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Abstract: Following the well-known theory of Beurling and Roumieu ultradistributions, we investi-
gate new spaces of ultradistributions as dual spaces of test functions which correspond to associated
functions of logarithmic-type growth at infinity. In the given framework we prove that boundary
values of analytic functions with the corresponding logarithmic growth rate towards the real domain
are ultradistributions. The essential condition for that purpose, known as stability under ultradiffer-
ential operators in the classical ultradistribution theory, is replaced by a weaker condition, in which
the growth properties are controlled by an additional parameter. For that reason, new techniques
were used in the proofs. As an application, we discuss the corresponding wave front sets.
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1. Introduction

In this paper we describe certain intermediate spaces between the spaces of Schwartz
distributions and any space of Gevrey ultradistributions as boundary values of analytic
functions. More precisely, we continue to investigate a new class of ultradifferentiable
functions and their duals ([1–4]) following Komatsu’s approach [5,6]. We refer to [7] and
the references therein for another equally interesting approach.

The derivatives of such ultradifferentiable functions are controlled by the two-
parameter sequences of the form Mτ,σ

p = pτpσ
, p ∈ N, τ > 0, σ > 1. For that reason

we call them extended Gevrey functions. It turns out that such functions can be used in
the study of a class of strictly hyperbolic equations and systems. In particular, the ex-
tended Gevrey class associated with the sequence M1,2

p = pp2
is used in the analysis of the

regularity of the corresponding Cauchy problem in [8]. It captures the regularity of the
coefficients in the space variable (with low regularity in time), so that the corresponding
Cauchy problem is well posed in appropriate solution spaces.

Actually, the growth rate of sequence Mτ,σ
p implied a change in the growth of the

expression hp in the classical definition (see [5]). Hence, instead of that expression, we
use hpσ

, which essentially changes the corresponding proofs in the analysis of new ultra-
distribution spaces. Indeed, the extra exponent σ which appears in the power of term h
implies that the extended Gevrey classes are different from any Carleman class CL; cf. [9].
This difference is essential for many calculations—for example, in the proof of the inverse
closedness property; cf. [10].

We especially emphasize the role of the Lambert W function that appears in the
theory of new ultradistribution spaces for the first time. This is the essential contribution
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of our approach. The properties of new ultradistribution spaces described in terms of
the Lambert function and its asymptotic properties show that our approach is naturally
included in the general theory of ultradistributions positioning the new spaces; let us call
them extended Gevrey ultradistributions, between classical distributions and Komatsu
type ultradistributions.

Distributions as boundary values of analytic functions are investigated in many
papers; see [11] for the historical background and the relevant references therein. We
point out a nice survey for distribution and ultradistribution boundary values given in
the book [9]. The essence of the existence of a boundary value is the determination of
the growth condition under which an analytic function F(x + iy), observed on a certain
tube domain with respect to y, defines an (ultra)distribution as y tends to 0. The classical
result can be roughly interpreted as follows: if F(x + iy) ≤ C|y|−M for some C, M > 0 then
F(x + i0) is in the Schwartz space D′(U) in a neighborhood U of x. (see Theorem 3.1.15
in [9]). For Gevrey ultradistributions, sub-exponential growth rate of analytic function F
of the form |F(x + iy)| ≤ Cek|y|−1/(t−1)

for some C, k > 0 and t > 1 implies the boundary
value result. The function in the exponent precisely describes the asymptotic behavior
of the associated function to the Gevrey sequence p!t, p ∈ N; cf. [6,12]. In general, such
representations are provided if test functions admit almost analytic extensions in the
non-quasianalytic case related to Komatsu’s condition (M.2) (see [13]).

Different results concerning boundary values in the spaces of ultradistributions can
be found in [5,6,11,13,14]. Even now this topic for ultradistribution spaces is interesting
(cf. [15–18]). Especially, we have to mention [19]. At the end of this introduction we will
briefly comment on the approach in this paper and our approach.

Extended Gevrey classes Eτ,σ(U) and Dτ,σ(U), τ > 0, σ > 1, are introduced and
investigated in [1–4,10,20]. The derivatives of functions in such classes are controlled by
sequences of the form Mτ,σ

p = pτpσ
, p ∈ N. Although such sequences do not satisfy Ko-

matsu’s condition (M.2), the corresponding spaces consist of ultradifferentiable functions;
that is, it is possible to construct differential operators of infinite order and prove their
continuity properties on the test and dual spaces.

Our main intention in this paper is to establish the sufficient condition when the
elements of dual spaces can be represented as boundary values of analytic functions.
We follow the classical approach to boundary values given in [11] and carry out necessary
modifications in order to use it in the analysis of spaces developed in [1–4]. Here, for such
spaces, plenty of non-trivial constructions are established. In particular, we analyze the
corresponding associated functions as a main tool in our investigations.

Moreover, we apply these results in the description of related wave front sets. The wave
front set WFτ,σ(u), τ > 0, σ > 1, of a Schwarz distribution u is analyzed in [2–4,10,20].
In particular, it is proved that they are related to the classes Eτ,σ(U). We extend the def-
inition of WFτ,σ(u) to a larger space of ultradistributions by using their boundary value
representations. This allows us to describe intersections and unions of WFτ,σ(u) (with
respect to τ) by using specific functions with logarithmic type behavior.

Let us comment on another very interesting concept of construction of a large class
of ultradistribution spaces. In [19,21,22] and several other papers the authors consider
sequences of the form k!Mk, where they presume a fair number of conditions on Mk
and discuss in details their relations. For example, consequences of the composition
of ultradifferentiable functions determined by different classes of such sequences are
discussed. Moreover, they consider weighted matrices, that is, a family of sequences of the
form k!Mλ

k , k ∈ N, λ ∈ Λ (partially ordered and directed set), and make the unions, again
considering various properties such as compositions and boundary values. Their analysis
follows the approach of [7,23]. In essence, an old question of ultradistribution theory was
the analysis of unions and intersections of ultradifferentiable function spaces. This is very
well elaborated in quoted papers. The main reason why our classes are not covered by the
quoted papers is the factor h|α|

σ
, σ > 1, in the seminorm (4). For that reason our conditions

on the weight sequence ((̃M.2)′ and (̃M.2) given below) differ from the corresponding
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ones in the quoted papers. As we already explained, our growth rate is not just another
point of view, since the basic facts used in the proofs are related to a new investigations
involved by the Lambert W function. Actually, the precise estimates of our paper can be
used for the further extensions in weighted matrix approach, since the original idea for our
approach is quite different and based on the relation between [ns]! and n!s in the estimate
of derivatives ([ns] means integer value not exceeding ns, s ∈ (0, 1); cf. [1,2]).

The paper is organized as follows: We end the introduction with some notation. In Sec-
tion 2 we introduce the necessary background on the spaces of extended Gevrey functions
and their duals, spaces of ultradistributions. Our main result, Theorem 1, is given in
Section 3. Wave front sets in the framework of our theory are discussed in Section 4. Finally,
in Appendix A we prove a technical result concerning the associated functions Tτ,σ,h(k) and
recall the basic continuity properties of ultradifferentiable operators on extended Gevrey
classes, in a certain sense analogous to stability under the ultradifferentiable operators in
the classical theory.

Notation

We denote by N, Z+, R and C the sets of nonnegative integers, positive integers, real
numbers and complex numbers, respectively. For a multi-index α = (α1, . . . , αd) ∈ Nd,
we write ∂α = ∂α1 . . . ∂αd , Dα = (−i)|α|∂α and |α| = |α1|+ · · ·+ |αd|. The open ball Br(x0)
has radius r > 0 and center at x0 ∈ Rd; ∂z = (∂z1 , . . . , ∂zn) where ∂zj = 1

2 (∂xj + i∂yj),
j = 1, . . . , d, z = x + iy ∈ Cd. By Hartogs’s theorem, f (z), z ∈ Ω, Ω is open in Cd, and is
analytic if it is analytic with respect to every coordinate variable zi.

Throughout the paper we always assume τ > 0 and σ > 1.

2. Test Spaces and Duals

We are interested in Mτ,σ
p , p ∈ N, sequences of positive numbers such that, for some

C > 1, the following conditions are satisfied:

(M.1) (Mτ,σ
p )2 ≤ Mτ,σ

p−1Mτ,σ
p+1, p ∈ N;

(̃M.2) Mτ,σ
p+q ≤ Cpσ+qσ+1M2σ−1τ,σ

p M2σ−1τ,σ
q , p, q ∈ N;

(̃M.2)′ Mτ,σ
p+1 ≤ Cpσ+1Mτ,σ

p , p ∈ N;

(M.3)′
∞

∑
p=1

Mτ,σ
p−1

Mτ,σ
p

< ∞.

We notice that (M.1) and (M.3)′ are usual conditions of logarithmic convexity and

non-quasianalyticity, respectively, and when σ = 1 and τ > 0 the conditions (̃M.2)
′

and

(̃M.2) become the standard conditions of stability under differential and ultradifferential
operators, (M.2)′ and (M.2), respectively (see [5]). In the sequel we consider the sequence
Mτ,σ

p = pτpσ
, p ∈ N, which fulfills the above mentioned conditions (see Lemma 2.2 in [1]).

This particular choice slightly simplifies our exposition. Clearly, by choosing σ = 1 and
τ > 1 we recover the well known Gevrey sequence p!τ .

Recall [4], the associated function related to the sequence pτpσ
is defined by

Tτ,σ,h(k) = sup
p∈N

ln
hpσ

kp

pτpσ , k > 0. (1)

For h = σ = 1 and τ > 1, Tτ,1,1(k) is the associated function of the Gevrey sequence
p!τ .

In the next lemma we derive the precise asymptotic behavior of the function Tτ,σ,h
associated with the sequence pτpσ

. This in turn highlights the essential difference between
Tτ,σ,h and the associated functions determined by Gevrey type sequences.
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We first introduce some notation. The Lambert W function is defined as the inverse
function of zez, z ∈ C, wherefrom

x = W(x)eW(x), x ≥ 0.

We denote its principal (real) branch by W(x), x ≥ 0 (see [24,25]). It is a continuous,
increasing and concave function on [0, ∞), W(0) = 0, W(e) = 1, and W(x) > 0, x > 0.
It can be shown that W can be represented in the form of the absolutely convergent series

W(x) = ln x− ln(ln x) +
∞

∑
k=0

∞

∑
m=1

ckm
(ln(ln x))m

(ln x)k+m , x ≥ x0 > e,

with suitable constants ckm and x0. Thus the following estimates hold:

ln x− ln(ln x) ≤W(x) ≤ ln x− 1
2

ln(ln x), x ≥ e, (2)

with the equality in (2) if and only if x = e.
For given σ > 1, τ, h > 0, let

R(h, k) := h−
σ−1

τ e
σ−1

σ
σ− 1

τσ
ln k = h−

σ
τσ′ e

1
σ′

1
τσ′

ln k, k > e,

where
1
σ
+

1
σ′

= 1, i.e. σ′ =
σ

σ− 1
.

Lemma 1. Let h > 0, and let Tτ,σ,h be given by (1). Then there exist constants B1, B2, b1, b2 > 0
such that

B1 k
b1

(
ln k

ln(ln k)

) 1
σ−1

≤ exp{Tτ,σ,h(k)} ≤ B2 k
b2

(
ln k

ln(ln k)

) 1
σ−1

, k > e.

More precisely, if

c1 =
(σ− 1

τσ

) 1
σ−1

, and c2 = h−
σ−1

τ e
σ−1

σ
σ− 1

τσ
,

then there exist constants A1, A2 > 0 such that

A1 k
1
2

σ−1
σ c1

(
ln k

ln(c2 ln k)

) 1
σ−1

≤ exp{Tτ,σ,h(k)} ≤ A2 k
c1

(
ln k

ln(c2 ln k)

) 1
σ−1

, k > e.

Proof. Lemma 1 can be proved by following the arguments used in the proof of Theo-
rem 2.1 in [4]. There it is shown that for given h > 0, τ > 0 and σ > 1 the following
inequalities hold:

Ãτ,σ,h exp
{( lnk

(2σ−1τW(R(h, k)))
1
σ σ′

)σ′}
≤ eTτ,σ,h(k)

≤ Aτ,σ,h exp
{( lnk

(τσ′W(R(h, k)))
1
σ

)σ′}
, k > e,

for some Aτ,σ,h, Ãτ,σ,h > 0. Moreover, in the view of (2), it follows that

W−
σ′
σ (R(h, k)) (lnk)σ′ �

( ln k
ln(Ch ln k)

) σ′
σ

ln k, k→ ∞,

with Ch := h−
σ−1

τ e
σ−1

σ
σ− 1

τσ
= h−

σ
τσ′ e

1
σ′ (τσ′)−1.
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Details are left for the reader.

We define (following the classical approach [5]):

T∗τ,σ,h(k) = sup
p∈N

ln
hpσ

kp

pp(τpσ−1−1)
, k > 0. (3)

It turns out that T∗τ,σ,h(k) enjoys the same asymptotic behavior as Tτ,σ,h; cf. Lemma A1
(a) in Appendix A. This is another difference between our approach and the classical
ultradistribution theory, where T∗ plays an important role.

Next we recall the definition of spaces Eτ,σ(U) and Dτ,σ(U), where U is an open set
in Rd ([1]).

Let K ⊂⊂ Rd be a regular compact set. Then, Eτ,σ,h(K) is the Banach space of functions
φ ∈ C∞(K) such that

‖φ‖Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σ |α|τ|α|σ

< ∞. (4)

We have

Eτ1,σ1,h1(K) ↪→ Eτ2,σ2,h2(K), 0 < h1 < h2, 0 < τ1 < τ2, 1 < σ1 < σ2,

where ↪→ denotes the strict and dense inclusion.
The set of functions from Eτ,σ,h(K) supported by K is denoted by DK

τ,σ,h . Next,

E{τ,σ}(U) = lim←−
K⊂⊂U

lim−→
h→∞
Eτ,σ,h(K), (5)

E(τ,σ)(U) = lim←−
K⊂⊂U

lim←−
h→0
Eτ,σ,h(K), (6)

D{τ,σ}(U) = lim−→
K⊂⊂U

DK
{τ,σ} = lim−→

K⊂⊂U
( lim−→

h→∞
DK

τ,σ,h) , (7)

D(τ,σ)(U) = lim−→
K⊂⊂U

DK
(τ,σ) = lim−→

K⊂⊂U
(lim←−

h→0
DK

τ,σ,h). (8)

Spaces in (5) and (7) are called Roumieu type spaces, and (6) and (8) are Beurling type
spaces. Note that all the spaces of ultradifferentiable functions defined by Gevrey type
sequences are contained in the corresponding spaces defined above.

For the corresponding spaces of ultradistributions we have:

D′{τ,σ}(U) = lim←−
K⊂⊂U

lim←−
h→0

(DK
τ,σ,h)

′, D′(τ,σ)(U) = lim←−
K⊂⊂U

lim−→
h→∞

(DK
τ,σ,h)

′.

Topological properties of all those spaces are the same as in the case of Beurling and
Roumieu type spaces given in [5].

We will use abbreviated notation τ, σ for {τ, σ} or (τ, σ). Clearly,

D′(U) ↪→ D′τ,σ(U) ↪→ lim←−
t→1
D′t(U),

where D′t(U) = D′t,1(U) denotes the space of Gevrey ultradistributions with index t > 1.
More precisely, if (for σ > 1) we put

D(σ)(U) = lim←−
τ→0
Dτ,σ(U), and D{σ}(U) = lim−→

τ→∞
Dτ,σ(U),

then
D′(U) ↪→ D′{σ}(U) ↪→ D′(σ)(U) ↪→ lim←−

t→1
D′t(U),
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where D′(σ)(U) and D′{σ}(U) are dual spaces of D(σ)(U) and D{σ}(U), respectively.
Thus we are dealing with intermediate spaces between the space of Schwartz distribu-

tions and spaces of Gevrey ultradistributions. In the next section we show the boundary
value result in the given framework. This, however, asks for the use of new techniques.

3. Main Result

The condition (M.2) (also known as the stability under the ultradifferentiable oper-
ators), essential for the boundary value theorems in the framework of ultradistribution

spaces [5,13], is in our approach replaced by the condition (̃M.2). We note that in [19] a
more general condition than (M.2) is considered. In the case of the sequence Mτ,σ

p = pτpσ
,

p ∈ N, the asymptotic behaviour given in Lemma 1 is essentially used to prove our main
result as follows.

Theorem 1. Let σ > 1, U be an open set in Rd, Γ an open cone in Rd and γ > 0. Assume that
F(z), z ∈ Z is an analytic function, where

Z = {z ∈ Cd |Re z ∈ U , Im z ∈ Γ, |Im z| < γ},

and such that

|F(z)| ≤ A|y|
−H
(

ln(1/|y|)
ln(ln(1/|y|))

) 1
σ−1

, z = x + iy ∈ Z,

for some A, H > 0 (resp. for every H > 0 there exists A > 0). Then

F(x + iy)→ F(x + i0), y→ 0, y ∈ Γ, (9)

in D′(σ)(U) (resp. D′{σ}(U)).
More precisely, if

|F(z)| ≤ A exp{T(2σ−1)τ,σ,H(1/|y|)} z = x + iy ∈ Z, (10)

for some A, H > 0 (resp. for every H > 0 there exists A > 0) then (9) holds in D′(τ/2σ−1,σ)(U)

(resp. D′{τ/2σ−1,σ}(U)).

Proof. Let K ⊂⊂ U and ϕ ∈ DK
τ/2σ−1,σ. Moreover, let κ ∈ Dτ/2σ−1,σ(R

d) be such that

supp κ ⊆ B(0, 2), κ = 1 on B(0, 1).
In the sequel we denote mp = pτ((2p)σ−1−1), p ∈ N. Clearly, mp is an increasing

sequence and mp → ∞ as p→ ∞.
Fix h > 0, and let

κα(y) = κ(4hm|α|y), α ∈ Nd, y ∈ Rd.

Note that
supp κα ⊆ {y ∈ Rd | |y| ≤ 1/(2hm|α|)}, (11)

and for j = 1, . . . , d,

supp ∂yj κα ⊆ {y ∈ Rd | 1/(4hm|α|) ≤ |y| ≤ 1/(2hm|α|)}, α ∈ Nd. (12)

Let

Φ(z) = ∑
α∈Nd

∂α ϕ(x)
|α|τ|α|

(iy)ακα(y), z = x + iy ∈ Cd. (13)

Clearly, Φ is a smooth function in R2d and Φ(x) = ϕ(x) for x ∈ K.
Fix Y = (Y1, . . . , Yd) ∈ Γ, Y 6= 0, |Y| < γ, and set

ZY = {x + itY | x ∈ K, t ∈ (0, 1]}. (14)
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In order to use Stoke’s formula (see [13]) we need to estimate Φ and its derivatives on
ZY. To that end we had to adjust the standard technique in a nontrivial manner.

Let us show that there exists Ah > 0 such that

|Φ(z)| ≤ Ah‖ϕ‖E
τ/2σ−1,σ,h

, h > 0, z ∈ ZY. (15)

Note that (11) implies

|tY||α||κα(tY)| ≤
1

(2hm|α|)|α|
=

|α|τ|α|

(2h)|α||α|2σ−1τ|α|σ , t ∈ (0, 1], α ∈ Nd,

and therefore we obtain

|Φ(z)| ≤ ∑
α∈Nd

|∂α ϕ(x)|
|α|τ|α|

|tY|α|κα(tY)| ≤ ∑
α∈Nd

|∂α ϕ(x)|
(2h)|α||α|2σ−1τ|α|σ

≤ ‖ϕ‖E
τ/2σ−1,σ,h ∑

α∈Nd

h|α|
σ |α|(τ/2σ−1)|α|σ

(2h)|α||α|2σ−1τ|α|σ = Ah‖ϕ‖E
τ/2σ−1,σ,h

,

where Ah = ∑
α∈Nd

h|α|
σ−|α|

2|α||α|τ0|α|σ
< ∞ for τ0 = τ(2σ−1 − 1

2σ−1 ) > 0. Hence (15) follows.

Next we estimate ∂zj Φ(z), j ∈ {1, . . . , d}, when z ∈ ZY. More precisely, we show that
for a given h > 0, there exists Bh > 0 such that

|∂zj Φ(z)| ≤ Bh‖ϕ‖E
τ/2σ−1,σ,h

exp{−T(2σ−1)τ,σ,h(1/|tY|)}, z ∈ ZY. (16)

By (11) and (12) it is sufficient to prove (16) for

1/(4hm|α|) ≤ |tY| ≤ 1/(2hm|α|), 0 < t ≤ 1, α ∈ Nd. (17)

Note that for z ∈ ZY we have

∂zj Φ(z) =
1
2

(
∑

α∈Nd

∂α+ej ϕ(x)
|α|τ|α|

i|α|(tY)ακα(tY)

+ ∑
α∈Nd

∂α ϕ(x)
|α|τ|α|

αji|α|+1t|α|Yα−ej κα(tY)

+ ∑
α∈Nd

∂α ϕ(x)
|α|τ|α|

i|α|+1t|α|+1Yα4hm|α| · (∂yj κ)(4hm|α|tY)
)
=

1
2
(S1 + S2 + S3)(z).

We will show that there exists a constant Bh > 0 such that

exp{T(2σ−1)τ,σ,h(1/|tY|)}|S1(z)| ≤ Bh‖ϕ‖E
τ/2σ−1,σ,h

, z ∈ ZY.

The estimates for S2 and S3 can be obtained in a similar way.

Let Ch = C max{h, h2σ−1} where C > 0 is the constant from (̃M.2)′. Using

(p + 1)σ ≤ 2σ−1(pσ + 1), p ∈ N,
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we obtain

h|β|
σ

|tY||β||β|(2σ−1)τ|β|σ |S1(z)| ≤ Ch‖ϕ‖E
τ/2σ−1,σ,h(

∑
α∈Nd

|α|≤|β|

+ ∑
α∈Nd

|α|>|β|

)h|β|
σ
C|α|

σ

h |α|(τ/2σ−1)|α|σ

|β|(2σ−1)τ|β|σ |α|τ|α|
|tY||α|−|β||κα(tY)|

= Ch‖ϕ‖E
τ/2σ−1,σ,h

(I1,β + I2,β), β ∈ Nd, z ∈ ZY.

It remains to show that supβ∈Nd I1,β and supβ∈Nd I2,β are finite.
First we estimate I1,β. Note that for |α| ≤ |β|, the left-hand side in (17) implies

|tY||α|−|β||κα(tY)| ≤ (4hm|α|)
|β|−|α| ≤

(4h)|β|m|β||β|

h|α|m|α||α|

≤ (4h)|β||α|τ|α||β|2σ−1τ|β|σ

h|α||α|2σ−1τ|α|σ , t ∈ (0, 1], α, β ∈ Nd. (18)

Again, when τ0 = τ(2σ−1 − 1
2σ−1 ), by (18) we have

I1,β ≤
(4h)|β|h|β|

σ

|β|(2σ−1−1)τ|β|σ ∑
α∈Nd

C|α|
σ

h
h|α||α|τ0|α|σ

= C′h
(4h)|β|h|β|

σ

|β|(2σ−1−1)τ|β|σ , β ∈ Nd.

Hence, we conclude supβ∈Nd I1,β ≤ C′h exp{T(2σ−1−1)τ,σ,h(4h)} < ∞.
To estimate I2,β we first note that for |α| > |β| the right-hand side in (17) implies

|tY||α−β||κα(tY)| ≤ (1/(2hm|α|))
|α−β| ≤ 1/((2h)|α−β|m|α−β|

|α−β|)

≤ |α|τ|α|

(2h)|α−β||α− β|2σ−1τ|α−β|σ , t ∈ (0, 1], α, β ∈ Nd. (19)

Set C′′h = C max{Ch, C2σ−1

h }. Using (̃M.2), (19) and (A4), for β ∈ Nd, we have

I2,β ≤ ∑
α∈Nd

|α|>|β|

h|β|
σ
C|α|

σ

h |α|(τ/2σ−1)|α|σ

|β|(2σ−1)τ|β|σ (2h)|α−β||α− β|2σ−1τ|α−β|σ

≤ C ∑
α∈Nd

|α|>|β|

h|β|
σ
(C′′h )

|α−β|σ (C′′h )
|β|σ |α− β|τ|α−β|σ |β|τ|β|σ

|β|(2σ−1)τ|β|σ (2h)|α−β||α− β|2σ−1τ|α−β|σ

≤
(C′′h h)|β|

σ

|β|τ(2σ−2)|β|σ C ∑
δ∈Nd

(C′′h )
|δ|σ

(2h)|δ||δ|(2σ−1−1)τ|δ|σ = C′′′h
(C′′h h)|β|

σ

|β|τ(2σ−2)|β|σ .

In particular, supβ∈Nd I2,β ≤ C′′′h exp{T(2σ−2)τ,σ,C′′h h(1)} < ∞.
Now, Stoke’s formula gives

〈F(x + i0), ϕ(x)〉 =
∫

K
F(x + iY)Φ(x + iY)dx

+ 2i
d

∑
j=1

Yj

∫ 1

0

∫
K

∂zj Φ(x + itY)F(x + itY)dtdx, (20)
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and we have used the assumptions in Theorem 1, and inequalities (15) and (16).
Note that for H = h, (10) and (15) imply that there exists Ah > 0 such that

|F(x + iY)Φ(x + iY)| ≤ Ah‖ϕ‖E
τ/2σ−1,σ,h

exp{T(2σ−1)τ,σ,h(1/|Y|)}

= A′h‖ϕ‖E
τ/2σ−1,σ,h

, x ∈ K, (21)

where A′h = Ah exp{T(2σ−1)τ,σ,h(1/|Y|)}.
Moreover, (10) and (16) imply that there exists Bh > 0 such that

|∂zj Φ(z)F(z)| ≤ Bh‖ϕ‖E
τ/2σ−1,σ,h

, 1 ≤ j ≤ d, z ∈ ZY. (22)

Now (20)–(22) imply

|〈F(x + i0), ϕ(x)〉| ≤ B′h‖ϕ‖E
τ/2σ−1,σ,h

,

for suitable constant B′h > 0. This completes the proof of the second part of theorem,
and the first part follows immediately.

Remark 1. In order to show that any ultradistribution f is locally (on a bounded open set U)
the sum of boundary values of analytic functions defined in the corresponding cone domains Γj,
j = 1, . . . , k, one should proceed as in the classical theory. We multiply f by a cutoff test function
κU equal to 1 over U, and obtain f0 = f κU equals f on U. Then we divide Rn \ {0} into regular
non overlapping cones Γj0, j = 1, . . . , k, dual cones of Γj, and define

Fj(z) = 〈 f0(t),
∫

Γj0

exp{2πi(z− t)η}dη〉, z ∈ Rn + iΓj, j = 1, . . . , k.

Now one can get the growth conditions for Fj, j = 1, . . . , k, and show that

f0 =
k

∑
j=1

lim
y→0,y∈Γj

Fj(x + iy), x ∈ Rn.

The details will be given in a separate contribution where we will consider Lp versions of new
ultradistributions spaces similar to the corresponding ones in [11].

4. Wave Front Sets

In this section we analyze wave front sets WFτ,σ(u) related to the classes Eτ,σ(U)
introduced in Section 2. We refer to [2–4,10,20] for properties of WFτ,σ(u) when u is a
Schwartz distribution.

We begin with the definition.

Definition 1. Let τ > 0, σ > 1, U open set in Rd and (x0, ξ0) ∈ U × Rd\{0}. Then for
u ∈ D′{τ,σ}(U) (respectively D′(τ,σ)(U)), (x0, ξ0) 6∈ WF{τ,σ}(u) (resp. (x0, ξ0) 6∈ WF(τ,σ)(u))
if and only if there exists a conic neighborhood Γ of ξ0; a compact neighborhood K of x0; and φ ∈
D{τ,σ}(U) (respectively φ ∈ D(τ,σ)(U)) such that supp φ ⊆ K, φ = 1 on some neighborhood of
x0 and

|φ̂u(ξ)| ≤ A exp{−Tτ,σ,h(|ξ|)}, ξ ∈ Γ ,

for some A, h > 0 (resp. for any h > 0 there exists A > 0).

We will write WFτ,σ(u) for WF(τ,σ)(u) or WF{τ,σ}(u).

Remark 2. Note that WFτ,1(u) = WFτ(u), τ > 1, are Gevrey wave front sets investigated
in [12].
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Moreover (cf. [3]), for 0 < τ1 < τ2 and σ > 1 we have

WF(u) ⊂WFτ2,σ(u) ⊂WFτ1,σ(u) ⊂
⋂
t>1

WFt(u) ⊂WFA(u), u ∈ D′(U),

where WFA denotes the analytic wave front set.
Let

WF{σ}(u) =
⋂

τ>0
WFτ,σ(u), u ∈ D′{σ}(U),

and
WF(σ)(u) =

⋃
τ>0

WFτ,σ(u), u ∈ D′(σ)(U).

For such wave front sets we have the following corollary which is an immediate
consequence of Lemma 1.

Corollary 1. Let u ∈ D′{σ}(U) (resp. D′(σ)(U)), σ > 1. Then (x0, ξ0) 6∈ WF{σ}(u) (resp.
(x0, ξ0) 6∈ WF(σ)(u)) if and only if there exists a conic neighborhood Γ of ξ0; a compact neigh-
borhood K of x0; and φ ∈ D{σ}(U) (resp φ ∈ D(σ)(U)) such that supp φ ⊆ K, φ = 1 on some
neighborhood of x0 and

|φ̂u(ξ)| ≤ A|ξ|
−H
(

ln |ξ|
ln(ln |ξ|)

) 1
σ−1

, ξ ∈ Γ ,

for some A, H > 0 (resp. for any H > 0 there exists A > 0).

We write u(x) = F(x + iΓ 0) if u(x) is obtained as boundary value of the analytic
function F as y→ 0 in Γ. Recall (cf. [9])

Γ0 = {ξ ∈ Rd | y · ξ ≥ 0 for all y ∈ Γ}

denotes the dual cone of Γ.
To conclude the paper we prove the following theorem.

Theorem 2. Let the assumptions of Theorem 1 hold, and let u(x) = F(x + iΓ 0) ∈ D′(σ)(U)

(resp. D′{σ}(U)). Then

WF(σ)(u) ⊆ U × Γ0, (resp. WF{σ}(u) ⊆ U × Γ0).

More precisely, if u(x) = F(x + iΓ 0) ∈ D′{τ/2σ−1,σ}(U) (resp. D′
(τ/2σ−1,σ)(U)) then

WF{(2σ−1)τ,σ}(u) ⊆ U × Γ0, (resp. WF((2σ−1)τ,σ) ⊆ U × Γ0).

Proof. Fix x0 ∈ U and ξ0 6∈ Γ0\{0}. Then there exists Y = (Y1, . . . , Yd) ∈ Γ, |Y| < γ, such
that Y · ξ0 < 0. Moreover, there exists conical neighborhood V of ξ0 and constant γ1 > 0
such that Y · ξ ≤ −γ1|ξ|, for all ξ ∈ V. To see that, note that there exists Br(ξ0) such that
Y · ξ < 0 for all ξ ∈ Br(ξ0). The assertion follows for V = {sξ | s > 0, ξ ∈ Br(ξ0)} and
γ1 = inf

ξ∈V, |ξ|=1
(−Y) · ξ.

Let τ > 0 and τ0 = (2σ − 1)τ. If u(x) = F(x + iΓ 0) ∈ D′
τ/2σ−1,σ(U) as in Theorem 1,

then

|F(z)| ≤ A exp{Tτ0,σ,h1(1/|y|)}, z = x + iy ∈ Z, (23)

for suitable constants A, h1 > 0.
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Choose ϕ ∈ DK
τ/4σ−1,σ such that ϕ = 1 in a neighborhood of x0 and let ZY be as in (14).

Then there exists Φ (see (13)) such that

|Φ(z)| ≤ A1, and |∂zj Φ(z)| ≤ A2 exp{−Tτ0/2σ−1,σ,h2
(1/|tY|)}, (24)

z ∈ ZY, 1 ≤ j ≤ d, for suitable constants A1, A2, h2 > 0.
Note that formula (20) implies

(̂ϕu)(ξ) = 〈u(x)e−ix·ξ , ϕ(x)〉 =
∫

K
F(x + iY)e−i(x+iY)·ξΦ(x + iY)dx

+ 2i
d

∑
j=1

Yj

∫ 1

0

∫
K

∂zj Φ(x + itY)F(x + itY)e−i(x+itY)·ξdtdx, ξ ∈ V. (25)

Using (23) and (24) we have

|F(x + iY)Φ(x + iY)e−i(x+iY)ξ | ≤ B e−γ1|ξ|, x ∈ K, ξ ∈ V, (26)

for some B > 0.
Moreover, for z ∈ ZY and ξ ∈ V we have

|F(z)∂zj Φ(z)e−iz·ξ |

≤ C exp{Tτ0,σ,h1(1/|tY|)− Tτ0/2σ−1,σ,h2
(1/|tY|)− tγ1|ξ|}

≤ C1 exp{−Tτ0,σ,ch1,h2
(1/(tγ1))− tγ1|ξ|} ≤ C2 exp{−Tτ0,σ,c′h1,h2

(|ξ|)}, (27)

for suitable constants C1, C2, ch1,h2 , c′h1,h2
> 0, where we have used inequalities (A2) and (A3).

Finally, using (25)–(27) we obtain

|(̂ϕu)(ξ)| ≤ B1(e−γ1|ξ| + exp{−Tτ0,σ,c′h1,h2
(|ξ|)}) ≤ B2 exp{−Tτ0,σ,c′h1,h2

(|ξ|)},

for ξ ∈ V and for suitable constant B2 > 0. This completes the proof.

5. Conclusions

Various classes of (ultra)distributions are commonly introduced as topological duals
of suitable test function spaces, or as equivalence classes of certain Cauchy sequences
of smooth functions. Another approach is given through their representations as finite
sums of boundary values of analytic functions. We refer to [11] for a history, motivation
and a detailed study of the subject. In this paper, we give a characterization of analytic
functions whose boundary values are elements of intermediate spaces between the spaces
of Schwartz distributions and any space of Gevrey ultradistributions. Test function spaces
for such spaces of ultradistributions are related to the so-called extended Gervey regularity
studied by the authors in [1–4,10,20]. We note that the extended Gevrey classes are different
from any Carleman class which appears to be essential for many calculations, leading to
the use of novel tools and techniques. In particular, we have used asymptotic properties of
the Lambert W function in order to describe appropriate logarithmic growth rate in our
calculations. This tool appears in the theory of new ultradistribution spaces for the first
time (see also [4]). Since we relaxed the condition of stability under ultradifferentiable
operators, to prove our main result, Theorem 1, we had to preform nontrivial changes in
proofs of related results of classical theory (cf. [13]). This methodology could be used in
other situations as well. For example, in future research we will consider the Paley–Wiener
theorem for the new spaces of ultradistributions. This, in turn, will be used to prove the
structure theorems in terms of boundary values of analytic functions; cf. Remark 1. We will
also study other classes of two parameter sequences Mτ,σ

p , apart from pτpσ
, p ∈ N, τ > 0,

σ > 1. This will be done in the spirit of Komastu [5].
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Appendix A

In the following Lemma we study Tτ,σ,h(k) in some detail.

Lemma A1. Let h > 0, and Tτ,σ,h be given by (1), and let T∗τ,σ,h be given by (3). Then

(a) If h1 < h2 then Tτ,σ,h1(k) < Tτ,σ,h2(k), k > 0. Moreover, for any h > 0 there exists H > h
such that

Tτ,σ,h(k) ≤ T∗τ,σ,h(k) ≤ Tτ,σ,H(k), k > 0. (A1)

(b) For h1, h2 > 0 there exists C, ch1,h2 > 0 such that

Tτ,σ,h1(k) + Tτ,σ,h2(k) ≤ Tτ/2σ−1,σ,ch1,h2
(k) + ln C k > 0, (A2)

(c) For every h > 0 there exists H > 0 such that

Tτ,σ,H(l) ≤ Tτ,σ,h(1/k) + kl, k, l > 0. (A3)

Proof. (a) Notice that for arbitrary h > 0,

ln
hpσ

kp

pτpσ ≤ ln
pphpσ

kp

pτpσ ≤ ln
(Ch)pσ

kp

pτpσ , k > 0,

where for the second inequality we use that for every σ > 1 there exists C > 1 such that
pp ≤ Cpσ

, p ∈ N (see the proof of Proposition 2.1. in [1]). Now (A1) follows by putting
H = Ch.

(b) Let h1, h2 > 0. We will use the following simple inequality

pσ + qσ ≤ (p + q)σ ≤ 2σ−1(pσ + qσ), p, q ∈ N. (A4)

Since, hpσ

1 hqσ

2 ≤ (h1 + h2)
pσ+qσ

we conclude that

hpσ

1 hqσ

2 ≤ (h1 + h2)
(p+q)σ

when h1 + h2 ≥ 1

and
hpσ

1 hqσ

2 ≤ (h1 + h2)
(1/2σ−1)(p+q)σ

when 0 < h1 + h2 < 1.

Hence, there exists 0 < cσ ≤ 1 such that

ln
h1

pσ
kp

pτpσ + ln
h2

qσ
kq

qτqσ ≤ ln
(C(h1 + h2)

cσ )(p+q)σ
kp+q

(p + q)(τ/2σ−1)(p+q)σ
+ ln C, p, q ∈ N,

where C > 0 is constant appearing in (̃M.2). Now (A2) follows after taking supremums
over p, q ∈ N.
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(c) Recall (see [6]) that there exists A > 0 such that kl = sup
p∈N

ln
Apkplp

pp . Note that for

every σ > 1 there exists 0 < C < 1 such that
1
pp ≥ Cpσ

, p ∈ N.

Then for arbitrary h > 0 we have

Tτ,σ,h(1/k) + kl = sup
p,q∈N

ln
hpσ

kp pτpσ

Aqkqlq

qq ≥ sup
p,q∈N,p=q

ln
(A′Ch)pσ

lp

pτpσ = Tτ,σ,H(l), k, l > 0,

where A′ = min{1, A}. This proves (A3).

Finally, we discuss certain stability and embedding properties of Eτ,σ(U) given by
(5) and (6). Analogous considerations hold when the spaces Dτ,σ(U) from (7) and (8) are
considered instead.

Let aα ∈ E(τ,σ)(U) (resp. aα ∈ E{τ,σ}(U)), where U is an open set in Rd. Then we
say that

P(x, ∂) =
∞

∑
|α|=0

aα(x)∂α

is an ultradifferential operator of class (τ, σ) (resp. {τ, σ}) on U if for every K ⊂⊂ U there
exists constant L > 0 such that for any h > 0 there exists A > 0 (resp. for every K ⊂⊂ U
there exists h > 0 such that for any L > 0 there exists A > 0) such that

sup
x∈K
|∂βaα(x)| ≤ Ah|β|

σ

|β|τ|β|
σ L|α|

σ

|α|τ2σ−1|α|σ
, α, β ∈ Nd.

We refer to [2] for the proof of the following continuity and embedding properties.

Proposition A1. (a) Let P(x, ∂) be an ultradifferential operator of class (τ, σ) (resp. {τ, σ}).
Then P(x, ∂): Eτ,σ(U) −→ Eτ2σ−1,σ(U) is a continuous linear mapping; the same holds
for

P(x, ∂) : lim−→
τ→∞

Eτ,σ(U) −→ lim−→
τ→∞

Eτ,σ(U).

(b) Let σ1 ≥ 1. Then for every σ2 > σ1

lim−→
τ→∞

Eτ,σ1(U) ↪→ lim←−
τ→0+

Eτ,σ2(U).

(c) If 0 < τ1 < τ2, then

E{τ1,σ}(U) ↪→ E(τ2,σ)(U) ↪→ E{τ2,σ}(U), σ > 1,

and
lim−→

τ→∞
E{τ,σ}(U) = lim−→

τ→∞
E(τ,σ)(U),

lim←−
τ→0+

E{τ,σ}(U) = lim←−
τ→0+

E(τ,σ)(U), σ > 1.

Consequently we obtain that

lim−→
t→∞
Et(U) ↪→ Eτ,σ(U) ↪→ C∞(U), τ > 0, σ > 1,

where Et(U) is Gevrey space with index t > 1.
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