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Abstract: In this paper we are addressing two main topics, as follows. First, a rigorous qualitative
study is elaborated for a second-order parabolic problem, equipped with nonlinear anisotropic
diffusion and cubic nonlinear reaction, as well as non-homogeneous Cauchy-Neumann boundary
conditions. Under certain assumptions on the input data: f (t, x), w(t, x) and v0(x), we prove the
well-posedness (the existence, a priori estimates, regularity, uniqueness) of a solution in the Sobolev
space W1,2

p (Q), facilitating for the present model to be a more complete description of certain classes
of physical phenomena. The second topic refers to the construction of two numerical schemes
in order to approximate the solution of a particular mathematical model (local and nonlocal case).
To illustrate the effectiveness of the new mathematical model, we present some numerical experiments
by applying the model to image segmentation tasks.

Keywords: nonlinear anisotropic reaction-diffusion; well-posedness of solutions; Leray-Schauder de-
gree theory; finite difference method; explicit numerical approximation scheme; image segmentation

1. Introduction

For the unknown function v(t, x) (hereafter, v), consider the following nonlinear
second-order boundary value problem in Q = (0, T] ×Ω, with T > 0 and a bounded
domain Ω ⊂ IR2 of Lebesgue measures |Ω|, whose boundary ∂Ω is sufficiently smooth:

p1

∂

∂t
v(t, x) = Φ

(
vx(t, x)

)[
Ψ
(
vx(t, x)

)
∆v(t, x) +∇Ψ

(
vx(t, x)

)
· ∇v(t, x)

]
+p3

[
v(t, x)− v3(t, x)

]
+ p4 f (t, x) in Q

q̄(t, x)
∂

∂n
v(t, x) + p5 v(t, x) = w(t, x) on Σ

v(0, x) = v0(x) on Ω,

(1)

where:

• t ∈ (0, T], x = (x1, x2) varies in Ω, Σ = (0, T]× ∂Ω;

• ∇v(t, x) = vx (t, x) (∇v = vx ) the gradient of v(t, x) in x, that is ∇v =

(
∂

∂x1
v,

∂

∂x2
v
)

.

Setting
∂

∂xi
v = vxi , i = 1, 2, then ∇v =

(
vx1

, vx2

)
= vx ;

• ∆v(t, x) is the Laplace operator—a second-order differential operator, defined as the
divergence (∇·) of the gradient of v(t, x) in x;

• ∂
∂t v(t, x) is the partial derivative of v(t, x) with respect to t;

• p1 , p3 , p4 , p5 are positive values.
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• Φ
(
vx(t, x)

)
is a positive and bounded nonlinear real function of class C1(Q) with

bounded derivatives (see [1]), having the role of controlling the speed of the diffusion
process and enhances the edges (e.g., in the evolving image);

• Ψ(vx(t, x)) is the mobility;
• q̄(t, x) is a positive and bounded real function;
• f (t, x) ∈ Lp(Q) is the distributed control (a given function), where

p ≥ 2; (2)

• w(t, x) ∈W
1− 1

2p ,2− 1
p

p (Σ) is the boundary control (a given function);
• n = n(x) is the outward unit normal vector to Ω at a point x ∈ ∂Ω. ∂

∂n denotes
differentiation along n;

• v0(x) ∈W
2− 2

p
p (Ω), verifying

q̄(t, x)
∂

∂n
v0(x) + p5 v0(x) = w(0, x). (3)

Let us note

ai(t, x, v(t, x), vx(t, x)) = Φ
(
vx(t, x)

)
Ψ
(
vx(t, x)

)
vxi

(t, x), i = 1, 2. (4)

Then, it is easy to recognize Equation (1)1 as being quasi-linear with

aij
(
t, x, v(t, x), vx(t, x)

)
=

∂

∂vxj

ai
(
t, x, v(t, x), vx(t, x)

)
=

∂

∂vxj

Φ
(
vx(t, x)

)
Ψ
(
vx(t, x)

)
vxi (t, x), i = 1, 2,

a
(
t, x, v(t, x), vx(t, x)

)
= − ∂

∂v

(
Φ
(
vx(t, x)

)
Ψ(vx(t, x))vxi (t, x)

)
vxi (t, x)

− ∂

∂xi
Φ
(
vx(t, x)

)
Ψ
(
vx(t, x)

)
vxi (t, x)

−p3

[
v(t, x)− v3(t, x)

]
− p4 f (t, x),

while the boundary conditions (1)2 are of second type:[
aij
(
t, x, v(t, x), vx(t, x)

)
vxj(t, x) cos αi + p5 v(t, x)− w(t, x)

]
Σ
= 0,

(see [1] and reference therein).

For the reader’s benefit, we write problem (1) in the equivalent form

p1

∂

∂t
v(t, x)−Φ

(
vx(t, x)

)
div
(

Ψ
(
vx(t, x)

)
∇v(t, x)

)
= p3

[
v(t, x)− v3(t, x)

]
+ p4 f (t, x) in Q

q̄(t, x)
∂

∂n
v(t, x) + p5 v(t, x) = w(t, x) on Σ

v(0, x) = v0(x) on Ω.

(5)

Concerning Equation (5)1, we recall that it is of quasi-linear type with principal part
in divergence form (see [1]), with ai, i = 1, 2, given by (4) and
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a(t, x, v(t, x), vx(t, x)) = −p3

[
v(t, x)− v3(t, x)

]
− p4 f (t, x).

In addition, we assume that Equations (1)1 [or (5)1] are uniformly parabolic, i.e.,

ν1(|u|)ζ
2 ≤ aij

(
t, x, u, z

)
ζiζ j ≤ ν2(|u|)ζ2 (6)

for arbitrary u(t, x) and z(t, x), (t, x) ∈ Q, and ζ = (ζ1, ζ2) an arbitrary real vector,
where ν1(s), ν2(s) are positive continuous functions of s ≥ 0, ν1(s) is nonincreasing and
ν2(s) is nondecreasing.

The nonlinear problem (1) (or (5)) is important for modeling a variety of phenomena
of life sciences, including in biology, biochemistry, economics, medicine and physics.
Particular cases of the nonlinear second-order boundary value problem (1), supplied with
different boundary conditions, have been successfully applied to many complex moving
interface problems, e.g., the motion of anti-phase boundaries in crystalline solids [2], the
mixture of two incompressible fluids, the nucleation of solids, and vesicle membranes (see [3–5]
and the references therein). In addition, the nonlinear problems of type (1)1, occur in
the phase-field transition system (e.g., [6]) where the phase function v(t, x) describes the
transition between the solid and liquid phases in the solidification process of a material
occupying a region Ω. For more general assumptions and with various types of boundary
conditions, Equation (5) has been numerically investigated (e.g., [6–17]). The error analysis
for the implicit backward Euler approximation is presented in [16], and computations
with several different higher-order time-stepping schemes are used in [11]. For the well-
posedness (existence, estimate, uniqueness and regularity) of a solution in Sobolev spaces
we refer to [12,18–21].

Another important novelty in our paper concerns the non-homogeneous Cauchy-
Neumann boundary conditions, which can be seen as boundary control in industry. Thus, as
applications of problem (1), we indicate the moving interface problems, e.g., phase separation
and transition (see [3,8,12,17,18,22–27]), anisotropy effects (see [15,28–30]), image denoising
and segmentation (see [15,24,26,30–39] and references therein), etc.

Definition 1. The function v(t, x) is called a classical solution of the problem (1) if it is continuous
in Q̄, has continuous derivatives vt, vx, vxx in Q, verifies (1)1 in every (t, x) ∈ Q and verifies (1)2
and (1)3 for (t, x) ∈ Σ and t = 0, respectively.

In our paper, we study the solvability of the problems (1) in the class W1,2
p (Q), char-

acterized by the presence of some new physical parameters (p1 , p3 , p4 , p5 , Φ
(
vx(t, x)

)
,

Ψ(vx(t, x))), the principal part being in divergence form and by considering the cubic nonlin-
earity p3

[
v(t, x)− v3(t, x)

]
, satisfying for n ∈ {1, 2, 3} the assumption H0 in [21], that is:

H0 : (v− v3)|v|3p−4v ≤ 1 + |v|3p−1 − |v|3p.

In Theorem 1, we prove the existence, regularity and uniqueness of solution for (1).
(see [15] for a numerical study of Equation (1) corresponding to a linear reaction term
v(t, x)− v0(x), with homogeneous Neumann boundary condition).

In the following we will denote by C several positive constants.

2. Well-Posedness of the Solution of (5)

Theorem 1 of this section presents the dependence of the solution v(t, x) of (5) on
f (t, x) and w(t, x). In our study, we rely on the following:

• The Leray-Schauder principle (see [1,4,11–15,19–21] and reference therein);
• The Lp-theory of linear and quasi-linear parabolic equations;
• Green’s first identity

−
∫
Ω

y divz dx =
∫
Ω

∇y · z dx−
∫

∂Ω

y
∂

∂n
z dγ,
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−
∫
Ω

y∆z dx =
∫
Ω

∇y · ∇z dx−
∫

∂Ω

y
∂

∂n
z dγ,

for any scalar-valued function y and z, a continuously differentiable vector field in n
dimensional space;

• The Lions and Peetre embedding theorem (see [1] and references therein) to ensure
the existence of a continuous embedding W1,2

p (Q) ⊂ Lµ(Q), where the number µ is
defined as follows (see (3))

µ =


any positive number ≥ 3p if p ≥ 2,

( 1
p
− 1

2

)−1
, if p < 2.

(7)

and, for k ∈ {1, 2, ...} and 1 ≤ p ≤ ∞, Wk,2k
p (Q) denotes the Sobolev space on Q:

Wk,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂q

∂xq y ∈ Lp(Q), for 2r + q ≤ 2k
}

, (8)

(see [1] for more details).

In addition, we use the set C1,2(Q̄) (C1,2(Q)) of all continuous functions in Q̄ (in Q)
having continuous derivatives ut, ux and uxx in Q̄ (in Q), as well as the Sobolev spaces
W l

p(Ω), W l,l/2
p (Σ) with non-integral l for the initial and boundary conditions, respectively

(see [1]).
The main result for the study of the existence, a priori estimates, uniqueness and

regularity for the solution of (1) (or (5)) is the next theorem.

Theorem 1. For any classical solution v(t, x) ∈ C1,2(Q) of (5), suppose there are M, M0 , m1 ,
M1 , M2 , M3 and M4 ∈ (0, ∞) such that the fpllowing hypotheses are satisfied:

I1. |v(t, x)| < M for any (t, x) ∈ Q and for any z(t, x), the map Ψ(z(t, x)) is continuous,
differentiable in x, its x-derivatives are measurable bounded, satisfies (6) and

0 < Ψmin ≤ Ψ(vx(t, x)) < Ψmax, f or (t, x) ∈ Q, (9)

|Ψ(z)vxi |(1 + |z|) +
∣∣∣∣ ∂

∂x1
(Ψ(z)vx1)

∣∣∣∣+ ∣∣∣∣ ∂

∂x2
(Ψ(z)vx1)

∣∣∣∣
+

∣∣∣∣ ∂

∂x1
(Ψ(z)vx2)

∣∣∣∣+ ∣∣∣∣ ∂

∂x2
(Ψ(z)vx2)

∣∣∣∣+ |v(t, x1, x2)| ≤ M0(1 + |z|)2.

(10)

I2. Φ
(
vx(t, x)

)
is a positive and bounded nonlinear real function of class C1(Q) with bounded

derivatives and
0 < m1 ≤ Φ

(
vx(t, x)

)
≤ M1 .

In addition, for every ε > 0, the functions v(t, x) and Ψ(vx(t, x)) satisfy the relations

‖v‖Ls(Q)
≤ M2 , ‖Ψ(vx)vxi‖Lr(Q)

< M3 , i = 1, 2,

where

r =
{

max{p, 4} p 6= 4
4 + ε p = 4,

s =
{

max{p, 2} p 6= 2
2 + ε p = 2.
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Then, ∀ f ∈ Lp(Q) and ∀v0 ∈ W
2− 2

p
p (Ω), with p 6= 3

2 , the problem (5) has a solution
v ∈W1,2

p (Q) and the next estimate holds:

‖v‖W1,2
p (Q)

≤ C

[
1 + ‖v0‖

W
2− 2

p
p (Ω)

+ ‖v0‖
3− 2

p

L3p−2(Ω)

+‖ f ‖Lp(Q) + ‖w‖
3− 2

p

L3p−2(Σ)
+ ‖w‖

W
1− 1

2p ,2− 1
p

p (Σ)

]
,

(11)

where the constant C > 0 does not depend on v, f and w.
If v1, v2 ∈W1,2

p (Q) are two solutions to (5), corresponding to { f 1, w1, v1
0} and { f 2, w2, v2

0},
respectively, such that ‖v1‖W1,2

p (Q)
≤ M4 , ‖v2‖W1,2

p (Q)
≤ M4 and

0 < qmin ≤ q̄(t, x) < qmax, f or (t, x) ∈ Σ, (12)

then the following estimate holds:

max
(t,x)∈Q

|v1 − v2| ≤ C1eCTmax
[

max
(t,x)∈Q

| f 1 − f 2|, max
(t,x)∈Σ

|w1 − w2|, max
(t,x)∈Ω

|v1
0 − v2

0|
]

, (13)

where the constant C, C1 > 0 does not depend on {v1, f 1, w1, v1
0} and {v2, f 2, w2, v2

0}. In
particular, the solution of problem (5) is unique.

2.1. The Proof of Theorem 1

To prove this theorem, we use the Leray-Schauder principle. Thus, we consider the
Banach space

B = W0,1
p (Q) ∩ L3p(Q),

endowed with the norm
‖u‖B = ‖u‖Lp(Q) + ‖ux‖Lp(Q),

and a nonlinear operator H : B× [0, 1]→ B defined by

v = v(u, λ) = H(u, λ) for all (u, λ) ∈W0,1
p (Q) ∩ L3p(Q)× [0, 1], (14)

where v(u, λ) is the unique solution to the next problem

p1

∂

∂t
v(t, x)−

[
λΦ
(
ux(t, x)

) ∂

∂uxj

(Ψ(ux)uxi ) + (1− λ)δ
j
i

]
vxixj

= λ
{

A(t, x, u, ux) + p3

[
u(t, x)− u3(t, x)

]
+ p4 f (t, x)

}
in Q

q̄(t, x)
∂

∂ν
v(t, x) + p5 v(t, x) = λw(t, x) on Σ

v(0, x) = λv0(x), on Ω.

(15)

with A(t, x, u, ux) = Φ
(
ux
)
∇Ψ(ux) · ∇u, ∀ (t, x) ∈ Q.

We shall prove now the following technical lemma

Lemma 1. We assume Hypotheses I1 and I2 to be valid. Then

A(t, x, u, uxi ) + p3(u− u3) + p4 f (t, x) ∈ Lp(Q), ∀u ∈W0,1
p (Q) ∩ L3p(Q). (16)
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Proof. Indeed, since u ∈ L3p(Q), then ‖u‖L3p(Q) ≤ Konst and thus

‖u3‖Lp(Q) =

(∫
Q
|u3|pdxdt

) 1
p

=

(∫
Q
|u|3pdxdt

) 1
3p
3p 1

p

= ‖u‖3
L3p(Q)

≤ (Konst)3,

i.e., the nonlinear term in (16) belongs to Lp(Q), ∀u ∈W0,1
p (Q) ∩ L3p(Q) (see also [1]).

Next, from (10) it is easy to conclude that
∂

∂xi
[Ψ(uxi )uxi ] ≤ M1(1 + |uxi |)2.

Thus, to prove that

A(t, x, u, uxi )) = Φ
(
ux(t, x)

)
∇Ψ(ux(t, x)) · ∇u(t, x) ∈ Lp(Q),

∀u ∈W0,1
p (Q) ∩ L3p(Q),

we have to prove that u2
xi
∈ Lp(Q), ∀u ∈W0,1

p (Q)∩ L3p(Q). For any u ∈W0,1
p (Q)∩ L3p(Q)

it follows that ‖u‖Lp(Q) + ‖ux‖Lp(Q) ≤ konst, i.e., ‖ux‖Lp(Q) ≤ konst. Making use of the
boundedness of Φ

(
ux(t, x)

)
(see I2), as well as the properties of Ψ

(
ux(t, x)

)
(see I1), and

since uxi ∈ Lp(Q), it results that A(t, x, u, uxi ) ∈ Lp(Q), ∀u ∈W0,1
p (Q) ∩ L3p(Q).

Finally, we recall that f (t, x) ∈ Lp(Q) and, owing to the above, we easy derive that
the statement expressed by (16) is true.

2.2. The Proof of Theorem 1 (Continued)

Let us show that the nonlinear operator H(u, λ) defined by (14) satisfies the following
Properties A and B.

A. If (15) has a unique solution, then H is well-defined. By the right hand of (15)1, using
Lemma 1, it follows that, ∀u ∈ W0,1

p (Q) ∩ L3p(Q), then A(t, x, u, ux) + p3(u− u3) +
p4 f (t, x) ∈ Lp(Q) and thus, the same reasoning as in [1] allows us to conclude that

for w(t, x) ∈ W
2− 1

p ,1− 1
2p

p (Σ), the linear parabolic boundary value problem formulated
in (15) has a unique solution, that is (see (14)) v = H(u, λ) ∈ W1,2

p (Q), ∀u ∈ B and
∀λ ∈ [0, 1]. Next, the embedding W1,2

p (Q) ⊂ Lµ(Q) ⊂ L3p(Q), p ≥ 2 (see (3) and (7)),
allows us to conclude that

H(u, λ) = v ∈ B, ∀u ∈ B and ∀λ ∈ [0, 1].

Thus, the operator H is well-defined.
B. Let us now show that H is continuous and compact. The sketch of the proof is the

same as in [1,15]. However, for reader convenience, we present details in the sequel.
Let un → u in W0,1

p (Q) ∩ L3p(Q) and λn → λ in [0, 1]. Making the notation

vn,λn = H(un, λn), vn,λ = H(un, λ) and vλ = H(u, λ)

and then considering the difference H(un, λn)− H(un, λ), we obtain from relations
(14) and (15) that

p1

∂

∂t
Vn,λn ,λ −

[
λΦ(un

x)
∂

∂un
xj

(
Ψ(un

x)u
n
xi

)
+ (1− λ)δ

j
i

]
Vn,λn ,λ

xi xj

= (λn−λ)

{[
Φ(un

x)
∂

∂un
xj
(Ψ(un

x)un
xi
)−δ

j
i

]
vn,λn

xixj

+A(t, x, un, un
xi
) + p3

[
un − (un)3]+ p4 f (t, x)

}
in Q

q̄(t, x) ∂
∂nVn,λn ,λ + p5 Vn,λn ,λ = (λn − λ)w(t, x) on Σ

v(0, x) = (λn − λ)v0(x) on Ω,

(17)
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where Vn,λn ,λ = vn,λn − vn,λ.

The right-hand side in (17) belongs to Lp(Q), since vn,λn ∈ W1,2
p (Q). Therefore, the

Lp-theory of PDE gives the estimate

‖Vn,λn ,λ‖W1,2
p (Q)

≤ C|λn − λ| ×
{∥∥∥∥[Φ(un

x)
∂

∂un
xj

(
Ψ(un

x)un
xi

)
− δ

j
i

]
vn,λn

xixj

∥∥∥∥
Lp(Q)

+‖A(t, x, un, un
xi
)‖Lp(Q) + ‖un − (un)3‖Lp(Q)

+‖v0‖
W

2− 2
p

p (Ω)
+ ‖ f ‖Lp(Q) + ‖w‖

W
1− 1

2p ,2− 1
p

p (Σ)

}
,

with a constant C(|Ω|, p1 , p3 , p4 , M, M1, M2, M3).
Owing to Lemma 1 we can derive that (un)3 is bounded in Lp(Q), ∀un ∈W0,1

p (Q) ∩
L3p(Q). In addition, the inequality (10), the working Hypothesis I2 and the inclusion
un,λn

xixj ∈ Lp(Q), imply the boundedness in Lp(Q) of the terms A(t, x, un, un
xi
) and(

Φ(un
x)

∂
∂un

xj
(Ψ(un

x)un
xi
)− δ

j
i

)
vn,λn

xixj . Moreover, since W
2− 2

p
p (Ω) ⊂ Lp(Ω), it results that the

remaining terms on the right-hand side from the above inequality are also bounded in
Lp(Q). Thus, making λn → λ, we obtain (Vn,λn ,λ = vn,λn − vn,λ)

‖vn,λn − vn,λ‖W1,2
p (Q)

→ 0 for n→ ∞. (18)

To evaluate the difference H(vn, λ)− H(v, λ), we use again the relations (14), (15),
and we obtain

p1

∂

∂t
Vn,1,λ −

[
λΦ(un

x)
∂

∂un
xj

(
Ψ(un

x)u
n
xi

)
+ (1− λ)δ

j
i

]
Vn,1,λ

xi xj

= λ

{[
Φ(un

x)
∂

∂un
xj
(Ψ(un

x)un
xi
)−Φ(ux)

∂
∂uxj

(Ψ(ux)uxi )

]
vλ

xixj

+A(t, x, un, un
xi
)− A(t, x, u, uxi ) + p3

[
(un − u)−

(
(un)3 − u3)]} in Q

q̄(t, x) ∂
∂nVn,1,λ + p5 Vn,1,λ = 0 on Σ

Vn,1,λ(0, x) = 0 on Ω,

(19)

where Vn,1,λ = vn,λ − vλ.
The Lp-theory applied to (19), gives us the estimate

‖Vn,1,λ‖W1,2
p (Q)

≤ Cλ

[∥∥∥∥(Φ(un
x)

∂
∂un

xj
(Ψ(un

x)un
xi
)−Φ(ux)

∂
∂uxj

(Ψ(ux)uxi )
)

vλ
xixj

∥∥∥∥
Lp(Q)

+‖A(t, x, un, un
xi
)− A(t, x, u, uxi )‖Lp(Q)

+‖(un − u)− ((un)3 − u3)‖Lp(Q)

]
,
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with a new constant C. From the convergence un → u in W0,1
p (Q) ∩ L3p(Q) and the

continuity of the Nemytskij operator (see [19] and references therein), as well as the
continuity of Φ(un

x),
∂

∂un
xj
(Ψ(un

xi
)un

xi
) and A(t, x, un, un

xi
), it follows that

‖vn,λ − vλ‖W1,2
p (Q)

→ 0 as n→ ∞. (20)

Making use of the relations (18) and (20), we show the continuity of the nonlinear
operator H defined by (14). Moreover, H is compact. Indeed, since µ > 3p, the inclusion
W1,2

p (Q) ↪→ W0,1
p (Q) ∩ L3p(Q) is compact (see [12] and reference therein). Furthermore,

writing H as the composition

B× [0, 1]→W1,2
p (Q) ↪→W0,1

p (Q) ∩ L3p(Q) = B,

the compactness of H immediately follows.

2.2.1. The Proof of the First Part in Theorem 1: The Regularity of v(t, x)

We establish now the existence of a number δ > 0 such that

(v, λ) ∈W0,1
p (Q) ∩ L3p(Q)× [0, 1] with v = H(v, λ) =⇒ ‖v‖B < δ. (21)

The equality v = H(v, λ) in (21) is equivalent to

p1

∂

∂t
v(t, x)− λ Φ(vx) div

(
Ψ(vx)∇v

)
− (1− λ)∆v

= λ
[

p3

(
v(t, x)− v3(t, x)

)
+ p4 f (t, x)

]
in Q

q̄(t, x)
∂

∂n
v(t, x) + p5 v(t, x) = λw(t, x) on Σ

v(0, x) = λv0(x) on Ω.

(22)

(see (4), (6) and (15)).
Multiplying the first equation in (22) by |v|3p−4v, integrating over Qt := (0, t)×Ω,

t ∈ (0, T], we get

p1

∫
Qt

∂

∂t
|v(τ, x)|3p−2 dτdx− λ

∫
Qt

Φ(vx) div
(

Ψ(vx)∇v
)
|v|3p−4v dτdx

−(1− λ)
∫
Qt

∆v |v|3p−4v dτdx

= λp3

∫
Qt

(v− v3)|v|3p−4v dτdx + λp4

∫
Qt

f |v|3p−4v dτdx.
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Owing to Green’s first identity, the left inequality in (9) and (12), Assumption I2 and
the boundary conditions (22)2, the previous equality leads us to

p1

3p− 2

∫
Ω

|v(t, x)|3p−2 dx + λ
∫
Qt

Ψ(vx)∇v · ∇
(

Φ(vx)|v|3p−4v
)

dτdx

+(1− λ)(3p− 3)
∫
Qt

|∇v|2|v|3p−4 dτdx

+λp5 m1

∫
Σt

|v|3p−2 dτdγ + (1−λ)
qmax

p5

∫
Σt

|v|3p−2 dτdγ

≤ λ
p1

3p− 2

∫
Ω

|v0(x)|3p−2 dx

+λp3

∫
Qt

(v− v3)|v|3p−4v dτdx + λp4

∫
Qt

f |v|3p−4v dτdx

+λM1

∫
Σt

w|v|3p−4v dτdγ +
(1− λ)

qmin

∫
Σt

w|v|3p−4v dτdγ.

(23)

for all t ∈ (0, T]. The Hölder and Cauchy inequalities, applied to the last terms in (23),
give us

i1 λp4

∫
Qt

f |v|3p−4v dτdx ≤ p− 1
p

ε
p

p−1

∫
Qt

|v|3p dτdx + λp4

1
p

ε−p‖ f ‖p
Lp(Q)

i2 λM1

∫
Σt

w|v|3p−4v dτdγ

≤ λp5 m1

(
1− 1

3p−2

) ∫
Σt

|v|3p−2 dτdγ +
M1

m1

1
p5

1
3p− 2

∫
Σt

|w|p dτdγ,

i3
(1−λ)

qmin

∫
Σt

w|v|3p−4v dτdγ

≤ p5

(
1− 1

3p− 2

)
(1−λ)

qmax

∫
Σt

|v|3p−2dτdγ +
qmax

qmin

1
p5

1
3p− 2

∫
Σt

|w|3p−2 dτdγ.

By H0, relation (3) and Young’s inequality, we obtain

λp3

∫
Qt

(v− v3)|v|3p−4v dτdx

≤ λp3 |Ω|T + λp3 |Ω|T
1

3p
ε−3p +

3p− 1
3p

ε
3p

3p−1

∫
Qt

|v|3pdτdx

−λp3

∫
Qt

|v|3pdτdx.



Mathematics 2021, 9, 91 10 of 23

Owing to the above inequality as well as (i1 - i3) and, taking into account the continu-
ous embedding L3p−2(Σt) ⊂ Lp(Σt), from (23), we derive the following estimate

p1

3p− 2

∫
Ω

|v(t, x)|3p−2 dx + λ
∫
Qt

Ψ(vx)∇v · ∇
(

Φ(vx)|v|3p−4v
)

dτdx

+(1− λ)(3p− 3)
∫
Qt

|∇v|2|v|3p−4 dτdx + λp3

∫
Qt

|v|3pdτdx

+p5

1
3p− 2

[
λm1 +

(1− λ)

qmax

] ∫
Σt

|v|3p−2 dτdγ

≤ λ
p1

3p− 2

∫
Ω

|v0(x)|3p−2 dx

+

[
3p− 1

3p
ε

3p
3p−1 +

p− 1
p

ε
p

p−1

] ∫
Qt

|v|3p dτdx

+λ

(
p3 |Ω|T + p3 |Ω|T

1
3p

ε−3p + p4

1
p

ε−p‖ f ‖p
Lp(Q)

)

+
1
p5

1
3p− 2

[
M1

m1

+
qmax

qmin

] ∫
Σt

|w|3p−2 dτdγ.

Taking ε small enough, the previous inequality yields

λ‖|v|3‖p
Lp(Q)

≤ C1

(
1 + ‖v0‖

3p−2
L3p−2(Ω)

+ ‖ f ‖p
Lp(Q)

+ ‖w‖3p−2
L3p−2(Σt)

)
, (24)

for a positive constant C1 = C(|Ω|, T, n, p, p1 , p3 , p4 , p5 , qmin, qmax, m1 , M1).

Applying Lp-theory to problem (15) (see [1] and references therein), we get

‖v‖W1,2
p (Q)

≤ C2

(
‖v0‖

W
2− 2

p
p (Ω)

+ p3‖(v− v3)‖Lp(Q)

+‖ f ‖Lp(Q) + ‖w‖
W

1− 1
2p ,2− 1

p
p (Σ)

)
,

(25)

for a constant C2 = C(|Ω|, T, n, p, p1 , p3 , p4) > 0.
By Lemma 1.1 in [21] and (24), we get

‖v− v3‖Lp(Q) ≤ C1

(
1 + ‖v0‖

3p−2
p

L3p−2(Ω)
+ ‖ f ‖Lp(Q) + ‖w‖

3p−2
p

L3p−2(Σ)

)

and then (25) becomes

‖v‖W1,2
p (Q)

≤ C2

(
1 + ‖v0‖

W
2− 2

p
∞ (Ω)

+ ‖v0‖
3p−2

p

L3p−2(Ω)

+‖ f ‖Lp(Q) + ‖w‖
W

1− 1
2p ,2− 1

p
p (Σ)

+ ‖w‖
3p−2

p

L3p−2(Σt)

)
.

(26)

The continuous embedding W1,2
p (Q) ⊂ B = W0,1

p (Q) ∩ L3p(Q) ensures that

‖v‖B ≤ C‖v‖W1,2
p (Q)
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which, owing to (26), ensures that a constant δ > 0 can be found such that the property
expressed in (21) is true.

Denoting

Bδ :=
{

v ∈ B : ‖v‖B < δ
}

,

relation (21) implies that

H(v, λ) 6= v ∀v ∈ ∂Bδ, ∀λ ∈ [0, 1],

provided that δ > 0 is sufficiently large. Furthermore, following the same reasoning as
in [1,4,11,15,19], we conclude that problem (6) has a solution v ∈ W1,2

p (Q) (see also [21],
p. 195). The estimate (11) results from (26), and the proof of the first part in Theorem 1
is finished.

2.2.2. The Uniqueness of the Solution v(t, x)

Now, we prove (13), which implies the uniqueness of the solution of (1) or (5). By hy-
pothesis, v1, v2 ∈W1,2

p (Q) solve problem (1), corresponding to { f 1, w1, v1
0} and { f 2, w2, v2

0},
respectively. Thus, v1 − v2 ∈W1,2

p (Q).
Let us recall that

aij(t, x, v1, v1
x) =

∂
∂v1

xj
Φ(v1

x)Ψ(v1
x)v1

xi
,

aij(t, x, v2, v2
x) =

∂
∂v2

xj
Φ(v2

x)Ψ(v2
x)v2

xi
,

i = 1, 2, and (following [1]) we write the increments of aij in the form

aij(t, x, v1, v1
x)− aij(t, x, v2, v2

x) =

1∫
0

d
dλ

aij

(
t, x, vλ, vλ

x

)
dλ,

where

vλ(t, x) = λv1(t, x) + (1− λ)v2(t, x) and vλ
x (t, x) = λv1

x(t, x) + (1− λ)v2
x(t, x).

Consequently, we get

aij(t, x, v1, v1
x)v1

xi xj
− aij(t, x, v2, v2

x)v2
xi xj

= aij(t, x, v1, v1
x)Vxi xj

+ v2
xi xj

[
Vxi

1∫
0

∂
∂vλ

xj
aij
(
t, x, vλ, vλ

x
)
dλ

+V
1∫

0

∂
∂vλ aij

(
t, x, vλ, vλ

x
)
dλ

]

+v2
xi xj

[
Φ(v1

x)−Φ(v2
x)

]
,

(27)

where V(t, x) = v1(t, x)− v2(t, x).
Regarding A(t, x, v, vx) = Φ

(
vx
)
∇Ψ(vx) · ∇v, we have
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A(t, x, v1, v1
x)− A(t, x, v2, v2

x)

=

1∫
0

d
dλ

A
(

t, x, vλ, vλ
x

)
dλ

= Vxi

1∫
0

∂

∂vλ
xj

A
(

t, x, vλ, vλ
x

)
dλ + V

1∫
0

∂

∂vλ
A
(

t, x, vλ, vλ
x

)
dλ.

(28)

Now, we subtract Equation (1)1 for v2(t, x) from Equation (1)1 for v1(t, x), and making
use of (27), (28), we obtain the following linear equation

p1

∂

∂t
V − âij(t, x)Vxixj + âi(t, x)Vxi + â(t, x)V = f 1 − f 2 in Q

q̄(t, x) ∂
∂nV + p5 V = w1 − w2 on Σ

V(0, x) = v1
0(x)− v2

0(x) on Ω,

(29)

where

âij(t, x) = aij(t, x, v1, v1
x),

âi(t, x) = −v2
xi xj

1∫
0

∂

∂vλ
xj

ai,j

(
t, x, vλ, vλ

x

)
dλ +

1∫
0

∂

∂vλ
xj

A
(

t, x, vλ, vλ
x

)
dλ,

â(t, x)=−v2
xi xj

1∫
0

∂

∂vλ
ai,j

(
t, x, vλ, vλ

x

)
dλ+

1∫
0

∂

∂vλ
A
(

t, x, vλ, vλ
x

)
dλ

−p2

[
1−

(
(v1)2 + v1v2 + (v2)2

)]
.

Due to (9) and the working hypotheses on v1 and v2, i.e.,

‖v1‖W1,2
p (Q)

, ‖v2‖W1,2
p (Q)

≤ M4 ,

the conditions on linear equations are fulfilled and, given this, it follows from (29) that
estimate (13) is valid for V, which finishes the proof of Theorem 1.

As a consequence, it results the uniqueness for the solution of (5).

Corollary 1. For the same initial conditions, the problem (5) possesses a unique solution v(t, x) ∈
W1,2

p (Q).

Proof. Let f 1 = f 2 = f and w1 = w2 = w in Theorem 1. Then (13) demonstrates the
corollary (see [1] and references therein).

Remark 1. The nonlinear operator H in (14) depends on λ ∈ [0, 1] and its fixed point for λ = 1
are solutions of (15).



Mathematics 2021, 9, 91 13 of 23

3. A Novel Nonlinear Second-Order Anisotropic Reaction-Diffusion Model in
Image Segmentation

The nonlinear parabolic second-order PDE problem (5) can be applied for image de-
noising, enhancement, restoration and segmentation. Here we consider a particularization
of this mathematical model by setting the functions Φ

(
vx(t, x)

)
and Ψ

(
vx(t, x)

)
as follow

Φ : [0, ∞)→ (0, ∞), Φ(s) =
3
√

ϕs2 + η

α
,

Ψ : [0, ∞)→ (0, 1], Ψ(s) = 1

1 +
( s

c

)2

(30)

where ϕ, η, α ∈ (0, 4], while the parameter c is the conductance (see [15], p. 177 and [14],
p. 633). Therefore, the following PDE scheme with non-homogeneous Cauchy-Neumann
boundary conditions is acquired:

p1

∂

∂t
v(t, x)−Φ

(
‖vx(t, x)‖

)
div
(

Ψ
(
‖vx(t, x)‖

)
vx(t, x)

)
= p3

[
v(t, x)− v3(t, x)

]
+ p4 f (t, x) in Q

∂

∂n
v(t, x) + p5 v(t, x) = w(t, x) on Σ

v(0, x) = v0(x) on Ω,

(31)

vx(t, x) = ∇v(t, x) =
(
vx1(t, x), vx2(t, x)

)
.

The edge-stopping (diffusivity) function in (30)2 is positive, monotonically decreasing
and converging to zero (see [28,30]) thus satisfying the conditions imposed by a proper
diffusion. Moreover, it is easy to check that Ψ and Φ in (30) satisfy Assumptions I1 and
I2 in Theorem 1 and thus the nonlinear anisotropic reaction-diffusion model (31) is well-
posed, as proved in the previous section. Consequently, it admits an unique classical
solution v(t, x) ∈ W1,2

p (Q), that represents the evolving image of the observed image
v(0, x) = v0(x).

The corresponding nonlocal anisotropic reaction-diffusion model to (31) can be written
as follows:

p1

∂

∂t
v(t, x) = Φ

(
‖vx(t, x)‖

)
Ψ
(
‖vx(t, x)‖

){∫
Ω

K(x− y)
[
v(t, y)− v(t, x)

]
dy

+
∫

∂Ω
K(x− ys)

[
w(t, ys)− p5 v(t, ys)

]
dys

}

+Φ
(
‖vx(t, x)‖

)
∇Ψ

(
‖vx(t, x)‖

)
· vx(t, x) + p3

[
v(t, x)− v3(t, x)

]
+ p4 f (t, x),

(32)

with initial condition
v(0, x) = v0(x), (33)

where

• K : IR→ IR is a real function, symmetric, continuous, nonnegative and it’s compactly
supported in the unit sphere, such that

∫
IR

K(z)dz = 1.
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Details on certain interpretations of the terms K(x − y),
∫
Ω

K(x − y)v(t, y)dy and

−v(t, x)
∫
Ω

K(x− y)dy in the mathematical model (32), can be found in the works of P. W.

Bates, S. Brown and J. Han [3] and J. Rubinstein and P. Sternberg [27] and references therein.
The solution behavior for the nonlocal model (32) on rescaling the kernel K considering

K(z) =
1
ε3 K

( z
ε

)
are studied in [33] and for the numerical solutions we refer to [3,40] and

references therein.
In what follows, we will approximate the solution v(t, x) in (31) and (32) using the

finite-difference method (of second-order in time, see (36)).

3.1. Numerical Approximation

In this subsection we propose two numerical schemes (see (47) and (48)) to approxi-
mate the solution of the novel nonlinear reaction-diffusion model (31), (32), based on the
finite difference method (see also [3,4,7,9,16,23,28,40,41]). By using a grid of space size h,
one quantizes the space coordinates x = (x1, x2) as:

x1i = ih, x2j = jh, for all i = 1, 2 . . . , I, j = 1, 2, . . . , J,

where [Ih× Jh] represents the dimension of the support image.
We consider a positive value T as the time interval upper limit and M the number of

nodes which are dividing the time interval [0, T], then we can set

tm = (m− 1)ε, m = 1, 2, . . . , M, ε = T/(M− 1).

We also denote by vm
i,j the approximating values in (tm, x1i, x2j) for the unknown

function v(t, x) used in (31) (or (32)), i.e.,

vm
i,j = v(tm, x1i, x2j), m = 1, 2, . . . , M, i = 1, 2 . . . , I, j = 1, 2, . . . , J,

or, for later use

vm =
(

vm
1,1, vm

2,1, . . . , vm
Ih,Jh

)T
m = 1, 2, . . . , M. (34)

From the initial condition (33), we have

v(0, x) ≈ v1 = v(t1, x1i, x2j) = v0(x1i, x2j), i = 1, 2 . . . , I, j = 1, 2, . . . , J. (35)

To approximate
∂

∂t
v(t, x), we employ a second-order scheme (see [16,41] and references

therein):

∂
∂t v(tm+1, x1i, x2j) ≈

3vm+1
i,j −4vm

i,j+vm−1
i,j

2ε ,

m = 1, 2, . . . , M− 1, i = 1, 2 . . . , I, j = 1, 2, . . . , J.

(36)

We write Equation in (32) as:

p1

∂

∂t
v(t, x) + p3

[
v3(t, x)− v(t, x)

]
= NlD(t, x, v, vx) + R(t, x, v, vx) + p4 f (t, x) (37)

where we denote the nonlocal diffusion term by:
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NlD(t, x, v, vx) = Φ
(
‖vx(t, x)‖

)
Ψ
(
‖vx(t, x)‖

){∫
Ω

K(x− y)
[
v(t, y)− v(t, x)

]
dy

+
∫

∂Ω

K(x− ys)
[
w(t, ys)− p5 v(t, ys)

]
dys

} (38)

and the reaction term by:

R(t, x, v, vx) = Φ
(
‖vx(t, x)‖

)
∇Ψ

(
‖vx(t, x)‖

)
· vx(t, x). (39)

The left-side term in (37) is approximated by

p1

3vm+1
i,j − 4vm

i,j + vm−1
i,j

2ε
+ p3

[
(vm

i,j)
3 − vm

i,j

]
and the right side terms are discretized using central differences (see [16] and references
therein).

We also denote Φi,j = Φ(‖∇vi,j‖) and Ψi,j = Ψ(‖∇vi,j‖), where

‖∇vi,j‖ = ‖vx(t, xi,j)‖ ≈

√√√√(vm
i+1,j − vm

i−1,j

2h

)2

+

(
vm

i,j+1 − vm
i,j−1

2h

)2

,

for all i = 2 . . . , I − 1, j = 2, . . . , J − 1. To complete the discretization schema we need to
approximate NlD(t, x, v, vx) and R(t, x, v, vx) terms as follows:

NlDm+1(tm, xi,j, vm
i,j, vx(tm, xi,j)) =

Φm
i,jΨ

m
i,j

{∫
Ω

K(xi,j − y)
[
v(tm, y)− v(tm, xi,j)

]
dy

+
∫

∂Ω
K(xi,j − ys)

[
w(tm, ys)− p5 v(tm, xi,j)

]
dys

}
(40)

Continuing the discretization by using the Riemann sums to approximate the integral
terms, we have:
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∫
Ω

K(xi,j − y)
[
vm(tm, y)− vm(tm, xi,j)

]
dy =

h2

{ I−1

∑
d1=2

J−1

∑
d2=2

K(xi,j − yd1,d2)
(

vm
d1,d2
− vm

i,j

)

+ 1
2

I−1

∑
d1=2

[
K(xi,j − yd1,1)

(
vm

d1,1 − vm
i,j

)
+ K(xi,j − yd1,J)

(
vm

d1,J − vm
i,j

)]

+ 1
2

J−1

∑
d2=2

[
K(xi,j − y1,d2)

(
vm

1,d2
− vm

i,j

)
+ K(xi,j − yI,d2)

(
vm

I,d2
− vm

i,j

)]

+ 1
4

[
K(xi,j − y1,1)

(
vm

1,1 − vm
i,j

)
+ K(xi,j − yI,1)

(
vm

I,1 − vm
i,j

)
+K(xi,j − y1,J)

(
vm

1,J − vm
i,j

)
+ K(xi,j − yI,J)

(
vm

I,J − vm
i,j

)]}

(41)

For the second integral on ∂Ω, we have:

∫
∂Ω

K(xi,j − ys)
[
w(tm, ys)− p5 v(tm, xi,j)

]
dys

= h

{ I−1

∑
d1=2

[
K(xi,j − yd1,1)(wm

d1,1 − p5 vm
i,j) + K(xi,j − yd1,J)(wm

d1,J − p5 vm
i,j)
]

+

J−1

∑
d2=2

[
K(xi,j − y1,d2)(w

m
1,d2
− p5 vm

i,j) + K(xi,j − yI,d2)(w
m
I,d2
− p5 vm

i,j)
]

+K(xi,j − y1,1)(wm
1,1 − p5 vm

i,j) + K(xi,j − yI,1)(wm
I,1 − p5 vm

i,j)

+K(xi,j − y1,J)(wm
1,J − p5 vm

i,j) + K(xi,j − yI,J)(wm
I,J − p5 vm

i,j)

}

(42)

For the reaction term discretization,

Rm(tm, xi,j, vm
i,j, vx(tm, xi,j)) = Φm

i,j∇Ψ
(
‖vx(tm, xi,j)‖

)
· vx(tm, xi,j) (43)

we use the following scalar product approximation:

∇Ψ(‖vx(., x1, x2)‖) · vx(., x1, x2)

=

(
∂

∂x1 Ψ

(√(
∂v

∂x1

)2
+
(

∂v
∂x2

)2
)

, ∂
∂x2 Ψ

(√
( ∂v

∂x1 )
2 + ( ∂v

∂x2 )
2
))
·
(

∂v
∂x1 , ∂v

∂x2

) (44)

which leads to

∇Ψ(‖vx(., x1, x2)‖) · vx(., x1, x2)

= ∂Ψ
∂s (‖vx(., x1, x2)‖)

( ∂v
∂x1 )

2 ∂2v
∂x12 +

∂v
∂x1

∂v
∂x2

∂2v
∂x1∂x2 + ( ∂v

∂x2 )
2 ∂2v

∂x22 +
∂v

∂x1
∂v

∂x2
∂2v

∂x1∂x2√
( ∂v

∂x1 )
2 + ( ∂v

∂x2 )
2

.
(45)
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Further, since the second-order derivatives do not vary too much, we can use

∂2v
∂x12 ≈

∂2v
∂x1∂x2

∂2v
∂x22 ≈

∂2v
∂x1∂x2

to approximate

∇Ψ(‖vx(., x1, x2)‖) · vx(., x1, x2)

≈ ∂Ψ
∂s

(s)
∂2v

∂x1∂x2

(
∂v

∂x1 + ∂v
∂x2

)2√
( ∂v

∂x1 )
2 + ( ∂v

∂x2 )
2
≈ Ψ′

(√
v2

x1 + v2
x2

)
vx1x2(vx1 + vx2),

where vx1 = ∂v/∂x1, vx2 = ∂v/∂x2 and vx1x2 = ∂2v/∂x1∂x2 are discretized by applying
the finite difference method (see [15,28]).

To conclude we obtain the following explicit numerical approximation for reaction
term:

Rm(tm, xi,j, vm
i,j, vx(tm, xi,j)) = Φi,jΨ′


√

(vm
i+1,j−vm

i−1,j)
2

4h2 +
(vm

i,j+1−vm
i,j−1)

2

4h2

 (46)

·
(vm

i+1,j+1−vm
i+1,j−1−vm

i−1,j+1+vm
i−1,j−1)(v

m
i+1,j−vm

i−1,j+vm
i,j+1−vm

i,j−1)

8h3

and thus we get the following explicit numerical approximation scheme for (32):

3p1

2ε
vm+1

i,j =

(
2p1

ε
+ p3

)
vm

i,j − p3(v
m
i,j)

3 − p1

2ε
vm−1

i,j + NIDm
i,j + Rm

i,j + p4 f m
i,j . (47)

In a similar manner one obtains the following explicit numerical approximation
scheme for (31):

3p1

2ε
vm+1

i,j =

(
2p1

ε
+ p3

)
vm

i,j − p3(v
m
i,j)

3 − p1

2ε
vm−1

i,j

+Ψi,j

[
Ki+ 1

2 ,j(v
m
i+1,j − vm

i,j)− Ki− 1
2 ,j(v

m
i,j − vm

i−1,j)

+Ki,j+ 1
2
(vm

i,j+1 − vm
i,j)− Ki,j− 1

2
(vm

i,j − vm
i,j−1)

]
.

(48)

3.2. Experimental Results

The iterative numerical approximation scheme provided by (47) was successfully
applied in our image segmentation experiments, for each m = 1, 2, . . . , M− 1, starting with
v1 = v0(x) (see (33)), which represents the [Ih× Jh] image to be segmented.

The explicit numerical approximation scheme developed in (47) is consistent to the
nonlinear second-order anisotropic reaction–diffusion model given by (32).

In summary, the computations follow the procedure in Algorithm 1. For our tests,
we used the following parameter values: h = 1, ε = 0.1, p1 = 0.6, p3 = 50, p4 =
1, p5 = 0.3, α = 1, η = 3 and φ = 1.

Some image segmentation results provided by our proposed model are displayed in
Figures 1–4. All the results presented in this section are compared to standard K-means
image segmentation model with two clusters [24] and the Chan–Vese image segmentation
model presented in [5].

Our model successfully extracts the objects after up to three iterations. One may see
multiple objects as well as objects with boundary concavities and blurry boundaries are
accurately extracted from the background.
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Algorithm 1: Reaction-diffusion based image segmentation algorithm

1 Set m = 1
2 Initialize the unknown function v1 with the input image to be segmented
3 while vm did not reach stable state do
4 Compute diffusion and reaction terms according to (41), (42) and

respectively (46)
5 Evolve function vm in (47) to obtain vm+1

i,j
6 Increase m by 1

7 Segmented image is given by vm

Figure 1 shows the segmentation results of our model for a brain CT scan image.
The results are satisfactory even after only one iteration. We also see the model reaching
stability after two iterations in this case. Compared to K-means segmentation results, we
observe the extracted objects edges (brain tissue and cranium bone) are better delimited
from the background. Compared to Chan–Vese segmentation results, our model produces
more accurate results too. In this example, Chan–Vese model seems to not follow the real
object boundaries, especially at the border between cranium bone and brain tissue.

Figure 2 shows the segmentation comparison between three cases: first the input
image is segmented ‘as is’, second the input image is contaminated with noise before
segmentation and third we double the noise added to the input image. For all three cases,
we can also see the results of applying K-means and Chan–Vese segmentation. We see
our model successfully removes most part of the noise in Figure 2h,l while still preserving
a good approximation for the edges on the leaf object (better than both K-means and
Chan–Vese).

In Figure 3, we see the segmentation results for a blurry boundary object as galaxy
boundaries are slowly fading. Even after one iteration, our segmentation is superior to
K-means and Chan–Vese as the real galaxy boundaries are correctly identified in Figure 3d.

Figure 4 (virus microscopy) brings together noise, blur and irregular boundaries.
Again, after two iterations, the model successfully identifies all objects of interest and the
results, starting with the first iteration, are better than the compared K-means method.
The Chan–Vese segmentation does not separate the virus blobs successfully, although it
provides a good outer boundary approximation.

Regarding time complexity, due to the integral formulation of NlD term in (41) and
(42), the proposed algorithm is slower than the compared K-means or Chan–Vese counter-
parts. To obtain better performance results, regarding running time, we had to implement
the program on parallel architectures such as CUDA [42]. Table 1 shows the time taken by
a CUDA implementation for different input image sizes (total number of pixels being I ∗ J).

Using the local scheme in (48), we obtained promising results for image restoration
tasks. Future work will show if we can succeed in mixing the local and nonlocal models
for better noise removal before applying segmentation tasks.

Table 1. Running durations for the reaction-diffusion algorithm implemented on CUDA. The
durations are for only one vm iteration.

Input Area Size
(Pixels) 65,536 262,144 1,048,576

Time Taken
(Seconds) 0.3 2.0 30.0
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Figure 1. (a) Original input image to be segmented, (b) K-means segmentation results, (c) Chan–Vese
segmentation results; and (d–f) our model segmentation results after 1–3 iterations, respectively.

Figure 2. (a) Original input image to be segmented; (b) K-means segmentation results; (c) Chan–
Vese segmentation results; (d) Our model segmentation results after 2 iterations; (e) Input image
to be segmented with Gaussian noise added; (f) K-means segmentation results for noisy input in
(e); (g) Chan–Vese segmentation results for noisy input in (e); (h) Our model segmentation results
for noisy input in (e) after 2 iterations; (i) Input image to be segmented with more noise added;
(j) K-means segmentation results for image in (g); (k) Chan–Vese segmentation results for noisy input
in (g); and (l) Our model segmentation results for noisy image in (g).
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Figure 3. (a) Input image to be segmented; (b) K-means segmentation results; (c) Chan–Vese segmen-
tation results; and (d–f) Our model segmentation results after 1–3 iterations. respectively.

Figure 4. (a) Original input image to be segmented; (b) K-means segmentation results; (c) Chan–Vese
segmentation results; (d–f) Our model segmentation results after 1–3 iterations. respectively.

4. Conclusions

The starting point in the elaboration of the present work is the paper by Miranville, A.
and Moroşanu, C. [1], which is a major challenge for both theory and applications, fo-
cused on finding concrete cases of functions for the general case Φ(t, x, v(t, x), vx(t, x))
and Ψ(t, x, v(t, x), vx(t, x)) introduced in [1]. In this respect, a rigorous mathematical
investigation is performed to analyze the well-posedness of the nonlinear anisotropic
reaction–diffusion model (1) (in particular, (31)). The Leray–Schauder principle is applied
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to prove the existence and uniqueness of a unique classical solution v(t, x) ∈ W1,2
p (Q),

while the Lp theory is used to derive the regularity properties for the solutions, consider-
ing that the initial data and the boundary constraints are compatible with the regularity
and compatibility conditions (see (3)). In addition, the a priori estimates are made in
Lp(Q), which means the approximation for unknown functions v(t, x) are more precise
(see [1,11–13,15,19–21,35]).

Using the finite-difference method (of second-order in time), two numerical schemes
are constructed see (47) and (48) to approximate the solution v(t, x) of the new mathematical
model. Numerical experiments show the model can be successfully applied to image
segmentation tasks. We tested on images with multiple objects as well as objects with
complex concavities or blurry boundaries and proved our model can accurately extract
them, most of the time showing better results than the compared K-means model.

Summarizing, the main contributions in the present work are as follows:

• We use novel techniques, such as Leray-Schauder principle, a priori estimates, Lp-
theory, to elaborate a rigorous qualitative study of the nonlocal and nonlinear second-
order anisotropic reaction–diffusion parabolic problem, endowed with a nonlinearity
of cubic type as well as non-homogeneous Cauchy–Neumann boundary conditions,
expressed by (1) and (31). We note that, due to the presence of the nonlinear coeffi-
cient Φ(‖vx(t, x))‖ (see (30)), the proposed second-order nonlinear reaction–diffusion
scheme (31) represents a non-variational PDE model. Therefore, it cannot be obtained
from a minimization of any energy cost functional, thus this scheme is not a variational
PDE model.

• Two two numerical schemes (47) and (48) are constructed to approximate the solution
of the mathematical models (31) and (32) (local and nonlocal case).

Regarding the second theme, we aim to improve the scheme in (47) and (48), as part
of our future research on the topic, by introducing new edge-stopping functions (see [28])
and by taking advantage of non-local image information which will allow us to apply the
model to images with inhomogeneity (see [33] and reference therein).

The qualitative results obtained in this current work can be used in quantitative
studies of the mathematical models in (1) or (5) as well as in the study of optimal control
problems involving such nonlinear problems. We look forward to exploiting all these in
our future works.
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1. Miranville, A.; Moroşanu, C. A Qualitative Analysis of a Nonlinear Second-Order Anisotropic Diffusion Problem with Non-

homogeneous Cauchy–Stefan–Boltzmann Boundary Conditions. Appl. Math. Optim. 2019. [CrossRef]
2. Allen, S.M.; Cahn, J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.

Acta Metall. 1979, 27, 1085–1095. [CrossRef]
3. Bates, P.W.; Brown, S.; Han, J. Numerical analysis for a nonlocal Allen-Cahn equation. Int. J. Numer. Anal. Model. 2009, 6, 33–49.
4. Bogoya, M.; Gómez, J. On a nonlocal diffusion model with Neumann boundary conditions. Nonlinear Anal. 2012, 75, 3198–3209.

[CrossRef]
5. Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process. 2001, 10, 266–277. [CrossRef]
6. Caginalp, G.; Lin, J.-T. A numerical analysis of an anisotropic phase field model. IMA J. Appl. Math. 1987, 39, 51–66. [CrossRef]

http://dx.doi.org/10.1007/s00245-019-09643-5
http://dx.doi.org/10.1016/0001-6160(79)90196-2
http://dx.doi.org/10.1016/j.na.2011.12.019
http://dx.doi.org/10.1109/83.902291
http://dx.doi.org/10.1093/imamat/39.1.51


Mathematics 2021, 9, 91 22 of 23

7. Hundsdorfer, W.; Verwer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer Series in
Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 33.

8. de Masi, A.; Orlandi, E.; Presutti, E.; Triolo, L. Stability of the interface in a model of phase separation. Proc. R. Soc. Edin. A 1994,
124, 1013–1022. [CrossRef]
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