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Abstract: Herein, an efficient algorithm is proposed to solve a one-dimensional hyperbolic partial
differential equation. To reach an approximate solution, we employ the θ-weighted scheme to
discretize the time interval into a finite number of time steps. In each step, we have a linear ordinary
differential equation. Applying the Galerkin method based on interpolating scaling functions, we
can solve this ODE. Therefore, in each time step, the solution can be found as a continuous function.
Stability, consistency, and convergence of the proposed method are investigated. Several numerical
examples are devoted to show the accuracy and efficiency of the method and guarantee the validity
of the stability, consistency, and convergence analysis.

Keywords: interpolating scaling functions; hyperbolic equation; Galerkin method

1. Introduction

Partial differential equations (PDEs) are ubiquitous in mathematically scientific fields
and play an important role in engineering and physics. They arise from many purely math-
ematical considerations, such as the calculus of variations and differential geometry. One of
the momentous subclasses of PDEs is the hyperbolic partial differential equations (HPDEs).
HPDEs are used to model many phenomena such as biology, industry, atomic physics, and
aerospace [1–3]. Telegraph and wave equations are the most famous types of HPDEs that
are enforceable in various fields such as random walk theory, wave propagation, and signal
analysis [2,4].

In this study, we construct and analyze a numerical algorithm based on the θ-weighted
method, and the Galerkin method to solve the HPDEs

wt(x, t) + a1wx(x, t) + a2w(x, t) = f (x, t), x ∈ [0, 1], t ∈ [0, T], (1)

with boundary condition
w(0, t) = g(t), t ∈ [0, T], (2)

and initial condition
w(x, 0) = h(t), x ∈ [0, 1]. (3)

Furthermore, we assume that f , g, and h are the known functions, and also a1 and a2
are real constants.

In this paper, we attempt to apply an efficient scheme that has not been used before
to solve such problems. The method includes three steps. In the first step, we use the
θ-weighted method to break the time interval into a finite number of time steps. At each
time step, we obtain a linear ordinary differential equation. In the second step, the obtained
ODE is solved using the Galerkin method. To do this, interpolating scaling functions are
used. In comparison to the scaling function arising from multiresolution analysis (MRA),
interpolation scaling functions (ISFs) have some properties that make them attractive.
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These characteristics include the flexible zero moments, a compact support, orthonormality,
and having a closed-form. The most important property of these bases is the interpolation.
This property is useful to avoid integrals to find coefficients in expansions. At the last
step, the linear algebraic system obtained from the second one must be solved using an
appropriate technique. Stability, consistency, and convergence analysis are investigated,
and numerical tests guarantee their validity.

Numerous studies proposed a variety of numerical and analytical solutions to HPDEs.
Doha et al. [5] proposed a numerical method based on the collocation method for solv-
ing a system consisting of such equations. In [6], the spectral-Galerkin method is pro-
posed to solve this equation. Singh et al. [7] solved one-dimensional HPDEs with the
initial and boundary conditions (2) and (3), using an algorithm based on Chebyshev and
Legendre multiwavelets. Dehghan et al. [8] introduced a numerical scheme based on
the cubic B-spline scaling functions to solve (1) with nonlocal conservation conditions.
Bin Jebreen et al. [4] proposed an efficient method based on the wavelet Galerkin method
to solve the Telegraph equation, and the collocation method based on interpolating scaling
functions is also used for solving this equation in [3]. For study, we refer the readers
to [9,10].

The outline of the paper is as follows. Section 2 is devoted to the brief introduction to
the interpolating scaling function. Mixed θ-weighted scheme and Galerkin method based
on interpolating scaling functions are used to solve the desired equation and the stability,
consistency, and convergence analysis are also investigated in Section 3. Section 4 is devoted
to some numerical examples to show the ability and accuracy of the proposed method.

2. Interpolating Scaling Functions

To derive a set of bases that covers the multiresolution analysis conditions,
Alpert et al. [11] introduced a set of functions to generate the nested spaces
{Vr

J }∞
J=0 ∈ L2([0, 1]) using piecewise polynomial bases of degree less than r ≥ 0 (the

multiplicity parameter). Let J ∈ Z+ ∪ {0} be given. Putting BJ := {0, . . . , 2J − 1},
andR := {0, 1, · · · , r− 1}, there is a sequence of nested subspaces that are spanned by

Vr
J := Span{φk

J,b := φk(2J x− k), b ∈ BJ , k ∈ R} ⊂ L2([0, 1]), r ≥ 0, J ∈ Z+ ∪ {0},

by means of the Interpolating scaling functions {φk}k∈R, introduced by Alpert using the
Legendre polynomials. Assume that Pr is the Legendre polynomial of order r and {τk}k∈R
are the roots of Pr. Let {ωk}k∈R be the Gauss–Legendre quadrature weights [3,11]. We
determine ISFs as follows:

φk(x) =

{ √
2

ωk
Lk(2x− 1), x ∈ [0, 1],

0, o.w,

where {Lk(x)}k∈R are the Lagrange polynomials

Lk(x) =
r−1

∏
i=0,i 6=k

(
x− τi
τk − τi

)
.

These bases fulfill the orthonormality relation 〈φk
J,b, φk′

J,b′〉 = δb,b′δk,k′ where 〈., .〉 de-
notes the L2-inner product on Ω := [0, 1].

Assume that ∪b∈B IJ,b is a uniform finite discretization of Ω. Here, the subintervals
IJ,b := [xb, xb+1] are specified by points xb := b/(2J). To project a function into Vr

J , we
introduce the orthogonal projection P r

J that maps L2(Ω) onto the subspace Vr
J . Utilizing

this projection, every function p ∈ L2(Ω) can be represented in the form

p ≈ P r
J (p) = ∑

b∈BJ

∑
k∈R

pk
J,bφk

J,b. (4)
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Due to the orthonormality of the bases, it is easy to prove that the coefficients pk
J,b

can be obtained by 〈p, φk
J,b〉 =

∫
IJ,b

p(x)φk
J,b(x)dx. To avoid integration, we apply the

interpolation property of ISFs [11,12], via

pk
J,b ≈ 2−J/2

√
ωk
2

p
(

2−J(
τk + 1

2
+ b)

)
, b ∈ BJ , k ∈ R. (5)

Given r-times continuously differentiable function p ∈ Cr(Ω), the projection P r
J (p) is

bounded by means of L2-inner product as

‖P r
J (p)− p‖ ≤ 2−Jr 2

4rr!
sup

x∈[0,1]
|p(r)(x)|. (6)

According to this relation, the projection P r
J is convergent when J or r increases.

To study more details, we refer the readers to [13]. Consequently, this projection is conver-
gent with the rate of O(2−Jr).

We determine the vector function Φr
J := [Φr,J,0, · · · , Φr,J,2J−1]

T with
Φr,J,b := [φ0

J,b, · · · , φr−1
J,b ] includes the scaling functions and called multi-scaling functions.

The approximation (4) can be rewritten using the vector P whose entries are Pbr+k+1 := pk
J,b

as follows:
P r

J (p) = PTΦr
J , (7)

where P is a vector of dimensional N := r2J .
To approximate a higher-dimensional function, the building blocks of the bases can be

utilized. In this regard, one can consider the subspace Vr,2
J := Vr

J ×Vr
J ⊂ L2(Ω×Ω) that

is spanned by
{φk

J,bφk′
J,b′ : b, b′ ∈ BJ , k, k′ ∈ R}.

In order to derive an approximation of two-dimensional function p ∈ L2(Ω×Ω), we
apply the projection operator P r

J , viz.

p(x, t) ≈ P r
J (p)(x, t) = Φr

J
T(x)PΦr

J(t), (8)

where components of the square matrix P of order N are obtained by

Prb+(k+1),rb′+(k′+1) ≈ 2−J
√

ωk′

2

√
ωk
2

p
(

2−J(τ̂k + b), 2−J(τ̂k′ + b′)
)

, (9)

and τ̂k = (τk + 1)/2. If C(2r)(Ω×Ω) 3 p : Ω×Ω→ R, we can show that the error can be
bounded as follows:

‖P r
J p− p‖ ≤ Mmax

21−rJ

4rr!

(
2 +

21−Jr

4rr!

)
, (10)

whereMmax is a constant [12] as follows:

Mmax = max

{
sup

ξ∈[0,1)
| ∂r

∂xr p(ξ, t)|, sup
η∈[0,1)

| ∂r

∂tr p(x, η)|, sup
ξ ′ ,η′∈[0,1)

| ∂2r

∂xr∂tr p(ξ ′, η′)|
}

.

3. Numerical Method of Solution

The main idea behind the proposed method is based on the θ-weighted scheme and
Galerkin methods. In the first step, the θ-weighted method is used to discretize the time
interval into a finite number of time steps. The linear system of ordinary differential
equations obtained after the first step can be reduced to a system of algebraic equations by
using the Galerkin method in the second one. Thus, one can find the approximate solution
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of the desired equation at the time step points tn := nδt, n = 0, . . . , M (tn ∈ [0, T] and
T = Mδt).

To discretize the time variable, we use the θ-weighted scheme as follows:

wn+1 − wn

δt
+ θ
(

a1wn+1
x + a2wn+1

)
+ (1− θ)(a1wn

x + a2wn) = f (x, tn) +R, (11)

where for simplicity w(x, tn) is assumed to be wn, for tn = tn−1 + δt (or equivalently
tn = nδt), and also R ≤ Cδt for a positive constant C and θ ∈ [0, 1] is a constant. Note
that, by selecting the different values for θ, one can find various methods, such as implicit
method (θ = 1), explicit method (θ = 0), and the Crank–Nicolson method (θ = 1/2).

Since the remainder term R is a small quantity, one can neglect it and, after simplifica-
tion, we obtain

wn+1 + θδt
(

a1wn+1
x + a2wn+1

)
= wn − (1− θ)δt(a1wn

x + a2wn) + δt f (x, tn), n = 0, . . . , M. (12)

Next, this system of ordinary differential equations would be discretized by the
Galerkin method based on ISFs. To this end, one can approximate the solution wn of (12)
using the projection operator P r

J , via

wn(x) ≈ P r
J (w

n)(x) = Wn
TΦr

J(x), n = 0, . . . , M, (13)

where Wn, for n = 1, . . . , M is a vector of dimension N which must be found. The same
approximation could be imagined to wn

x , as

wn
x(x) ≈ P r

J (w
n
x)(x) = Wn

T DφΦr
J(x), n = 0, . . . , M, (14)

where Dφ is the operational matrix for derivative introduced in [14–16].
Replacing (13) and (14) in (12) yields(

Wn+1
T + θδt

(
a1Wn+1

T Dφ + a2Wn+1
T
))

Φr
J(x) =

(
Wn

T − (1− θ)δt
(

a1Wn
T Dφ + a2Wn

T
)
+ δtFT

n

)
Φr

J(x), (15)

where Fn is a N × 1 vector that is obtained by projecting the function f n into Vr
J , viz.

f n ≈ P r
J ( f n)(x) = FT

n Φr
J(x), n = 0, . . . , M.

Let

AT := (1 + a2θδt)I + a1θδtDφ,

bT := WT
n
(
(1− a2(1− θ)δt)I − a1(1− θ)δtDφ

)
+ δtFT

n , n = 0, . . . , M, (16)

where I is the identity matrix of dimension N. Multi-scaling function Φr
J(x) are orthonor-

mal bases for Vr
J . Thus, they are linearly independent, and then we have the following

linear system:
AWn+1 = b. (17)

To apply the boundary condition (2), it can also be projected into Vr
J , via

wn+1(0) ≈WT
n+1Φr

J(0) = g(tn+1). (18)

Substituting the first row of A and the first element of b by Φr
J(0)

T and g(tn+1),
respectively, we obtain the modified system

ÃWn+1 = b̃. (19)
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Now, note that, to start the steps, the initial condition should be utilized via

w(x, 0) ≈WT
0 Φr

J(x) = HTΦr
J(x), (20)

and then W0 = H where H is a vector of dimension N. Utilizing W0 = H,
Equation (19) gives a system of equations at every time step tn, n = 0, . . . , M. Thus, one can
obtain the approximate solution w(x, tn) by means of a linear expansion of interpolating
scaling function (13).

3.1. Stability

To analyze the stability of the time discretization by θ-weighted scheme, assume that
ŵn+1 is the approximate solution of (17). We set en+1 := wn+1 − ŵn+1 as the error that
arises from the proposed Galerkin method. Consequently, the roundoff error satisfies

(1 + a2θδt)en+1 + a1θδten+1
x = (1− a2(1− θ)δt)en − a1(1− θ)δten

x . (21)

Projecting the error en using P r
J into Vr

J , one can write

en ≈ P r
J (e

n) = ET
n Φr

J . (22)

Inserting (22) into (21) and applying the operational matrix of derivative for ISFs,
we get

Φr
J
T AEn+1 = Φr

J
T BEn, (23)

where BT := (1− a2(1− θ)δt)I − a1(1− θ)δtDφ. Provided the matrix A is inverted, it can
be shown that

En+1 = A−1BEn. (24)

Taking the norm of both sides of (24), and using the matrix norm property, we obtain
the following inequality:

‖En+1‖ ≤ ‖A−1B‖‖En‖, n = 0, . . . , M. (25)

This gives rise to a sufficient and necessary condition for the stability of the method
so that, in order to have a stable method, the spectral radius of the matrix A−1B must be
less than one (ρ < 1, where ρ is a spectral radius of A−1B).

3.2. Convergence Analysis

Assume that en+1 := wn+1 − ŵn+1. Subtracting (12) from (15) and using the notations
in the previous section, one can write after some simplification

‖En+1‖ ≤ ‖A−1‖‖B‖‖En‖+ ‖A−1‖‖ f n − f̂ n‖, (26)

where f n := f (x, tn) and f̂ n := P r
J ( f n). Due to invertibility of matrix Dφ [11], it is obvious

that C1 := ‖A−1‖ and C2 := ‖B‖ are finite. Therefore, we have

‖En+1‖ ≤ C1

(
C2‖En‖+ ‖ f n − f̂ n‖

)
.

It follows from (6) that ‖En‖ and ‖ f n − f̂ n‖ are bounded

‖en+1‖ ≤ C1
21−Jr

4rr!
(C2 sup

x∈[0,1]
|wn(r)(x)|+ sup

x∈[0,1]
| f n(r)(x)|). (27)

Note that θ plays an important role in the structure of A−1 and B. Thus, the value of
the variables C1 and C2 will change when the value of θ changes. These variables play a
direct role in the error presented in (27).
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We know that a method is consistent if, by reducing the mesh (by increase the refine-
ment level J) and time step size (δt), the truncation error terms could be made to approach
zero. Consequently, the inequality (27) confirms that the method is consistent at every time
step when the refinement level J or multiplicity r increases.

If the condition for stability holds (ρ(A−1B) < 1) and if, for the Galerkin method, used
for solving the ordinary differential equation at each time, the overall error approaches zero
as J → ∞ (indeed, the method is consistent), we usually find that the solution converges to
the exact solution. This derives from the Lax Equivalence Theorem [17].

4. Numerical Results

To illustrate the validity of stability, consistency, and convergence analysis, some
numerical tests have been considered in this section.

Example 1. Let us dedicate the first example to the case that the desired Equation (1) is of form

wt(x, t) + wx(x, t) + w(x, t) = −2 sin(x + t) + cos(x + t),

with boundary and initial conditions

w(x, 0) = cos(x), x ∈ [0, 1], w(0, t) = cos(t), t ∈ [0, T].

One can find the exact solution that is reported in [6]

w(x, t) = cos(x + t).

Table 1 describes the comparison of L2-error via explicit, implicit and Crank–Nicolson methods
with time step size δt = 0.1/2m−1, m = 1, . . . , 10. It is quite obvious that the error tends to zero
with increasing m. Table 2 consists of L2 norm of Example 1 at different values of time. The L2-error
graph of the explicit, implicit, and Crank–Nicolson methods taking different values for J when
r = 3 are shown in Figure 1. Figure 2 illustrates the approximate solution and absolute error
taking r = 5 and J = 2 at time t = 1. Table 3 displays absolute values of the error at the selected
points by using the presented method taking r = 4, J = 1, θ = 1/2 and δt = 0.1/29. The results
have been compared with the Legendre wavelets and Chebyshev wavelet collocation method [7],
and also Bernoulli matrix approach [18]. To confirm the stability condition that we obtained in
Section 3.1, Figures 3 and 4 and Table 4 are considered. One can observe that when the spectral radius
of matrix A−1B is less than 1, the proposed method is stable. In view of
Figures 3 and 4, the explicit method at m = 10 becomes stable while the Crank–Nicolson method is
stable from m = 1. We have the same result for the implicit method (θ = 1).

Table 1. Comparison of L2–error computed using explicit, implicit and Crank–Nicolson methods with time step size
δt = 0.1/2m−1 for Example 1.

θ m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

0 1.18× 104 4.33× 106 3.10× 107 7.57× 104 2.95 1.22× 10−3 1.39× 10−4 6.80× 10−5 3.39× 10−5 1.69× 10−5

1/2 3.4× 10−2 1.7× 10−2 8.5× 10−3 4.2× 10−3 2.1× 10−3 1.0× 10−3 5.1× 10−4 2.5× 10−4 1.3× 10−4 8.2× 10−5

1 5.8× 10−2 2.9× 10−2 1.5× 10−2 7.3× 10−3 3.7× 10−3 1.8× 10−3 9.0× 10−4 4.4× 10−4 2.1× 10−4 1.1× 10−4

Table 2. L2 norm of errors taking r = 5, J = 2, θ = 1/2 and δt = 0.1/2m−1 for Example 1.

m t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

2 9.07× 10−3 1.50× 10−2 1.80× 10−2 1.86× 10−2 1.71× 10−2

4 2.27× 10−3 3.74× 10−3 4.50× 10−3 4.63× 10−3 4.24× 10−3

6 5.67× 10−4 9.34× 10−4 1.12× 10−3 1.16× 10−3 1.06× 10−3

8 1.42× 10−4 2.34× 10−4 2.81× 10−4 2.89× 10−4 2.65× 10−4

10 3.54× 10−5 5.84× 10−5 7.02× 10−5 7.23× 10−5 6.63× 10−5
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Table 3. Absolute values of the error at the selected points taking θ = 1/2 and δt = 0.1/29 for
Example 1.

Reference [7] (M = M′ = 4) Reference [18] (N = 4) Proposed Method
(x, t) Legendre Wavelets Chebyshev Wavelet r = 4, J = 1

(0.1, 0.1) 4.86× 10−5 3.0× 10−4 3.220× 10−5 5.332× 10−6

(0.2, 0.2) 2.78× 10−4 2.0× 10−4 6.650× 10−5 6.791× 10−6

(0.3, 0.3) 8.64× 10−5 1.0× 10−4 1.357× 10−4 4.366× 10−5

(0.4, 0.4) 1.15× 10−4 5.0× 10−4 1.332× 10−4 1.505× 10−4

(0.5, 0.5) 1.42× 10−4 6.0× 10−4 5.200× 10−5 1.509× 10−4

(0.6, 0.6) 5.40× 10−6 2.0× 10−4 7.700× 10−5 1.992× 10−4

(0.7, 0.7) 1.67× 10−4 2.0× 10−4 1.960× 10−4 2.098× 10−4

(0.8, 0.8) 2.46× 10−4 2.0× 10−4 2.428× 10−4 2.034× 10−4

(0.9, 0.9) 2.29× 10−4 1.0× 10−4 1.776× 10−4 2.119× 10−4

Table 4. L2 norm of errors taking r = 5, J = 2, θ = 1/2 and δt = 0.1/2m−1 for Example 1.

m θ = 0 θ = 0.5 θ = 1

1 2.74556398 0.99667345 0.95750928
2 1.96489325 0.99446140 0.97722388
3 1.45253127 0.99335639 0.98830702
4 1.16631074 0.99488512 0.99408949
5 1.04801504 0.99716602 0.99704939
6 1.01190091 0.99850952 0.99855537
7 1.00262776 0.99928905 0.99930055
8 1.00046389 0.99965462 0.99965498
9 1.00001839 0.99982309 0.99982817
10 0.99995576 0.99991242 0.99991142

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

J

0

1

2

3

4

5

6

7

L
2
-e

rr
o

r

10-4

Crank-Nicolson mathod

explicit method

implicit method

Figure 1. Plot of L2–errors at time t = 1 taking r = 3 and δt = (0.1)/29 for Example 1.
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Figure 2. Plot of the approximate solution (left) and L∞ errors (right) taking r = 5 and J = 2 for Example 1.
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Figure 3. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 0, r = 5, J = 2 and δt = (0.1)/2m

for Example 1.
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for Example 1.
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Example 2. As the second example, let us consider the HPDEs (1) so that a1 = 1, a2 = 1 and

f (x, t) = (x− t)2,

with boundary and initial conditions given by

w(x, 0) = x2, x ∈ [0, 1], w(0, t) = t2, t ∈ [0, T].

For this example, we have the exact solution [7]

w(x, t) = (x− t)2.

Table 5 shows the comparison of L2-error via explicit, implicit and Crank–Nicolson methods
with time step size δt = 0.1/2m−1, m = 1, . . . , 10, r = 5 and J = 2. Table 6 consists of L2
norm of Example 2 at different values of time. Figure 5 illustrates the approximate solution and
absolute error taking r = 5 and J = 2 at time t = 1. Figure 6 shows the L2-error using explicit
method and implicit method taking r = 3 and J = 2 at time δt = 0.1/2m−1, m = 1, . . . , 10.
Figures 7–9 confirm our investigation about stability. According to stability investigation, if the
spectral radius of matrix A−1B is not less than 1, then the time discretization leads to divergence
when t increases. To reduce this effect, we must increase the time steps. In Table 7 the results
have been compared with the Legendre wavelets and Chebyshev wavelet collocation method [7]. It
shows that the proposed method offers better accuracy using the same multiplicity parameter r and
refinement level J. In Figure 10, we show the effect of refinement level J and time step size δt on
absolute error. In addition, this figure confirms our investigation about consistency.

Table 5. L2–error comparison among explicit, implicit, and Crank–Nicolson methods with time step size δt = 0.1/2m−1 for
Example 2.

θ m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

0 2.37× 104 8.67× 106 6.20× 107 1.51× 105 5.88× 10−0 2.68× 10−3 6.44× 10−4 3.21× 10−4 1.60× 10−4 8.01× 10−5

1/2 1.45× 10−2 7.25× 10−3 3.62× 10−3 1.81× 10−3 9.06× 10−4 4.53× 10−4 2.27× 10−4 1.13× 10−4 5.66× 10−5 2.83× 10−5

1 2.46× 10−2 1.23× 10−2 6.13× 10−3 3.06× 10−3 1.53× 10−3 7.65× 10−4 3.82× 10−4 1.91× 10−4 9.55× 10−5 4.78× 10−5

Table 6. L2 norm of errors taking r = 3, J = 2, θ = 1/2 and δt = 0.1/2m−1 for Example 2.

m t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

2 3.75× 10−3 4.50× 10−3 3.97× 10−3 4.58× 10−3 7.27× 10−3

4 9.37× 10−4 1.12× 10−3 9.91× 10−4 1.14× 10−3 1.82× 10−3

6 2.34× 10−4 2.81× 10−4 2.48× 10−4 2.86× 10−4 4.55× 10−4

8 5.85× 10−5 7.02× 10−5 6.20× 10−5 7.15× 10−5 1.14× 10−4

10 1.46× 10−5 1.76× 10−5 1.55× 10−5 1.79× 10−5 2.84× 10−5

Table 7. Absolute values of the error at the selected points taking θ = 1/2 and δt = 0.1/29 for
Example 2.

Reference [7] (M = M′ = 4) Proposed Method
(x, t) Legendre Wavelets Chebyshev Wavelet r = 4, J = 1

(0.1, 0.1) 1.03× 10−4 2.57× 10−4 1.11× 10−7

(0.2, 0.2) 9.00× 10−6 3.83× 10−4 1.09× 10−7

(0.3, 0.3) 5.87× 10−5 4.38× 10−4 5.88× 10−7

(0.4, 0.4) 9.94× 10−5 2.22× 10−5 1.30× 10−6

(0.5, 0.5) 1.12× 10−4 2.30× 10−4 2.58× 10−6

(0.6, 0.6) 9.94× 10−5 1.38× 10−5 7.09× 10−7

(0.7, 0.7) 5.87× 10−5 3.66× 10−4 3.69× 10−7

(0.8, 0.8) 9.00× 10−6 2.75× 10−4 3.73× 10−8

(0.9, 0.9) 1.03× 10−4 4.01× 10−4 2.47× 10−7
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Figure 5. Plot of the approximate solution (left) and L∞ errors (right) taking r = 5 and J = 2 for Example 2.
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Figure 6. L2—error using explicit method (left) and implicit error (right) taking r = 3 and J = 2 at time δt = 0.1/2m−1 for
Example 2.
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for Example 2.
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Figure 8. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 1/2, r = 5, J = 2 and δt = (0.1)/2m

for Example 2.
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Figure 9. Plot of exact and approximate solutions at time t = 0.5 and t = 0.9 taking θ = 1, r = 5, J = 2 and δt = (0.1)/2m

for Example 2.
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Figure 10. Effect of the refinement level J and δt on the absolute error for Example 2.

5. Conclusions

This work is devoted to solving the one-dimensional partial differential equation
with boundary and initial conditions. To this end, the desired equation reduces to an
ordinary differential equation using the θ-weighted method. This ODE is solved by em-
ploying the Galerkin method based on the interpolating scaling functions. The stability,
consistency, and convergency of the method are investigated. The numerical examples
are reported to illustrate the accuracy and efficiency of the method. The results show that
three parameters are important here: the θ parameter that changes the θ-weighted method,
the δt parameter that controls the time steps, and the refinement level J. The results show
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that, using the proposed method, better results are obtained compared to similar methods.
Among the methods utilized in this paper, the implicit and Crank–Nicolson methods are
stable methods that need fewer steps than the explicit method to achieve proper accuracy.
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