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Abstract: Specifying time-dependent correlation matrices is a problem that occurs in several
important areas of finance and risk management. The goal of this work is to tackle this problem by
applying techniques of geometric integration in financial mathematics, i.e., to combine two fields
of numerical mathematics that have not been studied yet jointly. Based on isospectral flows we
create valid time-dependent correlation matrices, so called correlation flows, by solving a stochastic
differential equation (SDE) that evolves in the special orthogonal group. Since the geometric structure
of the special orthogonal group needs to be preserved we use stochastic Lie group integrators to
solve this SDE. An application example is presented to illustrate this novel methodology.

Keywords: stochastic Lie group methods; isospectral flow; time-dependent correlation matrix;
geometric integration; risk management

1. Introduction

Correlation matrices play an important role e.g., in finance and risk management. A
valid correlation matrix is a real matrix with the following properties:

1. All diagonal elements of a correlation matrix are equal to one and absolute values of
all non-diagonal elements are less than or equal to one.

2. Correlation matrices are real symmetric and positive semi-definite, i.e. all eigenvalues
are non-negative.

In this paper our goal is to construct time-dependent correlation matrices that fulfill
the properties above and approximate the true correlation using real market data.

There are already methods available that were designed to tackle the same problem,
see e.g., [1–4]. Newton-based methods for approximating covariance matrices can be found
in [5–7]. Furthermore, there exist methods using hyperspherical decomposition [8] and
unconstrained convex optimization [9]. But some methods show weaknesses in at least one
of the desired properties of a correlation matrix mentioned above. Especially, the positive
semi-definiteness is a criteria which is not well implemented. For example, the approach
of [10] suffers from drawbacks in other portions of the matrix in order to maintain positive
semi-definiteness.

Here we ensure the positive semi-definiteness of the correlation matrices constructed
with our methodology by taking up the idea of [11]. The authors defined covariance
flows based on isospectral flows by constructing matrices similar to an initial valid co-
variance matrix. This is a well-analyzed approach but still it lacks the stochastic nature of
correlations.

In our methodology we include the stochastic behaviour of correlations by assuming
that the orthogonal matrices needed for the covariance flows are driven by a stochastic
differential equation (SDE) rather than an ordinary differential equation (ODE). Since the
space of orthogonal matrices can be viewed as a Lie group, we use Lie group integrators [12]
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to solve this SDE. Lie group methods arose in the deterministic case for solving ODEs such
that geometric properties of the Lie group are preserved, see e.g., [13,14] and ([15], p. 126).
Their application in the stochastic setting has been studied in e.g., [16–18]. So far, stochastic
Lie group methods were mostly applied to SDEs considered in information theory [19]
and engineering [20]. For further concise literature on Lie group methods, we refer the
interested reader e.g., to ([15], Chapter IV.8) or [13].

However, the application of Lie group methods on SDEs considered in finance has
not been analyzed yet. Consequently, the contribution of our paper is twofold: we respect
the stochastic behaviour of correlations by considering an SDE that evolves in a Lie group
and we use a stochastic Lie group integrator in a financial mathematics context to get a
numerical solution of the considered SDE.

Our methodology can be used e.g., if one wants to specify time-dependent correlation
matrices in a given time interval and is only aware of the correlation matrix at the initial time
point. In the following sections we aim to formulate an SDE that describes the correlation
flows for the given time interval. Moreover, we approximate the solution of this SDE
by applying the geometric Euler-Maruyama scheme presented in [18,21]. We demonstrate
how techniques from geometric numerical integration which arose from a mechanical
engineering background can be used in a financial mathematical setting.

The remainder of the paper is organized as follows. Covariance flows are introduced
in Section 2. In Section 3 we present a numerical method to solve SDEs based on the
relation between Lie group and Lie algebra. We then turn our attention to simulations and
the application of our methodology in risk management by using real historical market
data in Section 4. A discussion of our results is given in Section 5.

2. Covariance Flows

For creating valid time-dependent correlation matrices, we first introduce covariance
flows {Pt : 0 ≤ t ≤ T}. A covariance flow is a set of similar, time-dependent matrices Pt of
the covariance space

P(n) = {P ∈ Rn×n : P = P>, x>Px ≥ 0 for all x ∈ Rn, n ∈ N}. (1)

These covariance matrices can be easily transformed into corresponding correlation matri-
ces Rt. The computation of covariance flows is based on isospectral flows, see [11].

Due to the symmetry of covariance matrices the principal axis theorem can be ap-
plied, i.e., there exists an orthogonal matrix Q and a diagonal matrix D consisting of the
eigenvalues of P such that

P = Q>DQ. (2)

Without loss of generality, we can assume that Q is a rotation matrix whose determinant is
always equal to 1. Thus, we assume Q to be an element of the special orthogonal group

SO(n) = {X ∈ GL(n) : X>X = I, det(X) = 1}, (3)

where GL(n) is the general linear group, i.e., the set of n× n invertible matrices. Since SO(n)
defines a differentiable manifold and the matrix multiplication is a differentiable mapping,
SO(n) is a matrix Lie group. The corresponding Lie algebra is denoted by so(n) and consists
of skew-symmetric n× n-matrices, for details we refer to e.g., ([22], p. 58).

Now let an initial covariance matrix P0 be given. We consider the covariance flow

Pt = Q>t P0Qt. (4)

Creating time-dependent covariance matrices Pt that are similar to P0 implies the generation
of time-dependent, orthogonal matrices Qt, t ≥ 0. Therefore, we consider the following
stochastic differential equation (SDE):

dQt = QtKt dt + Qt
(
Vt,1 dWt,1 + Vt,2 dWt,2

)
, Q0 = I, (5)
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where Kt, Vt,1, Vt,2 ∈ Rn×n and Wt,1 and Wt,2 are independent, standard Brownian motions,
i.e. it holds dWt,1, dWt,2 ∼ N (0, dt). In order to ensure that the resulting matrices Qt
have the desired properties, we use the characterization of Kt, Vt,1 and Vt,2 defined in the
following theorem.

Theorem 1. If Qt obeys the matrix SDE (5) then Qt ∈ SO(n) if and only if Vt,1, Vt,2 ∈ so(n) and
Kt + K>t = V2

t,1 + V2
t,2.

A more general version and the proof of this theorem can be found in [18]. Theorem 1
suggests that the easiest way to determine the unknown matrices is to first find symmetric
matrices V2

t,1 and V2
t,2 such that skew-symmetric square roots Vt,1 and Vt,2 exist. The matrix

Kt can then be identified as the lower triangular matrix of Y2
t := V2

t,1 +V2
t,2 where the entries

on the diagonal of Kt are equal to 0.5 times the diagonal elements of Y2
t . The matrices

Vt,1, Vt,2 and Kt can be fixed according to a given problem.
Regarding our goal, which is the approximation of correlation matrices using real

market data, we estimate the matrices Vt,1, Vt,2 and Kt from the considered market data
by using a least-squares approach. We describe our initialization of these matrices more
detailed in Section 4.

3. Stochastic Lie Group Method

In the following we are taking a closer look on the SDE (5) and how it can be solved
numerically. In general, there is no closed form solution. However, a solution can be
defined via a Magnus expansion Qt = Q0eΩt , Ω0 = 0, where Ωt ∈ Rn×n obeys a matrix
SDE. This auxiliary SDE is given in the following theorem and can also be found in [18].

Theorem 2. If Qt = Q0eΩt , Ω0 = 0, obeys the SDE (5) then Ωt obeys the SDE

dΩt = At dt + Γt,1 dWt,1 + Γt,2 dWt,2, (6)

where

At = d exp−1
−Ωt

(At,0)−
1
2

d exp−1
−Ωt

(Ct,1)−
1
2

d exp−1
−Ωt

(Ct,2),

At,0 = Kt −
1
2

V2
t,1 −

1
2

V2
t,2,

Ct,r =
∞

∑
p=0

∞

∑
q=0

1
(p + q + 2)

(−1)p

p!(q + 1)!
adp

Ωt

(
adΓt,r

(
adq

Ωt
(Γt,r)

))
, r = 1, 2,

Γt,r = d exp−1
−Ωt

(Vt,r), r = 1, 2.

The expression d exp−1
−Ω(X) is given by

d exp−1
−Ω(X) =

∞

∑
k=0

Bk
k!

adk
−Ω(X),

where Bk are the Bernoulli numbers and adX(Y) = [X, Y] is the adjoint operator which is used
iteratively

ad0
X(Y) = Y,

adi
X(Y) =

[
X, adi−1

X (Y)
]
= adX

(
adi−1

X (Y)
)
, i ≥ 1.

(7)

In the case where the solution Qt of the SDE (5) is in the Lie group SO(n), it holds that
the matrix SDE (6) evolves in the corresponding Lie algebra so(n) [18]. The Lie algebra
so(n) is the tangent space of the differentiable manifold SO(n) at the identity, see e.g., ([22]
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p. 71). This simple Euclidean-like geometry of the Lie algebra can be used to solve SDEs
that evolve in the associated Lie group.

Therefore, we compute a numerical solution of the SDE (5) by solving the SDE (6) e.g.,
with the Euler-Maruyama scheme in the Lie algebra so(n) and projecting this solution Ωt
back onto the Lie group via the exponential map, exp : so(n) → SO(n), to get a solution
for Qt. Since this scheme preserves the geometry of the manifold SO(n), it is called the
geometric Euler-Maruyama scheme [18]. One can easily check that the geometry of SO(n),
namely the condition Q>t Qt = I, is not preserved if a numerical integration scheme is
applied directly to (5) instead of (6). A simple version of the geometric Euler-Maruyama
scheme applied to (5) is given in the following algorithm. It can be interpreted as a special
case of a stochastic version of the Runge-Kutta–Munthe-Kaas schemes [14] and a more
general version of the algorithm can also be found in [18].

There are only limited convergence results available for stochastic Lie group methods.
However, it was proven in [21] that the geometric Euler-Maruyama scheme converges with
rate O(∆j) with respect to mean uniform squared error over the whole interval [0, T].

In the Euler-Maruyama step of Algorithm 1 we truncated each of the infinite sums
involved in (6) to the first summand only. The geometry is preserved under these trunca-
tions because for skew-symmetric matrices X and Y, the adjoint operator adk

X(Y) is also
skew-symmetric for any k ≥ 0, which can be easily proved by induction. It follows that
any truncation of Ωj+1 is in so(n) and thus, any projection of Ωj+1 is in SO(n).

In the Projection step of Algorithm 1 and in Theorem 2 the exponential map is used as
a parametrization for the Lie group. However, the basic concepts of Lie group methods are
not limited to this specific parametrization. One could also use other mappings, e.g., the
Cayley transform cay(Ω) = (I −Ω)−1(I + Ω). Since a truncation of infinite sums induced
by the definition of the matrix exponential can be avoided, considering the Cayley map
instead might be beneficial in cases of higher dimensions where no closed form expressions
for the exponential map are available. A comparison of the usage of these two maps,
exp(Ω) and cay(Ω), in the context of Lie group methods can be viewed in [23].

Algorithm 1: Geometric Euler-Maruyama

We divide the time interval [0, T] into subintervals [tj, tj+1], j ≥ 0. Starting with
t0 = 0 and Q0 = I the following steps are repeated over successive intervals
[tj, tj+1] until tj+1 = T.

1. Initialization step: Let Qj be the approximation of Qt at t = tj. Analogously: Kj,
Vj,1 and Vj,2.

2. Euler-Maruyama step: Compute

∆j = tj+1 − tj,

∆Wj,r ∼ N (0, ∆j) for r = 1, 2,

Ωj+1 =

(
Kj −

1
2

V2
j,1 −

1
2

V2
j,2

)
∆j + Vj,1 ∆Wj,1 + Vj,2 ∆Wj,2.

3. Projection step: Set Qj+1 = Qj exp(Ωj+1).

4. Simulation

In this section we want to apply the method described in the previous sections to
approximate correlations that can be observed in a real market. For this purpose we
consider historical prices of the S&P 500 index and the Euro/US-Dollar exchange rate on a
daily basis. We compute moving correlations with a window size of 30 days and obtain
correlations from 3 January 2005 to 6 January 2006 (see Figure 1).



Mathematics 2021, 9, 94 5 of 10

Date

H
is

to
ri
c
a
l 
C

o
rr

e
la

ti
o
n

Figure 1. The 30-day historical correlations between S&P 500 and Euro/US-Dollar exchange rate,
source of data: www.yahoo.com.

Assume the following scenario: A risk manager retrieves from the middle office’s
reporting system the initial correlation matrix at t = 0 (which corresponds to 3 January
2005) of the regarded historical data

Rhist
0 =

(
1 −0.0159

−0.0159 1

)
, (8)

i.e., the Pearson correlation coefficient between the S&P 500 index and the Euro/US-
Dollar exchange rate was computed as ρ = −0.0159. Due to the stochastic behaviour of
correlations and the path shown in Figure 1 being only one of many possible realizations a
density plot of the historical correlations is needed. Therefore, we suppose that the risk
manager is aware of the density function of the considered correlation and estimate a
density function from the historical data using kernel smoothing functions, which is also
plotted in Figure 2. For more details on the density estimation see [24]. Then, the goal
is to create valid time-dependent correlation matrices that reflect the stochastic nature of
correlations while trying to match the density function of the historical data.

www.yahoo.com
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Figure 2. Empirical density function of the historical correlation between S&P 500 and Euro/US-
Dollar exchange rate, computed with the MATLAB function ksdensity.

4.1. Construction of Covariance and Correlation Flows

Our methodology, which is designed to solve the risk manager’s problem described
in the scenario above, for approximating correlation matrices can be summarized by the
following steps:

1. Find matrices Vt,1, Vt,2 and Kt such that the conditions in Theorem 1, namely Vt,1, Vt,2 ∈
so(n) and Kt + K>t = V2

t,1 + V2
t,2, are fulfilled.

2. Insert the matrices computed in the previous step into (5) and solve this SDE, i.e.

dQt = QtKt dt + Qt
(
Vt,1 dWt,1 + Vt,2 dWt,2

)
, Q0 = I,

by using Algorithm 1, the geometric Euler-Maruyama scheme.
3. Compute for a given initial covariance matrix P0 the covariance flow Pt = Q>t P0Qt.
4. Transform the so computed covariance matrices Pt to corresponding correlation

matrices Rt = Σ−1
t PtΣ−1

t with Σt =
(
diag(Pt)

) 1
2 .

4.1.1. Setting the Coefficient Matrices

For the first step, we construct a symmetric matrix Y2
t := V2

t,1 + V2
t,2 such that skew-

symmetric matrices Vt,1 and Vt,2 can be derived. According to Rinehart [25], every real
square root of a symmetric matrix is similar to a real skew square root of this matrix
if it is negative semi-definite with nonzero eigenvalues that have even multiplicities.
Regarding this required matrix structure, this step might seem like an obstacle. However,
this initialization step is actually the part that gives the degrees of freedom needed to
incorporate historical market data. To explain this further, we consider the following
generator of so(2):

G =

(
0 −1
1 0

)
. (9)

An element of so(2) is then any scalar multiple of the generator:

ω ∈ R⇒ ωG ∈ so(2). (10)
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Together with a function g(t) : R≥0 → R, an arbitrary time-dependent skew-symmetric
matrix Yt can be defined as

Yt = g(t)G. (11)

The function g(t) can be chosen arbitrarily, e.g., as a cubic polynomial. Experimenting
with different functions, we found that the following function performed best given the
historical data

g(t) = x1 + x2 t + x3 t2 + x4 t3 + x5 t sin(x6 t) + x7 t cos(x8 t), (12)

where x1, . . . , x8 ∈ R represent parameters that can be associated with possible degrees
of freedom. The symmetric matrices V2

t,1 and V2
t,2 can now be arranged, e.g., in a convex

combination
V2

t,1 = x9 ·Y2
t , V2

t,2 = (1− x9) ·Y2
t (13)

where x9 ∈ [0, 1]. The so constructed V2
t,1 (resp. V2

t,2) fulfills the aforementioned require-
ments such that skew square roots Vt,1 (resp. Vt,2) can be computed. As mentioned before
we set Kt equal to the lower triangular matrix of Y2

t where the diagonal elements of Kt are
equal to the diagonal entries of Y2

t multiplied with 0.5.

4.1.2. Preparation for the Geometric Euler-Maruyama Scheme

For the second step, solving (5) with Algorithm 1, we chose to simulate 100 inde-
pendent realizations of Brownian motions. As a result, we obtained M = 100 paths of
skew-symmetric matrices Ωt at each time step t = tj+1, j ≥ 0. Next, we computed the
mean of these different paths as an estimator for the expectation value which we then
projected onto SO(n) via the exponential map, i.e.

Ê(Ωt) =
1
M

M

∑
k=1

Ω(k)
t , Qt = Q0 exp

(
Ê(Ωt)

)
. (14)

In the projection step of Algorithm 1 we used

exp(Ω) = exp
(

0 −ω
ω 0

)
=

(
cos ω − sin ω
sin ω cos ω

)
(15)

for fast computation which results from Taylor series expansion of sin ω and cos ω. If more
than two correlations are considered, e.g., Ω ∈ so(3), then the Rodrigues formula ([26], p. 261)
can be used to avoid dealing with the infinite sum expression of the matrix exponential.

4.1.3. Computation of Covariance Flows

For the third step of computing covariance flows, we first need an initial P0 to begin
with. As in [11], we estimate the covariance matrix of the whole historical data by using
the MATLAB function cov and as a result we got

Ĉ =

(
0.2327× 10−4 0.0056× 10−4

0.0056× 10−4 0.4269× 10−4

)
. (16)

We keep the eigenvalues {0.2325× 10−4, 0.4271× 10−4} of this historical covariance matrix
Ĉ and construct a P0 with the same eigenvalues such that the corresponding correlation

matrix R0, given by Rt = Σ−1
t PtΣ−1

t with Σt =
(
diag(Pt)

) 1
2 , is a good approximation for

the given historical correlation matrix at t = 0. More precisely, we are looking for an
orthogonal matrix H ∈ R3×3 such that

P0 = H>DH and ‖R0 − Rhist
0 ‖F → min, (17)

where D is a diagonal matrix containing the eigenvalues of Ĉ multiplied with 1000.
Since the eigenvalues of Ĉ are very small, multiplying with the factor 1000 simplifies
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the optimization procedure of finding a compatible initial matrix P0. The choice of this
factor can be adapted according to the given historical data. In our experiments, the initial
covariance matrix is found as

P0 =

(
0.0233 −0.0005
−0.0005 0.0427

)
, (18)

whereas the orthogonal matrix used to get P0 is given by

H =

(
−0.9997 −0.0258
−0.0258 0.9997

)
. (19)

Due to the construction of our covariance flow it follows that every computed covariance
matrix Pt = Q>t P0Qt will be positive semi-definite and contain information from the whole
historical data.

4.1.4. Computation of Correlation Flows

Finally, we convert the covariance flows to correlation flows by

Rt = Σ−1
t PtΣ−1

t , (20)

where Σt =
(
diag(Pt)

) 1
2 . The covariance flows or rather the correlation flows are computed

such that the mean squared error between the empirical density function of the historical
data f hist(z) and the empirical density function of the correlation flow f flow(z) is minimized

1
N

N

∑
j=1

(
f hist(zj)− f flow(zj)

)2 → min, (21)

where N is the number of points where the kernel smoothing function estimate is evaluated
at. For the computation of both empirical density functions, f hist and f flow, we used the
MATLAB function ksdensity.

4.2. Results

Taking up the risk manager’s problem we assume that he followed the steps described
above and implemented them in a software package of his choice. Implementing the steps
of our methodology in the software package MATLAB we found that the error defined
in (21) is minimized by the following choice of parameters

x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

= (8.7492,−29.2169, 21.4603,−14.7219, 18.0489,−6.6036,−9.4284,−9.3455, 0.0975),

where x1, . . . , x9 are the parameters in (12) and (13). The mean squared error using these
parameters is 3.527× 10−3. The corresponding density function of our correlation flow
compared to the historical density function is plotted in Figure 3. The plot shows that
the fitting by least-squares works well. The optimal bandwidth of the kernel smoothing
function estimate of the historical data was computed to be 0.0559. We chose the same
bandwidth for the density estimate of our correlation flow by inserting the bandwidth
0.0559 as an input argument in the computation of f flow with the MATLAB function
ksdensity. The density functions were evaluated at N = 100 equally spaced points in the
interval [−0.5473, 0.4788].
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historical

flow

Figure 3. Empirical density function of the historical correlation and the correlation flow between
S&P 500 and Euro/US-Dollar exchange rate.

5. Discussion

We have presented a method to produce feasible covariance and correlation matrices.
Based on isospectral flows we produced matrices similar to an initial valid covariance
matrix, which we determined beforehand using historical data. In these covariance flows
we assumed the required rotation matrices to be driven by an SDE in order to mimic the
stochastic behaviour of correlations. These rotation matrices can be used to control the
tendency of the corresponding correlation flows. For instance, one can require that the
correlation flows match a desired density function.

Our generated covariance and correlation matrices are not only real symmetric and
positive semi-definite but also exhibit stochastic behaviour. Hence, the correlation flows
computed with our methodology have proven to fulfill the requirements for a valid corre-
lation matrix while reflecting the randomness of correlations. In other words, we were able
to expand the approach for constructing correlation flows presented in [11] by modelling
an SDE for the underlying problem which we then solved by applying stochastic Lie group
methods, i.e. we have shown that a financial mathematical problem can be solved by using
methods of geometric numerical integration.

There are multiple possibilities to extend our presented methodology. For example,
the function f (t) used in the linear combination (11) can be chosen such that even more
degrees of freedom are involved. In the case where n > 2 correlations are considered and
thus, a basis for so(n) with more elements (similar to (9)) is needed, one could incorporate
as many functions for the linear combination as there are basis matrices. For the numerical
integration of (6) one could also use a method of higher order. The Euler-Maruyama
scheme in Algorithm 1 could for example be replaced by the Milstein scheme. By analyzing
modified equations one could construct even higher order methods, see e.g., [27].
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