been widely exploited
in the literature [1]. Further, and based upon this physical interpretation of the optimal
transformation u, we define the strain tensor operator

ε(u) :=
1
2

(
∇u +∇uT

)
, (6)

and we note that the elastic energy density defined in (3) can be rewritten as

We(ε) = µε : ε +
λ

2
(trace ε)2, (7)

where : signifies the tensor scalar (inner) product and trace represents the trace operator.
We further define the stress tensor associated to this elastic energy by

σ(ε) :=
∂We

∂ε
= 2µε + λ trace (ε)I, (8)

where I is the identity tensor.

2.2. The Inelastic Deformable Image Registration (I-Dir) Method

As discussed in the introduction, the elastic regularizer is not suited to handle discon-
tinuities in the displacement field.As a result, sliding motion is not captured by traditional
DIR methods. To address this limitation, here we draw ideas from the mechanics of
inelastic solids, which aims at modeling inelastic deformation processes that result in
localized softening in a solid. In the following, we briefly summarize the main ingredients
of a traditional von Mises plasticity model, for a comprehensive review of the theory of
inelastic solids we refer the reader to [35]. Inelastic deformation in metals is driven by
shearing deformation mechanisms, where sliding in the plane of maximum shearing occurs
when the shear stress in that plane overcomes a critical yield stress, resembling frictional
sliding motion.

We note that the mechanical behavior of an inelastic solid is path dependent, which
we represent through a time-dependence of the associated displacement field and strain
tensors. To model inelastic deformation processes, we adopt the standard additive decom-
position of the strain tensor

ε = εe + εp (9)

where εe corresponds to the elastic strain tensor which is assumed to disappear as the load
is removed, and εp is the inelastic strain tensor which captures permanent deformations
(i.e., sliding) that will remain in the solid after the load is removed. A sketch of this
traditional decomposition of deformations is included in Figure 1. For the purposes of
image registration, we note the inelastic strain tensor will capture sliding that does not
generate deformation in a tissue, and therefore we will quantify regional deformation
solely based on the elastic strain tensor. The additive decomposition carries onto the
instantaneous evolution of strain components, and we note that (9) implies that

ε̇ = ε̇e + ε̇p, (10)
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where (̇) indicates partial derivatives with respect to time. To reflect the path-dependent
nature of inelastic solids, we consider the effective inelastic strain q ∈ M := L2(Ω,R) as
the hardening internal variable. Following a thermodynamic formalism, we assume a free
energy density function (for rate-independent plasticity) that extends the elastic energy
density (7) and takes the form

A(ε, εp, q) = We(ε− εp) + Wp(q), (11)

where we assume that the stored plastic energy takes the form Wp = 1
2 Hq2, with H being

the hardening modulus. Then, the elastic constitutive relation reads

σ(εe) =
∂W
∂εe = 2µεe + λ trace (εe)I, (12)

and the relation between the hardening internal variable and its thermodynamic conjugate
stress is

σc(q) =
∂A
∂q

= Hq. (13)

Figure 1. Schematics comparing the behaviour between an elastic and an inelastic approach.

The inelastic behavior of a solid is modeled by defining a inelastic potential, also
known as the yield function, which in the case of a von Mises solid takes the form

Φ(σ, σc) :=

√
3
2

sijsij − σc (14)

where sij are the components of the deviatoric stress tensor s defined as

s(σ) := σ− 1
2

trace σI. (15)

Following an associative plasticity framework [35], the evolution of the inelastic strain
tensor is governed by the flow rule

ε̇p = γ̇
∂Φ
∂σ

(σ, σc) = γ̇

√
3
2

s
‖s‖ (16)

where γ̇ is the inelastic multiplier and the norm defined as ‖(·)‖ =
√
(·) : (·). The evolution

of internal variables is also dictated by the gradients of the inelastic potential

q̇ = −γ̇
∂Φ
∂σc

(σ, σc) = γ̇. (17)
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Finally, an inelastic model must comply with the loading/unloading complimen-
tary conditions

Φ(σ, σc) ≤ 0, γ̇ ≥ 0, γ̇Φ(σ, σc) = 0. (18)

Complimentary conditions (18) are interpreted as follows: Inelastic deformations will
occur (γ̇ > 0) only when the current stress state reaches the yield surface Φ(σ, σc) = 0.
Otherwise, the inelastic evolution must be null to comply with (18), i.e., γ̇ = 0, which in
turn implies that the change in total deformation will correspond only to changes in elastic
deformation, as governed by (10).

In general, the relationship between ε̇p and q is not independent. Let σ̄ be the effective
stress defined as

σ̄ =

√
3
2

sijsij. (19)

Then, the relation between ε̇p and q is assumed to follow the Prandtl-Reuss flow rule
that reads

ε̇
p
ij = ˙̄εp

(
3
2

sij

σ̄

)
, (20)

where ˙̄εp stands for the evolution of the accumulated plastic strain. In view of the plastic
flow rule, the accumulated plastic strain is equivalent to q, so by integration of (20) and
assuming isotropic hardening, we have the following relation,

ε̄p =
∫ t

0

√
2
3

ε̇
p
ij ε̇

p
ij dt ≡ q (21)

(see Appendix A.1 for details).

2.3. Time and Space Discretization

Given ε̇, the set of Equations (10), (12), (13), (16) and (18) constitutes an inelastic
constitutive initial value problem, which has been traditionally solved using a return-
mapping algorithm based on an implicit backward-Euler temporal discretization. To this
end, the time variable is discretized in generic subintervals [tn, tn+1]. Then, a series of
incremental problems are obtained, where the main variables of the inelasticity model are
assumed to be known at the time t = tn, and need to be solved for t = tn+1, giving rise
to classical return-mapping algorithms. The details about the numerical discretization
of return mapping algorithms can be found elsewhere [36]. Conveniently, the elastoplas-
tic incremental problems can be reformulated as incremental variational (minimization)
problems, which gives rise to the theory of variational updates in the computational solid
mechanics community [37–39]. In the following, we draw ideas from the theory of varia-
tional updates in plasticity to formulate the inelastic DIR model. The general framework
consists in formulating the evolution of an elastoplastic solid as a sequence of incremental
variational minimization problems. To this end, we first integrate the flow rule (16) using a
Backward-Euler scheme to obtain

ε
p
n+1 − ε

p
n = (qn+1 − qn)

√
3
2

s(εn+1 − ε
p
n+1)

‖s(εn+1 − ε
p
n+1)‖

(22)

Solving for ε
p
n+1 from the non-linear Equation (22) delivers an incremental update for

the inelastic strain tensor, which we express as

ε
p
n+1 = ε

∗p
n+1(εn+1, qn+1) (23)
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which depends solely of εn+1 and qn+1. Based on this flow-rule update, we define the
effective incremental energy density for t = tn as [38],

Wn(ε) = inf
qn+1

gn(ε, qn+1) (24)

where,

gn(ε, qn+1) = A(ε, ε
∗p
n+1(ε, qn+1), qn+1)−An + ∆t · ψ∗

(
|qn+1 − qn|

∆t

)
(25)

where ∆t = tn+1− tn, and ψ∗ stands for the dual dissipation potential [38] that governs the
time evolution of the hardening variable, which in our case is defined as ψ∗ = σy|∆q|, with
∆q = qn+1 − qn. The minimization problem involved in the definition (25) is equivalent to
the stationary condition

0 ∈ ∂A
∂qn+1

+ ∂ψ∗
(
|qn+1 − qn|

∆t

)
(26)

which, for the rate-independent case reads (see details in Appendix A.2),

σ̄
pre
n+1 − 3µ∆q− σc(qn+1) = ∂ψ∗

(
|qn+1 − qn|

∆t

)
(27)

where σ̄
pre
n+1 is the elastic predictor for σ̄n+1. Substituting (13) into (27) we obtain

σ̄
pre
n+1 − 3µ∆q− H(qn + ∆q)− ∂ψ∗

|∆q|
∆t

= 0 (28)

where the sub-differential of ψ∗ is defined as:

∂ψ∗ =


[−σy, σy] if ∆q = 0

σy if ∆q > 0
−σy if ∆q < 0

(29)

The solution of ∆q from (28) involves two mutually exclusive steps, giving rise to a
return-mapping algorithm which involves an elastic predictor and a plastic corrector steps,
see Appendix A.3.

With the definition of the effective incremental energy density, we now postulate the
inelastic DIR formulation as a sequence of effective variational problems. For a generic
time step, the displacement field un is assumed to be known, and we find the displacement
field un+1 by solving the problem

Πeff
n [un+1] = min

w∈V
Πeff

n [w], (30)

where the inelastic DIR functional reads

Πeff
n [w] = Seff

n [w] + αD[w], (31)

and the inelastic regularizing term takes the form

Seff
n [w] =

∫
Ω

Wn(ε(w)). (32)

To solve the minimization problem (30) we consider the stationary condition

Rn[w; v] :=
d
dε

Πeff
n [w + εv]ε=0 = 0, ∀v ∈ V . (33)
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The residual in (33) takes the form

Rn[w; v] := α
∫

Ω
v · (T(w)− R)∇T(w) +

∫
Ω

ε(v) : σn+1(ε(w)), (34)

where
σn+1(ε) :=

∂Wn

∂ε
(ε), (35)

represents the stress tensor update [38]. The residual Equation (33) constitutes a nonlinear
problem, which we approach by means of linearization. To this end, we consider the
Gauteaux differential defined as

TR[w, v; ∆w] := α
∫

Ω
v ·
{
∇T(w)⊗∇T(w) + (T(w)− R)∇∇T(w)

}
· ∆w +

∫
Ω

ε(v) : Dep
n+1 ε(∆w), (36)

where

Dep
n+1(ε) :=

∂2Wn

∂ε2 , (37)

is the consistent tangent tensor, see Appendix A.4. Thus, the linearized version of the
residual problem reads: Given an initial guess w ∈ V , find the increment ∆w such that

Rn[w; v] + TR[w, v; ∆w] = 0 ∀ v ∈ V , (38)

and we iterate over this linearized problem until a convergence criterion is reached.
To solve the continuous linear variational problem defined in (38) we adopt a Ritz-

Galerkin finite-element approach. To this end, we construct the finite-element space

Vh =

{
vh : Ωh → Rn |vh :=

m

∑
A=1

NAvA, with vA ∈ Rn

}
⊂ V , (39)

where {N1, . . . , Nm} is the set of basis functions. Using this finite-element space, we
approximately solve the variational problem (38), i.e., we solve the problem: Given an
initial guess uh, find the increment ∆uh such that

Rn[wh; vh] + TRn[uh, vh; ∆uh] = 0 ∀ vh ∈ Vh. (40)

Using standard arguments (e.g., see [40]) we can show that (40) is equivalent to solving
the linear system of equations

Kn∆u = Fn, (41)

where ∆u is a vector with the nodal values of the increment ∆uh, Kn is the tangent matrix
and Rn is the residual for the previous guess, all of which are defined in Appendix A.5.
After convergence is reached for the Newton step, the internal variables q at tn+1 are
updated and stored at the element level. We further note that, in order to provide sta-
bility and unisolvence of the problem, we adopt the approach set forth in [30], where
we impose orthogonality conditions to the displacement fields and assume Neumann
boundary conditions.

2.4. Performance Assessment and Metrics

The i-DIR method was implemented using an in-house Python code. In order to
contrast the results of the i-DIR method with other DIR methods, we considered the open
source Nifty Reg library [41] which efficiently implements the FFD method [3] with elastic
regularization. To understand the effect of the inelastic regularization term over the purely
elastic counterpart for a FE method, we also consider the comparison with an Elastic FEM
registration. To study the performance of the three methods considered here (FFD, Elastic
FEM, and i-DIR), we constructed synthetic reference and target images that simulated
planar sliding over a chessboard-like image studied by Rua and co-workers [22], which we
refer to as the synthetic dataset with sliding motion, see Figure 2. The synthetic images
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have a resolution of 80× 80 pixels, and the target image is constructed in such a way
that it resembled a dislocation or sliding motion, with a known displacement of 5 pixels.
We remark that, as the motion corresponds to a uniform vertical displacement (i.e., rigid
body motion in both blocks) of the right-hand side of the image, the exact strain field is
equal to zero, as rigid motions do not generate strain. To assess the method’s performance
on anatomical images, we considered sagittal planes of CT thorax images of a normal vol-
unteer under spontaneous breathing at total lung capacity (reference image) and functional
residual capacity (target image), see Figure 3. The images were randomly selected from
a small CT lung dataset of normal subjects employed in a previous study [13], and the
sagittal planes were arbitrarily chosen so that large deformations were explicitly depicted
to capture sliding.

Figure 2. Synthetic dataset with sliding motion: Reference (left) and target (right) images. Landmarks
used for computing the target registration error (TRE) are shown in red for the reference image and
in green for the target image.

Figure 3. Lung dataset: Reference (left) and target (right) images. (Row A): TRE analysis using
landmarks inside the lung. (Row B): TRE analysis using using landmarks on the dorsal ribs. Red and
green marks indicate landmarks in the reference and target images, respectively.

To quantitatively evaluate the performance of the DIR methods, we considered the
traditional residual sum of squared differences (RSS) between the reference and resampled
images, defined as:

RSS =
m

∑
i=1

n

∑
j=1

(Rij − (T ◦ (id + u))ij)
2. (42)

In addition, the normalized target registration error (TRE) was also computed. The
TRE is defined as

TRE =
∑N

i=1

√
(pi − qi)2

N
(43)

where pi(x, y) and qi(x, y) are the ith landmark in the target image (fixed landmark) and the
moving landmark, respectively, and N is the total number of landmarks. For the synthetic
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dataset, 375 landmarks were positioned around the discontinuity surface, as shown in
Figure 2. In the case of the lung dataset, two sets of landmarks were considered, to analyze
the effect of landmark selection and position regarding the sliding surface. The first case
considered 9 landmarks positioned entirely inside the lung (Figure 3, top row). The second
case considered 12 landmarks placed in the ribs of the dorsal region (Figure 3, bottom row).

In addition to the RSS and TRE metrics, the resampled image (T ◦ (id + u)), difference
image (R− T ◦ (id + u)), and warped reference image ((ϕ, R)) are reported for all cases.
To study the mechanical performance of all the methods studied, we constructed images of
the elastic volumetric strain, defined as

εe
vol := trace(εe), (44)

and images of the elastic von Mises strain, which takes the form

εe
vm :=

√
2
3

εe : εe. (45)

We note that for purely elastic methods (FFD, Elastic FEM), the elastic strain tensor
εe is replaced by the total strain tensor ε in (44) and (45). Finally, a sensitivity analysis is
conducted for the i-DIR method on the synthetic dataset to understand the effect of the
initial yield stress on its registration performance.

2.5. Parameter Settings

For the FEM models (elastic FEM and i-DIR), we established an incremental approach
for the weighting parameter α. We set an initial value of α = 0.01, and once a convergence
tolerance was exceeded, we systematically increased α, until we reach a value of α = 1400.
Values for the Lamé constants (µ, λ), the initial yield limit (σ0) and the hardening modulus
(H) are included in Table 1.

Table 1. Parameter values for the inelastic regularizer.

Parameter Value

µ 1.36
λ 0.34
σ0 0.1
H 0.3

Following the pyramidal approach described in [41], the FFD model consisted of a
global registration and three consecutive local registration processes. The penalty term asso-
ciated with the FFD model, also known as bending energy (BE), was set to: BE1 = 1× 10−9,
BE2 = 2.5× 10−6 and BE3 = 1× 10−4, for the three local registration respectively.

In terms of numerical discretization, both the elastic FEM and i-DIR models, employed
structured triangular finite element meshes. As shown in Figure 4 the synthetic dataset
used a mesh of size 5618 elements and for the lung dataset a mesh of size 18,860 elements.
For visualization purposes, we further refined our results into structured meshes of size
64,800 and 28,800 elements for the synthetic and lung dataset, respectively. As for the FFD
model, we projected the deformation mapping field (output) and compute the mechanical
measures into a refined structured triangular finite element mesh of the same size as the
FEM DIR models, in order to have a fair comparison.
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Figure 4. Numerical discretization of the synthetic and lung datasets. (Column A) Structured triangular meshes and (Column B)
refined structured triangular meshes.

3. Results
3.1. Synthetic Dataset with Sliding Motion

The performance of each registration model using the synthetic dataset with sliding
motion is reported in terms of resampled and difference images in Figure 5. The i-DIR
method accurately captures the vertical sliding and delivers the best resampled image,
when compared to the other elastic methods (Figure 5, top row). Most of the errors in the
resampled images are located in a small neighborhood of the line where sliding takes place.
When analyzing the difference images (Figure 5, bottom row), the FFD method results
in considerable voxel-wise differences at the boundaries of the squares that propagate
from the sliding line throughout the checkerboard domain. In contrast, small differences
are observed around the sliding line in the elastic FEM case. No visible differences are
observed for the i-DIR case when compared to the other two methods.

Warped reference images showing the resulting displacement field for each method are
reported in Figure 6. A close-up around the sliding region shows a continuous displacement
field with a vortex-like pattern over the sliding line that slowly dissipates to the right for the
FFD case. A similar displacement field pattern is observed for the elastic FEM case, but with
an attenuated vortex pattern. In contrast, the i-DIR method delivers a uniformly vertical
displacement field on the region to the right of the sliding line, and zero displacements
to the left of the sliding line, being able to identify the discontinuity surface as well as
capturing the discontinuous displacement field.

The RSS and TRE metrics for all three methods are shown in Table 2. The i-DIR
method delivers the lowest values for these performance metrics, followed by the Elastic
FEM method.

Table 2. Performance metrics for the synthetic dataset.

Model RSS TRE

FFD 16.32 1.17
Elastic FEM 3.19 0.46

i-DIR 0.28 0.22
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0.10

0.00

0.05

Figure 5. Registration of synthetic dataset with sliding motion. (Top row) resampled images using free-form deformation (FFD),
Elastic finite element method and inelastic deformable image registration (iDIR) methods and reference image, (bottom row) difference
images. Colorbar indicates the absolute intensity difference between images.

Figure 6. Warped reference image and displacement field for the synthetic dataset with sliding motion. Red arrows show the
displacement field in a neighborhood of the sliding plane.

Figure 7 shows the elastic deformation fields associated to the three registration
methods. The elastic volumetric strain displayed by the FFD model, shows an erratic
pattern throughout the entire image, with high values of both compressive (peak value of
−1.22) and expansive (peak value of 0.83) deformation near the vicinity of the discontinuity
surface. The case of the elastic FEM model delivers a volumetric strain field with localized
strain concentrations around the sliding surface with peak values of −0.75 and 1.27. In
contrast, the i-DIR model delivers a volumetric strain field that is zero in the majority of the
region of analysis, with small concentrations around the sliding surface with peak values
of −0.39 and 0.63. The resulting elastic von Mises strain field, which characterizes shear
distortions, is shown in the bottom row of Figure 7. Similarly to the case of volumetric
strain, the FFD method results in a highly oscillating field that take on non-zero values
everywhere in the image domain, reaching peak values of 1.72. The Elastic FEM method
displays high strain concentrations around the sliding plane with peak von Mises strain
values that are similar to the FFD case (2.38), but the strain field rapidly dissipate away
from the discontinuity plane. In contrast, the i-DIR results in a narrow region around
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the sliding plane with low values (peak value of 0.38), with the rest of the image domain
resulting in zero von Mises strain.

 1.0

-1.0

 0.0

 1.0

 0.0

 0.5

Figure 7. Elastic deformation fields for the synthetic dataset with sliding motion resulting from the different registration methods:
elastic volumetric strain (top row, colorbar displays strain magnitude), and elastic von Mises strain (bottom row, colorbar displays
strain magnitude).

The sensitivity of the RSS error to the value of the initial yield stress in the i-DIR
method is shown in Figure 8. Yield stress values smaller that 0.1 result in RSS errors that do
no change considerably, delivering the highest accuracy observed for all three methods. In
contrast, yield stress values above 1.0 deliver a much higher RSS error, which approaches
that of the Elastic FEM method, see Table 2.

Figure 8. Sensitivity of the i-DIR method, measured in terms of residual sum of squared differences
(RSS) error, to the choice of initial yield stress value.
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3.2. Registration of Lung CT Images

Resampled and difference images for the lung CT dataset are shown in Figure 9,
top row. All three methods deliver similar results of the resampled image. We note
however, that resampled images from both the FFD and Elastic FE methods show distorted
rib cuts in the dorsal region, while the ribs are accurately resampled in the case of the i-DIR
method. The misalignment of the ribs is also observed in the difference images of the FFD
and Elastic FEM cases, see Figure 9, bottom row. In contrast, the i-DIR case reports zero
difference values in the regions where ribs are located.

0.50

0.00

0.25

Figure 9. Registration of the lung dataset and comparison between methods. (Top row) resampled images, (bottom row) difference
images. Colorbar indicates the absolute intensity difference between images. Reference image is included for comparison purposes.

Warped reference images are shown in Figure 10, where a close-up shows the dis-
placement fields around the sliding pleural cavity. A continuous, and almost uniform
upward displacement field is observed for the case of the FFD and Elastic FE methods. In
contrast, the i-DIR method delivers an upward displacement field inside the lung, right
next to a region comprising the ribs with null displacement, with the jump in displacement
magnitude located on the sliding pleural cavity.

Figure 10. Warped reference image and displacement field for the lung dataset. Red arrows show the displacement field in a
neighborhood of the sliding surface.
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Performance metrics for the lung dataset are included in Table 3. We note that all three
methods result in similar values for the case of RSS and TRE using inside-lung landmarks.
However, the i-DIR method shows a remarkable advantage over the other methods for the
case of TRE using rib landmarks.

Table 3. Performance metrics for the lung dataset.

Model RSS TRE TRE
(Inside-Lung Landmarks) (Rib Landmarks)

FFD 11.64 6.82 13.98
Elastic FEM 13.25 6.74 13.68

i-DIR 12.24 6.99 0.77

The elastic volumetric strain distribution resulting from the registration of lung images
are shown in Figure 11, top row. The FFD model delivers a highly oscillating field that
results in excessive strain values with peaks as high as −1.68 and 1.02, located both
inside and outside the lung domain. In contrast, the Elastic FEM model displays a more
uniform volumetric strain distribution inside the lung, with a smooth pattern of strain.
However, high strain localizations are observed outside the lung in the dorsal region
where the ribs are located, with oscillating values. The i-DIR model delivers a smooth
distribution of volumetric strain inside the lung, that quickly transitions to small levels
os strain immediatly outside the lung. Further, the largest strain levels are found in
the regions near the diaphragm. Outside the lung, we mostly observe zero volumetric
deformation throughout the remaining image domain. The von Mises strain fields are
shown in Figure 11, bottom row. Similary to the case of volumetric strain, the FFD model
delivers a highly oscillating field with a peak value in the order of 1.7 both outside and
inside the lung. The Elastic FEM method results in a distribution with smaller strain
magnitudes, which in some parts of the lung boundary are rapidly reduced to zero. In
the case of the i-DIR method, a smooth distribution of non-zero strain is observed inside
the lung with the highest values close to the diaphragm and dorsal region. The von Mises
strain distribution sharply decays to zero in the regions outside the lung.

 1.0

 0.0

 0.5

 0.1

-0.5

-0.2

Figure 11. Elastic deformation fields for the lung dataset resulting from the different registration methods: elastic volumetric strain
(top row, colorbar displays strain magnitude), and elastic von Mises strain (bottom row, colorbar displays strain magnitude).
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4. Discussion

The results for the synthetic dataset with sliding motion show that among the three
DIR methods studied, the i-DIR delivers the best resampled image, accurately accomodat-
ing the sliding motion, see Figure 5, top row. We note that the elastic DIR methods suffer
from spurious displacements around the sliding line that result in distorted resampled
images, see Figure 5, bottom row. Further, the i-DIR method is capable of capturing the
discontinuous displacement field imposed by the sliding motion, while elastic DIR methods
fail to capture the jump in displacements and result in spurious displacement fields, see
Figure 6. Further, we have shown that for this example, the i-DIR method consistently
delivers RSS and TRE metrics that confirm the superior performance of the i-DIR method
when compared to the Elastic FEM and FFD methods, see Table 2. Other methods proposed
in the literature have also shown a remarkable performance in the registration of the syn-
thetic dataset with sliding motion. In particular, the XFFD method has shown to be capable
of accurately capture the sliding motion by introducing a discontinuous transformation
model that delivers an optimal resampling [22]. To this end, the XFFD method necessitates
the definition of the sliding surface a priori in order to deliver accurate and efficient results.
Here, we have shown that the i-DIR method does not require a priori information about
the sliding surface. Further, the sliding plane did not coincide with any element edges in
the discretization. This feature represents an important advantage over existing methods,
as the i-DIR is capable of detecting sliding discontinuities in an automatic way, lending
itself to the registration of images with arbitrary sliding discontinuities.

From the perspective of quantifying local deformation by means of DIR, we remark
that the sliding mechanism present in the synthetic dataset corresponds to a rigid (sliding)
motion between two adjacent blocks, and therefore no deformation is expected to occur in
any of the blocks after sliding. Figure 7 shows that the FFD method induces spuriously
high levels of both volumetric and deviatoric deformations around the sliding plane, which
is consistent with previous findings for the synthetic dataset with sliding motion [22]. Simi-
larly to the case of the displacement field, the strong warping and deformation propagates
throughout the image domain, creating nonphysical high volumetric and deviatoric strain
levels away from the discontinuity. The error in the strain predictions is strongly attenuated
by the elastic FE method, which still concentrates high values in a neighborhood of the
sliding plane. In contrast, the i-DIR method reports low levels of deviatoric deformation
on a narrow band around the discontinuity surface, and negligible errors in the estimation
of volumetric strain, see Figure 7. This result shows that the i-DIR method not only auto-
matically captures the sliding motion with accuracy, but also delivers precise estimates of
the strain fields, even in the present of strong discontinuities.

The sensitivity of the iDIR model to the yield stress parameter shows that for parameter
values σy ≤ 10−2 no appreciable improvement is obtained in terms of the RSS error. Further,
we note that high values of yield stress deliver errors that are equal to those reported by the
Elastic FEM method. These results show that tuning the yield stress parameter is essential
for obtaining accurate results from the registration process.

The i-DIR method was also assessed in the analysis of medical CT images of the lung,
where sliding is expected to occur when registering images from resting states to maximal
inspiration effort [23]. When comparing resampled images, we showed that the i-DIR
method delivered errors in registering the domains inside the lung that are comparable
to those found in elastic DIR methods, see Figure 9. This conclusion is supported by the
performance metrics RSS and TRE for the case of inside-lung landmarks reported in Table 3,
where no marked differences are observed among the FFD, Elastic FEM and i-DIR methods.
However, when assessing anatomical structures that are outside the lung, i.e., ribs, we
observe that the i-DIR accurately resamples them to the correct location, whereas elastic
DIR methods fail to achieve a reasonable result, see Figure 9, bottom row. This observation
is confirmed by the results obtained in the TRE when using rib landmarks, where the
i-DIR delivers errors that are one order of magnitude smaller than the error provided by
elastic DIR methods, see Table 3. Once again, we attribute the good performance of the
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i-DIR method to its ability to handle discontinuous sliding motion by considering inelastic
deformations in those regions, a feature not displayed by elastic methods, see Figure 10.

The evaluation of the elastic strain fields from registering lung CT images results in
conclusions similar to those obtained in the case of the synthetic image: elastic DIR methods
introduce highly oscillating fields both for the volumetric and deviatoric components of
the elastic strain tensor, see Figure 11. We remark here that previous works on lung image
registration have reported oscillatory strain fields when using elastic DIR methods that
employ B-splines or other smooth and continuous basis functions for the construction of
the deformation model [22,42]. However, these oscillations have been shown to hinder
the accuracy of the estimations of local pulmonary deformation, as they arise due to the
inability of the deformation model to capture discontinuities in the displacement field [11].
Notably, the i-DIR method delivers a smooth distribution of elastic strain inside the lung
domain, with a sharp decay outside that approaches a state of no deformation. Further, the
spatial patterns of volumetric strain delivered by the i-DIR method are in good agreement
with those reported in the literature for normal human lungs that have been analyzed by
isolating the lung domain [13], where larger volumetric strains are observed in the dorsal
(dependent) and basal regions of the lung.

In conclusion, we have introduced a novel inelastic model for DIR that automatically
captures sliding without a priori knowledge or assumptions about the spatial location
of discontinuities or the need of a segmentation to denote the slipping domain. We note
that other DIR formulations have been proposed in the literature to handle motion dis-
continuities without the need of segmenting the sliding region before the analysis [25].
In order to do so, these methods consider some assumptions related to the specific physi-
ological behavior of the organ. For the case of the lungs, slipping motion is restricted to
the edges of the image, and slippage occurs along the edge of the image. We note that
these assumptions are not required by the i-DIR method, and therefore it represents a truly
automatic technique for the detection of discontinuities in DIR of arbitrary images. The key
ingredient to achieve this performance is the introduction of an inelastic energy term,
which automatically locates regions of high shearing deformation associated to sliding
and locally modifies the effective mechanical properties, allowing for higher levels of
shear deformation in localized domains. We remark that, while inelastic formulations are
standard in the field of computational mechanics [38], the inclusion of inelastic energy
regularizers is novel in the field of image analysis, and, to the best of our knowledge, has
not been pursued in the past in in the field of DIR. For the application of lung images, it
is worth mentioning that we aim at automatically capture sliding, particularly between
the lung boundary and the ribs (clearly identified within the images), and not necessarily
improve the registration accuracy inside the lung. The above is supported by the results
obtained when measuring the RSS error, which demonstrates that our i-DIR model holds a
comparable performance with traditional DIR methods, especially in areas with no sliding.
However, the inelastic model is considerably superior in capturing slippage at the lung
edges, which is again substantiated by a better performance when measuring the TRE
using rib-landmarks.

The present work can be extended in several directions. One limitation of the current
computer implementation of the i-DIR method is the large wall-clock time required to solve
the optimization problem, which can take up to 40 times the time required by optimized
elastic DIR methods. This limitation may be alleviated by implementations that leverage
the power of GPUs in DIR libraries [41]. In addition, due to the high computational
demands, the current version of the i-DIR method has only been applied to 2D images.
We remark that the motion and deformation analysis based on 2D images of the thorax
constitutes an important limitation of this work in the biomechanical characterization of
the lung. However, we also remark that under normal conditions, the dominant orientation
of displacements in the lung is in the apico-basal direction [10], which is included in
the sagittal images considered in this study. Future extensions should focus on DIR
implementations for 3D CT thoracic images, based on which a complete biomechanical
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study can be performed to fully understand the 3D nature of deformations in the lung.
In addition, we note that due to the large level of strains experienced by the lung under
full inspiration, the elastic energy component employed in the i-DIR formulation may not
be suitable, as it corresponds to the elastic deformation energy for small strain levels [35].
To overcome this limitation, hyperelastic warping fomulations have been proposed which
employ elastic energy terms that are compatible with large deformation [43]. The use of
hyperelastic energy terms in the future versions of the i-DIR method constitutes a promising
avenue of research.
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Appendix A. Mathematical Definitions and Demonstrations

Appendix A.1. Relation between the Rate of Plastic Strain and the Internal Variables

In general, the relationship between ε̇p and q is not independent and is given by the
Prandtl-Reuss flow rule:

ε̇
p
ij = ˙̄εp

(
3
2

sij

σ̄

)
(A1)

where ˙̄εp stands for the evolution of the accumulated plastic strain and σ̄ for the effective
stress, which for the von Mises model takes the form

σ̄ =

√
3
2

sijsij. (A2)

For multi-axial plasticity we can rewrite the flow rule (20) as,

ε̇
p
ij = ˙̄εp Mij (A3)
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where M ≡ Mij =
3
2

sij
σ̄ stands for the instantaneous direction of plastic flow. Similarly, the

effective stress (A2) can be expressed as

σ̄ = σij Mij. (A4)

Going a step back and clearing ˙̄εp from (A1) we have,

˙̄εp =

√
2
3

ε̇
p
ij ε̇

p
ij (A5)

which in view of the plastic flow rule, is analogous to

˙̄εp = q̇ (A6)

Then by integration of (A5) and again, assuming isotropic hardening, we have the
following relation,

ε̄p =
∫ t

0

√
2
3

ε̇
p
ij ε̇

p
ij dt ≡ q (A7)

Finally, we compute the driving forces for q as,

y = −∂A
∂q

=
∂We

∂εe
ij

Mij −
∂Wp

∂q
(q) = σij Mij −

∂Wp

∂q
(q) (A8)

y = σ̄− σc. (A9)

Appendix A.2. Incremental Flow Rule Update

Following an incremental flow rule of the type,

ε
p
n+1 = ε

p
n + ∆qM (A10)

= ε
p
n + ∆q

3
2

sn+1

σ̄n+1
(A11)

let

gn(εn+1, qn+1) = A(εn+1, ε
p
n+1(qn+1), qn+1)−An + ∆t · ψ∗

(
|qn+1 − qn|

∆t

)
(A12)

Then we seek to minimize (A12) with respect to qn+1, such that,

∂gn

∂qn+1
= 0 =⇒ inf

qn+1
gn(εn+1, qn+1) (A13)

we solve the above in a sub-differential way, such that

0 ∈ ∂A
∂qn+1

+ ∂ψ∗
(
|qn+1 − qn|

∆t

)
(A14)

0 ∈ ∂We

∂εe
n+1
·

∂εe
n+1

∂qn+1
(εn+1− ε

p
n − (qn+1− qn)M) +

∂Wp

∂q
(qn+1) + ∂ψ∗

(
|qn+1 − qn|

∆t

)
(A15)

0 ∈ −σn+1 ·M +
∂Wp

∂q
(qn + ∆q) + ∂ψ∗

(
|∆q|
∆t

)
(A16)

0 ∈ −σ̄n+1 +
∂Wp

∂q
(qn + ∆q) + ∂ψ∗

(
|∆q|
∆t

)
(A17)
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Recalling that the von Mises flow vector is purely deviatoric [36], we have that

sn+1 = 2µεe
n+1

= 2µ(εn+1 − ε
p
n+1)

= 2µ

(
εn+1 − ε

p
n − ∆q

3
2

sn+1

σ̄n+1

)
= 2µ

(
εn+1 − ε

p
n

)
− 2µ∆q

3
2

sn+1

σ̄n+1

sn+1 = spre
n+1 − 3µ∆q

sn+1

σ̄n+1
(A18)

Since the predictive and updated deviatoric stress are co-linear (sn+1 ‖ spre
n+1), we can

state that,

M =
3
2

sn+1

σ̄n+1
=

3
2

spre
n+1

σ̄
pre
n+1

(A19)

=⇒ sn+1 =
spre

n+1

σ̄
pre
n+1

σ̄n+1 (A20)

From the above we can re-write (A18) as,

sn+1 = spre
n+1 − 3µ∆q

spre
n+1

σ̄
pre
n+1

(A21)

sn+1 =

(
1− 3µ∆q

σ̄
pre
n+1

)
spre

n+1 (A22)

Now replacing (A20) in (A22), we have,

spre
n+1

σ̄
pre
n+1

σ̄n+1 =

(
1− 3µ∆q

σ̄
pre
n+1

)
spre

n+1 (A23)

=⇒ σ̄n+1 = σ̄
pre
n+1 − 3µ∆q (A24)

Going a step back to (A17) we can explicitly define,

σ̄
pre
n+1 − 3µ∆q ∈ ∂Wp

∂q
(qn + ∆q) + ∂ψ∗

(
|∆q|
∆t

)
(A25)

Finally, assuming that Wp = 1
2 Hq2

n+1 and ψ∗ = σy|∆q|, we can rewrite (A25) as:

σ̄
pre
n+1 − 3µ∆q− H(qn + ∆q)− σy = 0 (A26)

which eventually delivers,

∆q =
σ̄

pre
n+1 − Hqn − σy

3µ + H
(A27)

Appendix A.3. Return Mapping Algorithm

The solution of ∆q in (A27) involves a two mutually exclusive steps:
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(i) An elastic predictor, such that,

∆q = 0
qpre

n+1 = qn
σ̄

pre
n+1 = {2µ(εn+1 − ε

p
n+1(q

pre
n+1)) + λ trace(εn+1 − ε

p
n+1(q

pre
n+1))I} ·M

=
√

3
2 spre

n+1 · s
pre
n+1

(A28)

replacing in (A26), we have

σ̄
pre
n+1 − Hqn − [−σy, σy] = 0 (A29)

=⇒
{

σ̄
pre
n+1 ≤ Hqn + σy

σ̄
pre
n+1 ≥ −Hqn − σy

(A30)

and
(ii) A plastic corrector, where we have two possible cases:

(a) if the elastic trial lies within the elastic domain

Φ(σ̄
pre
n+1) ≤ 0 =⇒ σ̄

pre
n+1 ∈ [−σy, σy] (A31)

there is no plastic evolution within the time interval (tn, tn+1), and therefore we
update our variables:

(·)n+1 = (·)pre
n+1 (A32)

and
(b) otherwise, we have plastic flow (or elasto-plastic evolution). By a traditional
Newton-Raphson linearization we solve the following

σ̄
pre
n+1 − 3µ∆q− H(qn + ∆q)− σy = 0 (A33)

and then we update the following variables at tn+1,

ε
p
n+1 = ε

p
n + ∆q

3
2

sn+1

σ̄n+1
(A34)

qn+1 = qn + ∆q (A35)

εe
n+1 = εn+1 − ε

p
n+1 (A36)

σn+1 = λ trace(εe
n+1)I + 2µεe

n+1 (A37)

Dep
n+1 = 2µ

(
1− 3µ∆q

σ̄
pre
n+1

)
Id + 6µ2

(
∆q

σ̄
pre
n+1
− 1

3µ + H

)
M̄n+1 ⊗ M̄n+1 + KI ⊗ I (A38)

where K is the bulk modulus, M̄n+1 ≡
√

2
3 Mn+1 =

spre
n+1

‖spre
n+1‖

is the unit plastic flow

vector and Id is the fourth order deviatoric projection tensor defined as,

Id ≡ IS −
1
3

I ⊗ I (A39)

with IS = 1
2 (δikδjl + δilδjk) as the fourth order symmetric identity tensor.

Appendix A.4. Effective Incremental Energy

The effective incremental energy can be defined as follows,

Wn(ε) = inf
qn+1

gn(ε, qn+1) = gn(ε, q∗n+1(ε)) (A40)
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where,
q∗n+1(ε) ∈ argmin gn(ε, qn+1) (A41)

such that,
∂gn

∂qn+1
(ε, q∗n+1(ε)) = 0 (A42)

Conveniently know the effective potential depends solely in ε = εn+1. Following this
definition, we compute the first and second derivative of Wn, where,

DWn(ε) =
∂gn

∂ε
(ε, q∗n+1(ε)) (A43)

=
∂gn

∂ε
(ε, q∗n+1(ε)) +

∂gn

∂qn+1
(ε, q∗n+1(ε)) ·

∂q∗n+1
∂ε

(ε) (A44)

but since ∂gn
∂qn+1

(ε, q∗n+1(ε)) = 0, we have that for a fully implicit scheme,

DWn(ε) =
∂gn

∂ε
(ε, q∗n+1(ε)) ≡ σn+1 (A45)

where σn+1 are the stresses at t = tn+1.
Then we compute,

D2Wn(ε) =
∂2gn

∂ε∂ε
(ε, q∗n+1(ε)) +

∂2gn

∂ε∂qn+1
(ε, q∗n+1(ε)) ·

∂q∗n+1
∂ε

(ε) (A46)

where we can redefine
∂q∗n+1

∂ε (ε) deriving (A42) by ∂
∂ε , such that,

∂2gn

∂qn+1∂ε
(ε, q∗n+1(ε)) +

∂2gn

∂qn+1∂qn+1
(ε, q∗n+1(ε)) ·

∂q∗n+1
∂ε

(ε) = 0 (A47)

=⇒
∂q∗n+1

∂ε
(ε) = −

{
∂2gn

∂qn+1∂qn+1
(ε, q∗n+1(ε))

}−1

· ∂2gn

∂qn+1∂ε
(ε, q∗n+1(ε)) (A48)

replacing in (A46), we have that for a fully implicit scheme,

D2Wn(ε) =
∂2gn

∂ε∂ε
(ε, q∗n+1(ε))−

∂2gn

∂ε∂qn+1
(ε, q∗n+1(ε)) ·

{
∂2gn

∂qn+1∂qn+1
(ε, q∗n+1(ε))

}−1

· ∂2gn

∂qn+1∂ε
(ε, q∗n+1(ε)) (A49)

D2Wn(ε) ≡ Dep
n+1 (A50)

where Dep
n+1 is known as the consistent tangent modulus at t = tn+1.

Appendix A.5. Finite-Element Discretization of the I-Dir Formulation

Let:

u ≈ uh
i :=

n

∑
A=1

NAuiA = N(x)u (A51)

v ≈ vh
j :=

n

∑
A=1

NAvjA = N(x)v (A52)

ε(∇u) ≈ ε(∇uh) :=
n

∑
A=1

BAuiA = B(x)u (A53)
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ε(∇v) ≈ ε(∇vh) :=
n

∑
A=1

BAvjA = B(x)v (A54)

where NA are the shape functions, N is the matrix of global shape functions, and B is the
global strain-displacement matrix.

N =

N1 0 0 N2 · · · Ni 0 0
0 N1 0 0 · · · 0 Ni 0
0 0 N1 0 · · · 0 0 Ni

 (A55)

B =
[
B1 B2 B3 · · ·Bi

]
(A56)

Bi =



∂Ni
∂x 0 0
0 ∂Ni

∂y 0

0 0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂x 0

0 ∂Ni
∂z

∂Ni
∂y

∂Ni
∂z 0 ∂Ni

∂x


(A57)

Substituting the approximations (A51)–(A54) into the linear variational problem (40)
we obtain the linear system of equations defined in (41), where the tangent matrix and
residual vector are defined as

Kn := α
∫

Ωh
NT
{
∇T(uh

n)⊗∇T(uh
n) + (T(uh

n)− R)∇∇T(uh
n)
}
N+

∫
Ωh

BTDep
n+1(ε(u

h
n))B, (A58)

Fn := α
∫

Ωh
NT(T(uh

n)− R)∇T(uh
n) +

∫
Ωh

BTσn+1(ε(uh
n)), (A59)

which are constructed by numerically evaluating the element expressions and assem-
bling their contributions into the global matrix and vector using standard finite-element
techniques, see, e.g., [40].
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