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Abstract: This paper develops a two-country model of intra-industry trade with trade costs that
can be reduced by public investment in an international infrastructure capital, the stock of which
accumulates over time. Depending on the trade costs and international distribution of manufacturing
firms, equilibrium patterns of trade are determined, and national welfare in each country is affected
by these trade patterns. Taking into account the relationship between trade costs and national
welfare, the governments carry out a dynamic game of public investment. We show that the dynamic
equilibrium of the policy game may exhibit history dependency; if the initial stock of international
infrastructure is smaller (larger) than a threshold level, the infrastructure stock decreases (increases)
over time, and the world economy will end up in autarky (two way free trade) in the long run.
We also show that international cooperation is beneficial in the sense that it may enable the world
economy to escape from a “low development trap”.

Keywords: public infrastructure capital; intra-industry trade; differential game; multiple equilibria

1. Introduction

Trade costs, broadly defined as costs incurred in getting a good to a final user other
than the marginal cost of producing the good itself (Anderson and van Wincoop [1]), are
impediments to international trade. These costs include not only tangible ones such as
transportation, communication, and distribution costs, but also intangible ones such as
policy barriers and legal and regulatory costs. Reducing these costs enhances international
trade, and the development of various types of infrastructure plays an important role in
the reduction of the trade costs.

For example, the World Bank has released the Logistics Performance Index (LPI)
every two years since 2012 (https://lpi.worldbank.org/international). The LPI is regarded
as a proxy for trade facilitation performance, measured by the weighted average of the
country scores on six key dimensions (efficiency of customs and border management
clearance, quality of trade and transport infrastructure, ease of arranging competitively
priced shipments, competence and quality of logistics services, ability to track and trace
consignments, and frequency with which shipments reach consignees within scheduled
or expected). Arvis et al. [2] estimated trade costs in 167 countries from 1996 to 2010 and
showed that an improvement of 10% in the LPI is associated with a 16.2% reduction in
trade costs, suggesting that policy initiatives such as improving transport connectivity
and boosting trade facilitation performance contribute to the reduction in trade costs.
As another example, Jacks et al. [3] estimated that from 1870 to 1913, there was an explosive
growth of trade between Asia/Oceania and Europe of 647%, and this growth was mainly
related to reductions in trade costs. The authors stated that this result was influenced by
radical changes at that time such as the expansion of trading networks through aggressive
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marketing strategies in new markets, the development of new shipping lines, and better
internal communications.

Infrastructure development, by reducing trade costs and facilitating trade, is conjec-
tured to enhance welfare in trading economies. Recent studies showed some evidence that
is line with this conjecture. For example, Donaldson [4] used archival data from colonial
India to investigate the impact of India’s vast railroad network and found that railroad
access was associated with a rise in real income of over 16%. Allen and Arkolakis [5]
examined the effect of removing the Interstate Highway System (IHS) in the United States,
which resulted in a decline in welfare of between 1.1 and 1.4%, suggesting that the benefits
of the IHS substantially outweigh the costs. Note, however, that these positive findings of
the welfare gains from infrastructure investment are based on the assumption that infras-
tructure investment is made by a single government; the railroad network in colonial India
was designed and built by the British government in India, and the construction of the IHS
was authorized by the Federal Aid Highway Act of 1956. When considering trade costs
related to transactions between countries, these costs are affected by infrastructure at a
global level, the investment of which is made by different countries engaging in international
trade. In light of national sovereignty, the government in each country makes its own
decision on the infrastructure investment. This means that the decision-making regarding
the infrastructure investment that affects trade costs is characterized as a noncooperative
game, which may lead to inefficient resource allocation. For example, Felbermayr and
Tarasov [6] calibrated the welfare losses caused by the misallocation of infrastructure in the
absence of international cooperation using European data.

This paper develops a theoretical model of a two-country world economy in which
international trade incurs trade costs. We show that the relationship between trade costs
and national welfare in a trading country is not monotone; depending on the level of
trade costs, a reduction in trade costs may not always be welfare-enhancing. Based on this
observation, we consider a dynamic game between national governments that make public
investment in an international infrastructure capital, the stock of which determines trade
costs in such a way that the higher stock leads to lower trade costs. We show that, because
of the non-monotonic relationship between trade costs and national welfare, there can be
complex dynamics in the process of infrastructure accumulation. The complex dynamics
include history-dependent dynamic paths and the indeterminacy of equilibria.

Specifically, in our two countries, there are two production sectors: one sector produces
a homogeneous good under perfect competition, and the other sector produces a continuum
of differentiated goods under imperfect competition. Trade of the differentiated goods
incurs trade costs, and we identify the necessary and sufficient conditions under which each
of the following trade patterns emerge in equilibrium: (i) two way trade in differentiated
goods, (ii) one way trade in differentiated goods, and (iii) no trade. We also show that
free trade with no trade costs is always beneficial to both countries than autarky, but these
countries may prefer autarky to trade if trade costs are high.

After demonstrating the non-monotonic relationship between trade costs and national
welfare, we proceed to a dynamic game analysis of infrastructure investment. We show
that under certain conditions, the dynamic equilibrium of the policy game exhibits history
dependency. Specifically, if the initial stock of international infrastructure is smaller (larger)
than a threshold level, the infrastructure stock decreases (increases) over time, and the
world economy will end up in autarky (two way free trade) in the long run. We also com-
pare the noncooperative equilibrium solution with the optimal solution under international
cooperation and show that international cooperation is beneficial in the sense that it may
enable the world economy to escape from a “low development trap”.

Our study is aimed at one of the contributions in the field of infrastructure and trade
costs. There is an increasing number of studies on international or interregional trade costs
and infrastructure (transportation, communication, institution, etc.). Theoretical models were
analyzed by Bond [7], Hochman et al. [8], Martin and Rodgers [9], Mun and Nakagawa [10],
and Tsubuku [11], and empirical analysis was carried out by Anderson and Marcouiller [12],
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Anderson and Van Wincoop [1], Arvis et al. [2], Francois and Manchin [13], Freund and
Weinhld [14], Jacks et al. [3], and Limão and Venables [15]. Recent studies such as Allen and
Arkolakis [5,16], Bougheas et al. [17,18], Brancaccio et al. [19], Donaldson [4], Fajgelbaum
and Schaal [20], and Felbermayr and Tarasov [6] began with an analysis of formal theoretical
models and then confirmed their theoretical findings with data.

Since our theoretical model considers an accumulation of infrastructure, which has the
property of a public good, this study is also closely related to dynamic models of public
intermediate goods and trade analyzed by McMillan [21], Bougheas et al. [22], and Yanase
and Tawada [23–25]. We consider two countries, in which the national government makes
infrastructure investment, and most of our analysis is devoted to the case of noncooperative
policy making. Thus, our study can also be categorized as a dynamic game analysis of
infrastructure investment, as in Colombo et al. [26], Devereux and Mansoorian [27], Fershtman
and Nitzan [28], Figuières et al. [29], Han et al. [30], and Itaya and Shimomura [31].

Furthermore, our dynamic model reveals complex dynamics, which have a similar
property as the “history versus expectations” model in Krugman [32], Matsuyama [33], and
Fukao and Benabou [34]. The complex dynamics suggests an existence of “Skiba points”
named after Skiba [35]. See also Deissenberg et al. [36], Hartl et al. [37], Oyama [38],
Wagener [39], and Wirl [40] for recent developments.

Section 2 sets up the model of our two country economy with two sectors. We derive
the market equilibrium of our world economy and derive equilibrium welfare in each coun-
try as a function of trade costs. In Section 3, we consider a dynamic game of infrastructure
investment carried by national governments in trading countries In Section 4, we derive the
Nash equilibrium of the dynamic game between completely symmetric countries and dis-
cuss the properties of the equilibrium. We also make a comparison of the Nash equilibrium
solution with an outcome under international cooperation. Section 5 concludes.

2. Model

We consider a world economy consisting of two countries, home and foreign, in which
two types of goods are produced in respective production sectors by employing labor as
an input. One sector is an “agricultural” sector producing a homogeneous good under
a constant-returns technology. The other sector is a manufacturing sector in which a
continuum of firms produces horizontally differentiated goods under increasing returns.
All goods are freely traded between the two countries. However, trade in manufacturing
goods is associated with trade costs. Specifically, we assume that exporting a manufacturing
good to the other country’s market incurs a per-unit trade cost τ, which is symmetric
between countries. τ depends on the stock of an international infrastructure, which is
reduced by public investment in each country, as explained later.

2.1. Preference and Demand

We assume that the utility function of a representative consumer in each country is
quasi-linear and quadratic (Ottaviano et al. [41], Furusawa and Konishi [42]):

u(q(ω), q0; ω ∈ Ω) =
∫

Ω
q(ω)dω− 1− γ

2

∫
Ω

q(ω)2dω− γ

2

(∫
Ω

q(ω)dω

)2
+ q0, (1)

where Ω is the set of all differentiated goods in the world, q(ω) is the consumption of
a differentiated good produced by firm ω, q0 is that of a homogeneous good (assumed
numeraire), and the parameter γ ∈ (0, 1) denotes the degree of substitutability among
differentiated goods so that the higher the parameter γ, the higher the substitutability
among these goods.

The quadratic utility function is an example of utility functions that are not additively
separable and for which the elasticity of substitution is not constant. Zhelobodko et al. [43]
proposed a model of monopolistic competition with general functional forms that exhibit
additive preferences, and their findings on the properties of market equilibrium can hold
true when preferences are given by the quadratic utility.
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The budget constraint of the consumer in each country is given by:∫
ω∈Ω

p(ω)q(ω)dω + q0 = yi + q̄0, i = H, F, (2)

where p(ω) is the price of a differentiated good indexed by ω, yi is the consumer’s income,
and q̄0 is the consumer’s endowment of the numeraire. We assume that q̄0 > 0 is sufficiently
large so that q0 > 0 holds in equilibrium. The household’s income yi consists of wage
income wi and profit shares of the domestic firms minus the lump-sum tax collected by the
government for public investment:

yi = wi +
1
λi

∫
ω∈Ωi

πi(ω)dω− Ti
λi

, (3)

where λi is the measure of consumers in country i, πi(ω) is the profit of a firm producing
the differentiated good ω in country i, Ωi is the set of differentiated goods produced in
country i, and Ti/λi is a lump-sum tax per capita.

The representative consumer maximizes (1) subject to (2). The first-order conditions
for utility maximization are given by:

pii(ω) = 1− (1− γ)qii(ω)− γ
∫

ω∈Ω
q(ω)dω, (4)

pji(ω) = 1− (1− γ)qji(ω)− γ
∫

ω∈Ω
q(ω)dω, (5)

where pii and qii are the price of and demand for, respectively, a differentiated good
produced in country i and consumed domestically and pji and qji are the price of and
demand for, respectively, a differentiated good produced in country j and exported to
country i, i, j = H, F, j 6= i. Let us define the price index in country i as follows:

Pi ≡
∫

ω∈Ωi

pii(ω)dω +
∫

ω∈Ωj

pji(ω)dω,

where Ωj is the set of differentiated goods produced in country j 6= i. We assume that there
is no entry or exit of firms in this industry and that firms are immobile between countries.
Thus, Equations (4) and (5) yield the demand functions as follows:

qii(ω) =
1

1− γ
[1− pii(ω)− γ(1− Pi)], (6)

qji(ω) =
1

1− γ

[
1− pji(ω)− γ(1− Pi)

]
, j 6= i, (7)

i, j = H, F, where we normalize the mass of firms producing the differentiated goods in the
world to unity.

2.2. Firm Behavior

We specify the technology in the agricultural sector as follows: producing the one unit
of homogeneous good requires one unit of labor. Thus, wages are equal to one in both
countries: wH = wF = 1.

The production of differentiated goods exhibits increasing returns to scale. Specifically,
we assume that the production requires f units of labor as a fixed input, and the marginal
cost is normalized to zero. Given that the wage is equal to one and in light of the demand
functions (6) and (7), the operating profit of a firm producing variety ω located in country i
is given by:
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πi(ω) = λi pii(ω)qii(ω) + λj
[
pij(ω)− τ

]
qij(ω)− f

= λi
pii(ω)

1− γ
[1− pii(ω)− γ(1− Pi)] + λj

pij(ω)− τ

1− γ

[
1− pij(ω)− γ(1− Pj)

]
− f . (8)

As mentioned at the beginning of this section, exporting the good requires the trade
cost τ ≥ 0 per unit of export.

We assume that the mass of firms producing the differentiated goods in each country
is a given constant and denoted by si, i = H, F. Under the assumption that the total
mass of firms in the world is normalized to one, we have σH + σF = 1. Since there is a
continuum of firms in the manufacturing sector, there is no strategic interaction among
firms. Thus, each firm determines the prices and outputs of its product in the domestic
and overseas markets so as to maximize (8) subject to the constraint that the demand in
each market is nonnegative, taking the price indices Pi and Pj as given. The prices are
positively dependent on τ, and the price of exported varieties is more elastic than the
domestically supplied varieties when τ changes. This means that if trade costs are too high,
the firms may face zero demand for their exports. Thus, we need to consider the following
four possibilities of production and trade patterns between the two countries (we omit the
variety index ω since all firms in each country face a symmetric cost structure):

Case (i) Two way trade in all varieties (i.e., qHF > 0 and qFH > 0);

Case (ii) One way trade in which only home firms export their varieties to foreign countries
(i.e., qHF > 0 and qFH = 0);

Case (iii) One way trade in which only foreign firms export their varieties to home coun-
tries (i.e., qHF = 0 and qFH > 0);

Case (iv) No firm exports to the other country (i.e., qHF = qFH = 0).

2.3. Market Equilibrium

Let us define A ≡ γ/[2(1− γ)]. It is easily verified that A is increasing and convex
in γ, A → 0 as γ → 0 and A → ∞ as γ → 1. As derived in Appendix A, we obtain the
following equilibrium outputs as a function of τ:

(qHH(τ), qFH(τ)) =


(

1 + AσFτ

2− γ
,

1− (1 + AσH)τ

2− γ

)
, if

1
τ
> 1 + AσH ,(

1
2(1− γ)(1 + AσH)

, 0
)

if
1
τ
≤ 1 + AσH ,

(9)

in the home market and:

(qFF(τ), qHF(τ)) =


(

1 + AσHτ

2− γ
,

1− (1 + AσF)τ

2− γ

)
, if

1
τ
> 1 + AσF,(

1
2(1− γ)(1 + AσF)

, 0
)

if
1
τ
≤ 1 + AσF,

(10)

in the foreign market. From (9) and (10), each of the four cases described in the previous
subsection emerges as follows: Case (i) emerges if 1/τ > max{1 + AσF, 1 + AσH}; Case (ii)
emerges if 1 + AσF < 1/τ ≤ 1 + AσH ; Case (iii) emerges if 1 + AσF ≥ 1/τ > 1 + AσH ;
and Case (iv) emerges if 1/τ < min{1 + AσF, 1 + AσH}. See also Figure 1.



Mathematics 2021, 9, 63 6 of 24

Figure 1. Possible trade patterns.

In Case (i), the demand functions and the first-order conditions for profit maximization
yield pii = (1 − γ)qii and pij − τ = (1 − γ)qij. In Cases (ii) and (iii), the optimality
conditions derive pij − τ = (1 − γ)qij, pii = (1 − γ)/[2(1 − γ)(1 + Aσi)], and qii =
1/[2(1− γ)(1 + Aσi)]. The last two equations imply pii = (1− γ)qii. In Case (iv), qij = 0
holds, and from pii = (1− γ)/[2(1− γ)(1 + Aσi)] and qii = 1/[2(1− γ)(1 + Aσi)], it
follows that pii = (1− γ)qii. Therefore, in all cases, the equilibrium profit of each firm in
country i = H, F can be obtained from (8) as follows:

πi = (1− γ)
(

λiq2
ii + λjq2

ij

)
− f . (11)

Substituting (2), (3), and (11) into (1), we obtain a per-capita utility in country i
as follows:

ui = σiqii + σjqji −
1− γ

2

(
σiq2

ii + σjq2
ji

)
− γ

2
(
σiqii + σjqji

)2
+ yi + q̄0 − σi piiqii − σj pjiqji

= (1− γ)vi(τ) + 1− σi
λi

f − Ti
λi

+ q̄0, (12)

where:

vi(τ) ≡
1
2

[
3σiqii(τ)

2 + σjqji(τ)
2
]
+ A

[
σiqii(τ) + σjqji(τ)

]2
+

λj

λi
σiqij(τ)

2,

and the equilibrium outputs are given by (9) and (10).

Proposition 1. Free trade with no trade costs is always more beneficial to both countries than autarky.

Proof. See Appendix B.

It is clear from (9) and (10) that if τ = 0, the amount of each differentiated good
exported or imported is equal to the amount of that good consumed domestically. Starting
from this situation, suppose an increase in τ. Then, the amount of goods exported and
imported will decrease, causing negative effects on the domestic firms’ profits and house-
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holds’ utility, respectively. Although the consumption of domestically produced goods
and, thus, households’ utility increase in response to an increase in τ, this positive effect is
dominated by the above negative effects. Nevertheless, if τ is sufficiently small, the welfare
loss caused in the presence of trade costs is not so large, and thus, the national welfare
does not fall short of the autarkic level. Therefore, Proposition 1 can be applied to the case
in which τ is not too large. For sufficiently high trade costs, however, a country’s welfare
under trade could be lower than the autarkic welfare.

Theoretical studies have shown that in trade models under imperfect competition, the
relationship between trade costs and national welfare is not monotone and that welfare
under trade with sufficiently high trade costs can fall short of autarkic welfare (Brander
and Krugman [44], Friberg and Ganslandt [45], Fujiwara [46], Gilbert and Oladi [47]).
The properties of the per-capita utility in our model are consistent with those in the
existing studies.

3. Dynamic Game of Infrastructure Investment

The national government in each country, knowing the economic structure described
in the previous section, makes infrastructure investment so as to maximize its national
welfare. We assume that τ is a decreasing function of a stock of infrastructure, S, which has
the property of an international public good: τ = τ(S). Moreover, we specify the function
τ(S) as follows:

τ(S) =

{
τ̄ − χS for 0 ≤ S ≤ Smax,
0 for S ≥ Smax,

(13)

where:
Smax ≡ τ̄

χ
, τ̄ > 0, χ > 0.

Let us denote the investment level of country i’s government at time t by ki(t), i = H, F.
The stock of international infrastructure changes over time according to the following
differential equation:

Ṡ(t) = kH(t) + kF(t)− δS(t), S(0) = S0 > 0, (14)

where δ > 0 is the depreciation rate of the infrastructure stock. If kH = kF = 0, the steady
state stock of infrastructure becomes zero in the long run. In that case, (13) indicates that
the trade cost will be at the highest level, τ̄.

The cost of public investment is assumed to be a convex function of the investment
level, and we specify the cost function to be quadratic, βk2

i /2, where βi > 0 denotes the
efficiency of public investment in country i. The costs of public investment are financed
by a lump-sum tax, and thus, the balanced budget condition of country i’s government is
given by:

βi
2

k2
i = Ti. (15)

The objective function of the government in country i is the discounted sum of the
instantaneous national welfare, defined as the sum of households’ utility, λiui, i = H, F.
From (12) and (15), the objective function is given by:

Vi =
∫ ∞

0
e−ρtλiui(t)dt

=
∫ ∞

0
e−ρt

{
λi

[
(1− γ)vi(τ(S(t))) + 1− σi

λi
f + q̄0

]
− βi

2
ki(t)2

}
dt, (16)

where ρ > 0 denotes the discount rate, assumed to be common to both countries. The gov-
ernment in each country determines the investment trajectory, taking the other govern-
ment’s action as given, to maximize (16) subject to the dynamics of infrastructure (14) and
the constraint that ki(t) must be nonnegative for any t ∈ [0, ∞).
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Let us define the current-value Hamiltonian for the government in country i as follows:

Hi = λi(1− γ)vi(τ(S))−
βi
2

k2
i + θi(kH + kF − δS).

The optimality conditions consist of the first-order condition:

∂Hi
∂ki

= −βiki + θi ≤ 0, ki(−βiki + θi) = 0, ki ≥ 0, (17)

the adjoint equation:

θ̇i = ρθi −
∂Hi
∂S

=

(
ρ + δ−

∂k j

∂S

)
θi + λi(1− γ)χv′i(τ(S)), (18)

where k j is the other country’s investment level, and the transversality condition:

lim
t→∞

e−ρtθi(t)S(t) = 0. (19)

As in the literature on differential-game analysis in economics, we assume two types
of strategies that the governments use. One is an open-loop strategy, in which each
government chooses the whole time path of investments {ki(t)}∞

t=0 at the beginning of the
game. The other is a feedback strategy, in which each government chooses the investment
strategy as a feedback decision rule dependent on the current stock ki(S). We assume
that both countries use the same type of strategies, and moreover, we focus on the case
in which both countries use the open-loop strategies. That is, we assume ∂k j/∂S = 0
in (18). (By contrast, if both countries use the feedback strategies, ∂k j/∂S 6= 0 is assumed.
Han et al. [30] analyzed a model of tax and public input competition within a differential
game framework between two unequally sized countries. In their model, the smaller
country uses a feedback strategy, while the larger country uses an open-loop strategy.).

4. Properties of the Dynamic Equilibrium

In what follows, we focus on the case in which the two countries are completely
symmetric: σH = σF = 1/2 and βH = βF = β, and we also normalize λH = λF = 1.
In light of Figure 1, it is clear that either Case (i), i.e., two way intra-industry trade, or
Case (iv), i.e., autarky, emerges in the market equilibrium.

In the symmetric market equilibrium, the equilibrium outputs (9) and (10) can be
rewritten as:

(qHH , qFH) = (qFF, qHF) =


(

2 + Aτ

2(2− γ)
,

2− (2 + A)τ

2(2− γ)

)
, if

1
τ
> 1 +

A
2

,(
1

(1− γ)(2 + A)
, 0
)

if
1
τ
≤ 1 +

A
2

.
(20)

Since we consider the symmetric equilibrium, henceforth we drop the subscripts, and
v(τ) is presented as:

v(τ) =


1

4(2− γ)2

{
3
4
(2 + Aτ)2 +

3
4
[2− (2 + A)τ]2 + A(2− τ)2

}
if

1
τ
> 1 +

A
2

,

3 + A
4(1− γ)2(2 + A)2 if

1
τ
≤ 1 +

A
2

.
(21)

The properties of v(τ) are described by the following lemma.

Lemma 1. (i) v(τ) is continuous. (ii) v(τ) is strictly convex for τ < τ̃ ≡ 2/(2 + A). (iii) There
exists τ̂ ∈ (0, τ̃) such that v′(τ) < 0 for τ ∈ [0, τ̂) and v′(τ) > 0 for τ ∈ (τ̂, τ̃).
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Proof. (i) Substituting τ = 2/(2 + A) into the upper equation in (21) yields:

v
(

2
2 + A

)
=

(3 + A)(1 + A)2

(2− γ)2(2 + A)2 ,

which is, in light of A = γ/[2(1− γ)], equal to the lower equation in (21). Therefore, v(τ)
is continuous at τ = 2/(2 + A) and, thus, for all τ. (ii) The derivative of v(τ) for τ < τ̃ is:

v′(τ) = −a + bτ, a ≡ 3 + 2A
2(2− γ)2 > 0, b ≡ 3A2 + 8A + 6

4(2− γ)2 > 0. (22)

Therefore, v′′(τ) = b > 0. (iii) At τ = 0, v′(0) = −a < 0 holds. In addition, it
holds that:

lim
τ↑τ̃

v′(τ) =
A(1 + A)

2(2− γ)2(2 + A)
> 0.

Therefore, letting τ̂ ≡ a/b, v(τ) attains its minimum at τ = τ̂.

Figure 2 depicts the graph of v(τ). For 0 ≤ τ < τ̃, there is two way intra-industry
trade in differentiated goods, and for τ ≥ τ̃, the economy is in autarky. Note that, as shown
in Figure 2, trade does not necessarily achieve higher welfare than autarky; for τ ∈ (τ̃′, τ̃),
v(τ) is below the autarkic level, where τ̃′ ≡ [6 + A(6 + A)]τ̃/[6 + A(8 + 3A)] < τ̂.

Figure 2. Graph of v(τ).

The loss from trade in the presence of high trade costs has been demonstrated by
Brander and Krugman [44] in the model of intra-industry trade in homogeneous goods.
Basically, the same mechanism works here. Suppose that the trade cost is at the prohibitive
level (i.e., τ = τ̃), and consider a small decrease in τ. This change in τ induces trade, but
with high trade costs per unit of exports, and thus, the total payment of trade costs is large.
In addition, in light of (9) and (10), a reduction in τ reduces the consumption of domestic
goods, which also reduces welfare. Therefore, starting from the prohibitive trade costs,
opening of international trade is unambiguously harmful to each country.

Before analyzing the noncooperative Nash equilibrium of the dynamic policy game,
we make the following assumption, which means that if S = 0, trade costs are very high,
so that there is no trade.
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Assumption 1.

τ̄ > τ̃ ≡ 2
2 + A

.

For all S ∈ (0, Smax), S = (τ̄ − τ)/χ holds. We define the levels of S that correspond
to the threshold levels of trade cost as follows (see also Figure 3):

Smax ≡ τ̄

χ
> Ŝ ≡ τ̄ − τ̂

χ
> S̃ ≡ τ̄ − τ̃

χ
> 0.

Figure 3. Threshold levels of τ and S.

4.1. Open-Loop Nash Equilibrium

In this subsection, we characterize the open-loop Nash equilibrium of the policy game
between symmetric countries by using a phase diagram in the (S, θ) plane.

4.1.1. The θ̇ = 0 Locus

Let us define “Region I” in the (S, θ) plane as the region such that S ∈
[
0, S̃
]
. Since

τ ≥ τ̃ in Region I, we have v′(τ(S)) = 0, and thus, (18) can be rewritten as θ̇ = (ρ + δ)θ.
Therefore, the θ̇ = 0 locus is the line θ = 0. Above this line, we have θ̇ > 0, and below this
line, we have θ̇ < 0.

Consider next “Region II”, defined as the region such that S ∈
(
S̃, Ŝ
)
. In this region,

we have τ̂ < τ < τ̃, and thus, v′(τ) = bτ − a > bτ̂ − a > 0. Thus, in Region II, θ̇ = (ρ +
δ)θ + (1− γ)χ[b(τ̄ − χS)− a], and θ̇ = 0 iff θ = −(1− γ)χ[b(τ̄ − χS)− a]/(ρ + δ) < 0.
Therefore, the θ̇ = 0 locus in this region is given by the straight-line segment, with θ < 0
and with a positive slope χ2(1− γ)b/(ρ + δ) > 0. Above this line, we have θ̇ > 0, and
below this line, we have θ̇ < 0.

Now, consider “Region III”, defined as the region such that S ∈
[
Ŝ, Smax). In this

region, we have 0 < τ < τ̂, and thus, v′(τ) = bτ − a < 0. Therefore, the locus θ̇ = 0
in Region III is given by the straight-line segment, with θ > 0 and with a positive slope
χ2(1− γ)b/(ρ + δ) > 0. Above this line, we have θ̇ > 0, and below this line, we have
θ̇ < 0.

Finally, consider “Region IV”, defined as the region with S ≥ Smax. In this region,
τ = 0 identically, and thus, V′(S) = −χv′(τ(S)) = 0. Then, we have θ̇ = (ρ + δ)θ, and
thus, the locus θ̇ = 0 is the line θ = 0.
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To sum up, we obtain the following adjoint equation along the symmetric open-loop
Nash equilibrium path:

θ̇ =


(ρ + δ)θ for 0 ≤ S ≤ S̃,
(ρ + δ)θ + (1− γ)χ[b(τ̄ − χS)− a] for S̃ < S < Smax,
(ρ + δ)θ for S ≥ Smax.

(23)

Note that at S = Smax, v(τ(S)) is not differentiable since limS↓Smax v′(τ(S)) = 0 and
limS↑Smax v′(τ(S)) = a. In this case, θ̇ = 0 implies that θ can take any value between zero
and (1− γ)χa/(ρ + δ). With this fact and (23), we obtain the θ̇ = 0 locus as follows:

θ =


0 for 0 ≤ S ≤ S̃,
−(1− γ)χ(bτ̄ − a− bχS)/(ρ + δ) for S̃ < S < Smax,
∀θ ∈ [0, (1− γ)χa/(ρ + δ)] for S = Smax,
0 for S > Smax.

(24)

4.1.2. The Ṡ = 0 Locus

In Region I, under symmetry, (14) implies that Ṡ = 0 iff k = (δ/2)S. In light of
Assumption 2 and the first-order condition (17), this means that the locus Ṡ = 0 in the
(S, θ) plane is a line segment:

θ =
βδ

2
S. (25)

Above this line, we have Ṡ > 0, and below this line, we have Ṡ < 0.
In Regions II, III, and IV, the same argument applies.

4.1.3. Steady States

A steady state is a point in which loci θ̇ = 0 given by (24) and Ṡ = 0 given by
(25) intersect. In particular, if the line θ = (βδ/2)S intersects the line θ = −(1 −
γ)χ(bτ̄ − a− bχS)/(ρ + δ) at a point S ∈

(
Ŝ, Smax), then that point is an interior steady

state stock, which we denote by S∗. (The unique interior steady state comes from the
assumption the cost function of the public investment is quadratic. If we assume instead
that the cost function is given by βkε

i /ε, where ε > 2, we may have multiple steady states.)
A necessary condition for such an intersection is that the slope of the Ṡ = 0 locus is smaller
than the slope of the Ṡ = 0 locus (in Regions II and III):

βδ

2
<

(1− γ)χ2b
ρ + δ

. (26)

However, (26) is not sufficient to ensure that S∗ in Region III. At S = Smax, the Ṡ = 0
locus satisfies θ = (βδ/2)Smax, and the θ̇ = 0 locus in Region III hits the point:

θ = − (1− γ)χ(bτ̄ − a)
ρ + δ

+
(1− γ)χ2b

ρ + δ
Smax.

Note that at S = Ŝ, the Ṡ = 0 locus satisfies θ = (βδ/2)Ŝ > 0, and the θ̇ = 0 locus
satisfies θ = 0. Therefore, if:

βδ

2
Smax < − (1− γ)χ(bτ̄ − a)

ρ + δ
+

(1− γ)χ2b
ρ + δ

Smax

is satisfied, we have S∗ ∈
(
Ŝ, Smax). Since Smax = τ̄/χ, the above condition can be

rewritten as:
βδ

2
<

(1− γ)χ2a
(ρ + δ)τ̄

. (27)
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Note that since τ̂ = a/b < τ̄ and, thus, (1− γ)χ2a/[(ρ + δ)τ̄] < (1− γ)χ2b/(ρ + δ),
(26) is always satisfied if the parameters satisfy (27).

Assumption 2.
βδ

2
<

(1− γ)χ2a
(ρ + δ)τ̄

.

We are now in a position to characterize the interior steady state, the property of
which is described by the following proposition.

Proposition 2. There exists an interior steady state that achieves the stock of international infras-
tructure S∗ ∈ (0, Smax). This steady state is an unstable node (a spiral source) if:

(ρ + 2δ)2

4
> (<)

2(1− γ)χ2b
β

. (28)

Proof. The existence of the interior steady state is obvious from Figure 4. To analyze
stability, let us denote the value for θ at the interior steady state by θ∗ and present a
linearized dynamic system around the steady state (S∗, θ∗):[

θ̇
Ṡ

]
=

[
ρ + δ −(1− γ)χ2b
2/β −δ

][
θ − θ∗

S− S∗

]
. (29)

The determinant of the Jacobian matrix is:

∆ ≡
∣∣∣∣ρ + δ −(1− γ)χ2b

2/β −δ

∣∣∣∣ = −(ρ + δ)δ +
2(1− γ)χ2b

β
,

the sign of which is, in light of (26), positive. Since the trace of the Jacobian matrix is
ρ > 0, the two eigenvalues of the system must have positive real parts, and thus, the
interior steady state is locally unstable. Moreover, the characteristic roots of the system
(29) are

(
ρ +

√
ρ2 − 4∆

)
/2 and

(
ρ−

√
ρ2 − 4∆

)
/2. Thus, if ρ2 − 4∆ > 0 (< 0), which is

equivalent to (28), the two characteristic roots are real (complex), and thus, the interior
steady state is an unstable node (a spiral source). (Note that since (ρ + 2δ)2/4− (ρ + δ)δ =
ρ2/4 > 0, (ρ + 2δ)2/4 > 2(1− γ)χ2b/β can be consistent with Assumption 2.)

Figure 4. Steady states in the symmetric open-loop Nash equilibrium.
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In addition to the interior steady state (S∗, θ∗), there are two corner steady state
solutions: one is (S, θ) = (0, 0), in which the stock of international infrastructure is zero
and there is no trade between two countries, and the other is (S, θ) = (Smax, θmax), in
which there is two way trade in differentiated goods with zero trade costs.

Lemma 2. There exists a unique trajectory in the space (S, θ) that locally converges to the corner
steady state (Smax, θmax).

Proof. Consider any initial stock S0 = Smax − ε for some small positive ε > 0. Then, there
is a continuum of associated possible values θ0 such that:

θ̄(S0) ≡
βδ2

4
(S0)

2 ≥ θ0 ≥ −
(1− γ)χ(bτ̄ − a)

ρ + δ
+

(1− γ)χ2b
ρ + δ

S0 ≡ θ(S0). (30)

The trajectory that passes through the point (S0, θ0) has a negative slope at that point,
given by:

dθ

dS
=

dθ/dt
dS/dt

=
(ρ + δ)θ0 + (1− γ)χ[b(τ̄ − χS0)− a]

2
√

θ0/β− δS0
=

(−)
(+)

< 0.

In light of (30), this slope is zero if θ = θ̄(S0) and is minus infinity if θ0 = θ(S0).
For θ0 ∈ (θ(S0), θ̄(S0)), the closer θ0 is to the upper value θ̄(S0), the flatter the slope is.
Therefore, for given S0, there exists exactly one corresponding θ0 such that the trajectory
passing through (S0, θ0) leads to the steady state (Smax, θmax).

Thus, we can say that the steady state (Smax, θmax) is “locally stable in the saddle-point
sense” for S0 located in some left-hand neighborhood of Smax (i.e., for S0 ∈ (Smax− ε, Smax)
for some small ε > 0).

Lemma 3. For any S0 ∈
(
0, S̃
)
, there is only one trajectory that leads to the trivial steady state

(0, 0), and along that trajectory, it holds that θ(t) = 0 for all t.

Proof. If we associate S0 ∈
(
0, S̃
)

with some θ0 > 0, the trajectory passing through (S0, θ0)
will move the system in the northeast direction, making S grow over time. Similarly, if we
associate S0 ∈

(
0, S̃
)

with some θ0 < 0, the trajectory passing through (S0, θ0) will move
the system in the southwest direction, making θ more and more negative as t increases.

Thus, we can say that the steady state (S, θ) = (0, 0) is also “locally stable in the saddle-
point sense” for S0 located in some right-hand neighborhood of zero (i.e., for S0 ∈ (0, ε) for
some small ε > 0).

Note that the stability properties presented in Lemmas 2 and 3 are those in the
neighborhood of the steady states. Although the analysis of global dynamics would
be possible by solving the model numerically, Proposition 2 suggests some interesting
possibilities.

Suppose that the interior steady state is an unstable node. Then, there can exist
dynamic paths as illustrated in Figure 5. That is, if the initial stock of international in-
frastructure S0 is below S∗, the world economy will converge to the steady state with
a zero stock of infrastructure and no trade (i.e., the origin), and if S0 is above S∗, the
world economy will converge to the steady state with a maximum stock of infrastructure
S = Smax and zero trade cost. (It is easily verified that the Hamiltonian is not concave in S.
This means that the open-loop Nash equilibrium path is not continuous at S∗. Therefore,
the two paths moving towards the corner steady states generally do not pass the unstable
steady state point (S∗, θ∗).) That is, whether the world economy achieves free trade and
the highest welfare is history dependent.



Mathematics 2021, 9, 63 14 of 24

Figure 5. History-dependent dynamics.

Proposition 3. Suppose that (ρ + 2δ)2/4 > 2(1− γ)χ2b/β is satisfied in addition to Assump-
tions 1 and 2. If the initial stock S0 is smaller (larger) than S∗, there can exist a dynamic path along
which the infrastructure stock decreases (increases) over time, and the world economy would end up
in autarky (free trade) in the long run.

In the presence of multiple long run equilibria in a dynamic model, which equilibrium
is actually chosen is a crucial problem. Krugman [32] used a simple dynamic model
with external economies and adjustment costs to examine whether initial conditions (i.e.,
“history”) determine the long run outcome or self-fulfilling prophecy (i.e., “expectations”)
matters. In his model, history will dominate expectations if individuals’ discount rate is
sufficiently large; intuitively, if the future is heavily discounted, individuals will not care
much about the future actions of other individuals, and this will eliminate the possibility
of self-fulfilling prophecies. Our finding, demonstrated in the condition in Proposition 3,
is consistent with Krugman’s [32].

If the interior steady state is a spiral source, dynamic equilibria toward the steady state
can be shown as in Figure 6. Krugman [32] discussed the case in which over some range,
expectations rather than history are decisive and referred to the range of state variables
from which either long run equilibrium can be reached as the “overlap”, and Fukao and
Benabou [34] gave a precise characterization of the overlap. If there is an overlap and if the
initial state is inside it, the economy’s equilibrium dynamics display indeterminacy, and
self-fulfilling expectations can determine the long run outcome.
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Figure 6. Indeterminacy of equilibrium paths.

As mentioned earlier, the Hamiltonian is not concave in S. This means that the saddle-
point path satisfies the necessary conditions for the optimality of each player, but not the
sufficient conditions. This property generates another type of complexity that there may
exist a “Skiba point” (Skiba [35]) S# 6= S∗ such that if S0 < S#, then the player’s optimal
policy is to drive S to zero, while if S0 > S#, then his/her optimal policy is to build up S so
that eventually Smax is reached. The Skiba point generally differs from the unstable steady
state stock S∗ if the unstable steady state (S∗, θ∗) is a spiral source. If a Skiba point exists,
the dynamic equilibrium is again history-dependent; the initial stock of the infrastructure
determines whether the world economy achieves a high level of the infrastructure stock
that facilitates international trade. In order to find a Skiba point, we need to solve for the
value functions corresponding to the stable steady states and find the point at which the
two value functions intersect. As discussed by Deissenberg et al. [36], due to the lack of an
appropriate “local” equation to define Skiba points, these points have to be determined
numerically, and this is left for further research.

4.2. Comparison with the Cooperative Solution

Suppose that home and foreign governments cooperatively determine the public
investment so as to maximize the joint welfare,∫ ∞

0
e−ρt

{
(1− γ)[vH(τ(S(t))) + vF(τ(S(t)))] + 2− 2 f + 2q̄0 −

β

2
kH(t)2 − β

2
kF(t)2

}
dt, (31)

subject to (14). In this subsection, we derive the solution of this dynamic optimization
problem under international cooperation and compare the open-loop Nash equilibrium to
discuss the benefits of cooperative behavior.

The current-value Hamiltonian is defined as follows:

H = (1− γ)[vH(τ(S)) + vF(τ(S))]−
β

2
k2

H −
β

2
k2

F + θ(kH + kF − δS).

The first-order condition for optimal investment and the transversality conditions
correspond to (17) and (19), respectively. The adjoint equation is now:

θ̇ = ρθ − ∂H
∂S

= (ρ + δ)θ + (1− γ)χ
[
v′H(τ(S)) + v′F(τ(S))

]
. (32)

Since the two countries are assumed to be symmetric, we have the same critical values
for τ, that is τ̃ ≡ 2/(2 + A) and τ̂ ≡ a/b defined in (22). The corresponding critical values
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for S are also the same as those in the noncooperative dynamic game. Investigating (32) in
the regions between these critical values, we obtain the θ̇ = 0 locus as follows:

θ =


0 for 0 ≤ S ≤ S̃,
−2(1− γ)χ(bτ̄ − a− bχS)/(ρ + δ) for S̃ < S < Smax,
∀θ ∈ [0, 2(1− γ)χa/(ρ + δ)] for S = Smax,
0 for S > Smax.

(33)

The slope of the θ̇ = 0 locus in the cooperative solution in
(
S̃, Smax) is twice the slope

of the θ̇ = 0 locus in the open-loop Nash equilibrium given by (24).
The Ṡ = 0 locus is given by (25), the same as that in the noncooperative equilibrium.

Thus, the steady state solutions for the infrastructure stock and its shadow price are
determined by (25) and (33). If Assumption 2 is satisfied and so is (26), it is clear that there
is an interior cooperative solution in

(
S̃, Smax), as illustrated in Figure 7. Let us denote the

infrastructure stock at this interior steady state by S∗c . By examining the linearized dynamic
system around the interior steady state, we can verify that this steady state is locally
unstable. In addition to this unstable steady state, there are two steady states, one that
achieves S = 0 and the other that achieves S = Smax, and as in the case of noncooperative
equilibrium, it can be verified that both steady states are local saddle points.

Since the steady state stock levels under the open-loop Nash equilibrium and coopera-
tive solutions are respectively derived as:

S∗ =
2(1− γ)χ(bτ̄ − a)

2(1− γ)bχ2 − βδ(ρ + δ)
and S∗c =

4(1− γ)χ(bτ̄ − a)
4(1− γ)bχ2 − βδ(ρ + δ)

and thus,
S∗

S∗c
=

4(1− γ)bχ2 − βδ(ρ + δ)

4(1− γ)bχ2 − 2βδ(ρ + δ)
> 1,

we have S∗c < S∗.

Figure 7. Comparison of steady states between noncooperative and cooperative solutions.



Mathematics 2021, 9, 63 17 of 24

The linearized dynamic system around the interior steady state (S∗c , θ∗c ) is:[
θ̇
Ṡ

]
=

[
ρ + δ −2(1− γ)χ2b
2/β −δ

][
θ − θ∗c
S− S∗c

]
(34)

and thus, the interior steady state is an unstable node if ρ2 − 4∆c > 0, where:

∆c ≡
4(1− γ)bχ2

β
− (ρ + δ)δ.

Since ∆c > ∆ > 0 if (26) is satisfied, the interior steady state in the open-loop Nash
equilibrium is also an unstable node if ρ2 − 4∆c > 0, or equivalently,

ρ2 > 4
[

4(1− γ)bχ2

β
− (ρ + δ)δ

]
. (35)

Hence, the following proposition can be established.

Proposition 4. Suppose that (35) is satisfied in addition to Assumptions 1 and 2.
(i) If S0 < S∗c , both the open-loop Nash equilibrium and the cooperative solution result in zero stock
of infrastructure and, hence, autarky in the long run.
(ii) If S0 ∈ (S∗c , S∗), the world economy would converge to the autarkic steady state with zero stock
of infrastructure in the noncooperative equilibrium, whereas it can converge to the free trade steady
state with S = Smax in the presence of international cooperation.
(iii) If S0 > S∗, both the open-loop Nash equilibrium and the cooperative solution converge to the
free trade steady state with the stock of infrastructure Smax.

We assume that the stock of infrastructure is an international public good, and thus,
the lack of international cooperation tends to result in under-provision of the public good.
Indeed, studies on the dynamic voluntary provision of public goods have shown that
cooperative behavior leads to a higher steady state stock of infrastructure in comparison
with noncooperative Nash equilibrium (e.g., Fershtman and Nitzan [28]). However, in
the present framework of the model, the maximum steady state level of the infrastructure
stock is Smax, irrespective of whether the countries cooperate or not. Therefore, there is
no disadvantage of a lack of cooperation in the conventional sense if the initial stock of
the infrastructure is sufficiently small or sufficiently large, as demonstrated in (i) and (iii)
of Proposition 4. Nevertheless, international cooperation can be beneficial if the initial
stock of infrastructure is at the moderate level, as demonstrated in Proposition 4 (ii). See
also Figure 8, in which the initial stock S0 is in [S∗c , S∗]. In this case, the open-loop Nash
equilibrium results in zero stock of infrastructure, and thus, the world economy results in
autarky, whereas international cooperation achieves the maximum level of the infrastruc-
ture stock and, thus, free trade. As demonstrated in Proposition 1, the cooperative solution
achieves higher steady state welfare than the Nash equilibrium does. In other words, under
international cooperation, the world economy can escape from a “low development trap”
that would be caused by the noncooperative behavior of infrastructure investment.
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Figure 8. Comparison of steady states between noncooperative and cooperative solutions.

5. Concluding Remarks

In this paper, we analyze a dynamic game of public infrastructure investment for
reducing international trade costs in a two country world economy. We found that, depend-
ing on the trade costs and international distribution of manufacturing firms, the market
equilibrium outcome is either two way intra-industry trade, one way inter-industry trade,
or autarky. The national welfare in each country is affected by these trade patterns, and it
is shown that in the presence of trade costs, free trade is not always beneficial relative to au-
tarky. Because of the non-monotonic relationship between trade costs and national welfare,
the dynamic equilibrium of the policy game turns out to generate the possibility of complex
dynamics in the process of infrastructure accumulation. Specifically, we showed that the
dynamic equilibrium of the policy game may exhibit history dependency in the sense that
the initial stock of international infrastructure determines the subsequent dynamic path
of the world economy including the pattern of international trade. We also compared
the noncooperative equilibrium solution with an optimal solution under international
cooperation on infrastructure investment and showed that the cooperative policy making
may enable the world economy to escape from a “low development trap”.

Our analysis of the complex dynamics of noncooperative equilibrium is closely related
to the existence of a Skiba point, which is analytically difficult to identify. This is because
of the lack of an appropriate local equation to define Skiba points. We may find the Skiba
point by solving the model numerically. In addition, our analysis focused on the open-loop
Nash equilibrium, and it is interesting to show how the Markov-perfect Nash equilibrium
of this policy game will look. Moreover, we focus on the case of symmetric countries
and firms with identical production technologies. Even if we maintain the assumption
of homogeneous firms, allowing for asymmetric countries leads to an analysis that needs
numerical studies. Furthermore, in the case of asymmetric countries, there can be room for
international transfer or taking over the investment by one of the countries. These are left
for future research.
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Appendix A. Derivation of Equilibrium Prices and Outputs

To solve the profit-maximization problem of each firm, let µii ≥ 0 and µij ≥ 0 be the
Kuhn–Tucker multipliers associated with the constraint that the demand in each market is
nonnegative, and define the Lagrangian function as follows:

Li =
λi pii(ω)

1− γ
[1− pii(ω)− γ(1− Pi)] +

λj
[
pij(ω)− τ

]
1− γ

[
1− pij(ω)− γ(1− Pj)

]
− f

+
µii

1− γ
[1− pii(ω)− γ(1− Pi)] +

µij

1− γ

[
1− pij(ω)− γ(1− Pj)

]
The firm chooses pii and pij, taking the price indices Pi and Pj as given. The first-order

conditions with respect to pii are:

λi[1− 2pii(ω)− γ(1− Pi)]− µii = 0 (A1)

and:
µii ≥ 0, 1− pii(ω)− γ(1− Pi) ≥ 0, µii[1− pii(ω)− γ(1− Pi)] = 0, (A2)

and those with respect to pij are:

λj
[
1− 2pij(ω)− γ(1− Pj) + τ

]
− µij = 0 (A3)

and:

µij ≥ 0, 1− pij(ω)− γ(1− Pj) ≥ 0, µij
[
1− pij(ω)− γ(1− Pj)

]
= 0. (A4)

Case (i): Two way trade in all varieties (qHF > 0 and qFH > 0)

In this case, we have µHH = µHF = µFF = µFH = 0, and thus, the first-order
conditions are reduced to:

1− 2pHH(ω)− γ(1− PH) = 0,

1− 2pHF(ω)− γ(1− PF) + τ = 0,

1− 2pFF(ω)− γ(1− PF) = 0,

1− 2pFH(ω)− γ(1− PH) + τ = 0.

Since the price index in each country’s market is rewritten as PH = σH pHH + σF pFH
and PF = σF pFF + σH pHF, the above first-order conditions derive the equilibrium prices
and equilibrium price index as follows. In the home market,

pHH =
1− γ

2− γ
+

γσF
2(2− γ)

τ, pFH =
1− γ

2− γ
+

2− γσH
2(2− γ)

τ, PH =
1− γ

2− γ
+

σF
2− γ

τ (A5)
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holds, and in the foreign market,

pFF =
1− γ

2− γ
+

γσH
2(2− γ)

τ, pHF =
1− γ

2− γ
+

2− γσF
2(2− γ)

τ, PF =
1− γ

2− γ
+

σH
2− γ

τ (A6)

holds.
We must verify if the positive demand conditions are satisfied. Focus on the home

market. Substituting (A5) into the demand function for the home variety, it holds that:

qHH =
1

2− γ

[
1 +

γσF
2(1− γ)

τ

]
,

which is unambiguously positive. By contrast, substituting (A5) into the demand function
for the foreign variety, it holds that:

qFH =
1

2− γ

{
1−

[
1 +

γσH
2(1− γ)

]
τ

}
,

which is positive only if:
1
τ
> 1 +

γσH
2(1− γ)

. (A7)

The equilibrium sales on foreign market can be analogously derived as:

qFF =
1

2− γ

[
1 +

γσH
2(1− γ)

τ

]
, qHF =

1
2− γ

{
1−

[
1 +

γσF
2(1− γ)

]
τ

}
,

and qHF > 0 only if:
1
τ
> 1 +

γσF
2(1− γ)

. (A8)

Case (ii): One way trade in which only Home firms export to Foreign countries (qHF > 0 and
qFH = 0)

In light of (A7) and (A8), this case occurs when:

1 +
γσH

2(1− γ)
≥ 1

τ
> 1 +

γσF
2(1− γ)

.

In this case, µHH = µHF = µFF = 0, but µFH > 0. Thus, the equilibrium solutions for
the variables in the foreign market, i.e., pFF, pHF, PF, qFF, and qHF, are the same as those in
Case (i).

pHH , pFH , PH , and µFH are solved from the following system of equations:

1− 2pHH(ω)− γ(1− PH) = 0,

λF[1− 2pFH(ω)− γ(1− PH) + τ] = µFH ,

1− pFH(ω)− γ(1− PH) = 0,

PH = σH pHH + σF pFH .

Solving the above system of equations, we obtain the equilibrium solutions:

pHH =
1− γ

2(1− γ) + γσH
, pFH =

2(1− γ)

2(1− γ) + γσH
, PH =

(1− γ)(2− σH)

2(1− γ) + γσH
, (A9)

µFH = λF

[
τ − 2(1− γ)

2(1− γ) + γσH

]
.

Note that in the home country’s price index PH , the price of goods produced by foreign
firms, which the home country actually does not consume, is included. In this index, the



Mathematics 2021, 9, 63 21 of 24

price here is the “virtual” consumer price; the choke price for the consumer, the marginal
willingness to pay for the first unit, and no cost of actually importing the good, which may
be higher than the virtual price.

Substituting (A9) into the demand function for the home variety, qHH is obtained.
Therefore, it holds that

qHH =
1

2(1− γ) + γσH
, qFH = 0.

Case (iii): One way trade in which only Foreign firms export to Home countries (qHF = 0 and
qFH > 0)

In light of (A7) and (A8), this case occurs when:

1 +
γσH

2(1− γ)
<

1
τ
≤ 1 +

γσF
2(1− γ)

.

The equilibrium solutions for the variables in the home market, i.e., pHH , pFH , PH ,
qHH , and qFH , are the same as those in Case (i).

The equilibrium prices in the foreign market are derived as follows:

pFF =
1− γ

2(1− γ) + γσF
, pHF =

2(1− γ)

2(1− γ) + γσF
, PF =

(1− γ)(2− σF)

2(1− γ) + γσF
. (A10)

Substituting (A10) into the demand function, the foreign variety is obtained. Thus, it
holds that:

qFF =
1

2(1− γ) + γσF
, qHF = 0.

Case (iv): No firm exports to the other country (qHF = qFH = 0)

If trade costs are too high so that:

1
τ
≤ min

{
1 +

γσH
2(1− γ)

, 1 +
γσF

2(1− γ)

}
holds, the firms in both countries choose not to export to the other country. In this case,
µHH = µFF = 0, but µFH > 0 and µHF > 0.

pHH , pFH , PH , µFH , pFF, pHF, PF, and µHF are solved by the following system
of equations:

1− 2pHH(ω)− γ(1− PH) = 0,

λF[1− 2pFH(ω)− γ(1− PH) + τ] = µFH ,

1− pFH(ω)− γ(1− PH) = 0,

PH = σH pHH + σF pFH ,

1− 2pFF(ω)− γ(1− PF) = 0,

λH [1− 2pHF(ω)− γ(1− PF) + τ] = µHF,

1− pHF(ω)− γ(1− PF) = 0,

PF = σH pFF + σF pHF.

It follows that the equilibrium prices are derived as (A9) in the home market and (A10)
in the foreign market, respectively. Substituting these prices into the demand functions,
the equilibrium outputs are derived as follows:

qHH =
1

2(1− γ) + γσH
, qFH = 0, qFF =

1
2(1− γ) + γσF

, qHF = 0.
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Equilibrium Outputs: Summary

To summarize, the equilibrium outputs are presented as follows:

qii =


1

2− γ

[
1 +

γσj

2(1− γ)
τ

]
, if

1
τ
> 1 +

γσi
2(1− γ)

,

1
2(1− γ) + γσi

if
1
τ
≤ 1 +

γσi
2(1− γ)

,
(A11)

qji =


1

2− γ

{
1−

[
1 +

γσi
2(1− γ)

]
τ

}
, if

1
τ
> 1 +

γσi
2(1− γ)

,

0 if
1
τ
≤ 1 +

γσi
2(1− γ)

,
(A12)

i, j = H, F, j 6= i. Using the definition of A, the equilibrium outputs can be rewritten as (9)
and (10).

Appendix B. Proof of Proposition 1

It suffices to compare vi(0) with vi(τ) in Case (iv). Let us begin with the present vi(τ)
in each case.

Case (i): qHF > 0 and qFH > 0

vH(τ) =
1
2

{
3σH

(
1 + AσFτ

2− γ

)2
+ σF

[
1− (1 + AσH)τ

2− γ

]2
}
+ A

(
1− σFτ

2− γ

)2

+
λF
λH

σH

[
1− (1 + AσF)τ

2− γ

]2

,

vF(τ) =
1
2

{
3σF

(
1 + AσHτ

2− γ

)2
+ σH

[
1− (1 + AσF)τ

2− γ

]2
}
+ A

(
1− σHτ

2− γ

)2

+
λH
λF

σF

[
1− (1 + AσH)τ

2− γ

]2

Case (ii): qHF > 0 and qFH = 0

vH(τ) = σH

{
3
2 + AσH

4(1− γ)2(1 + AσH)2 +
λF
λH

[
1− (1 + AσF)τ

2− γ

]2
}

,

vF(τ) =
1
2

{
3σF

(
1 + AσHτ

2− γ

)2
+ σH

[
1− (1 + AσF)τ

2− γ

]2
}
+ A

(
1− σHτ

2− γ

)2

Case (iii): qHF = 0 and qFH > 0

vH(τ) =
1
2

{
3σH

(
1 + AσFτ

2− γ

)2
+ σF

[
1− (1 + AσH)τ

2− γ

]2
}
+ A

(
1− σFτ

2− γ

)2
,

vF(τ) = σF

{
3
2 + AσF

4(1− γ)2(1 + AσF)2 +
λH
λF

[
1− (1 + AσH)τ

2− γ

]2
}

Case (iv): qHF = qFH = 0

vH(τ) =

(
3
2
+ AσH

)
σH

4(1− γ)2(1 + AσH)2 ,

vF(τ) =

(
3
2
+ AσF

)
σF

4(1− γ)2(1 + AσF)2
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Proof of the proposition

Since the situation of τ = 0 belongs to Case (i), the value of vi(τ) at τ = 0 is

vi(0) =
1

(2− γ)2

[
1
2
+ A +

(
1 +

λj

λi

)
σi

]
.

Since vi(τ) in Case (iv) is given by

vi(τ) =

(
3
2
+ Aσi

)
σi

4(1− γ)2(1 + Aσi)2 ,

it follows that

vi(0)−
(

3
2
+ Aσi

)
σi

4(1− γ)2(1 + Aσi)2

=
1

(2− γ)2

[
1
2
+ A +

(
1 +

λj

λi

)
σi

]
−
(

3
2
+ Aσi

)
(1 + A)2σi

(2− γ)2(1 + Aσi)2

=
1

(2− γ)2

[
1
2
+ A +

(
1 +

λj

λi

)
σi −

(
3
2
+ Aσi

)(
1 + A

1 + Aσi

)2
σi

]

≥ 1
(2− γ)2

[
1
2
+ A + σi −

(
3
2
+ Aσi

)
σi

] (
∵

λj

λi
≥ 0 and

1 + A
1 + Aσi

≥ 1
)

=
1

(2− γ)2

[
1
2
(1− σi) + A(1− σ2)

]
> 0.

This completes the proof.
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