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Abstract: The aim of this study is to evaluate students’ achievements in mathematics using three
machine learning regression methods: classification and regression trees (CART), CART ensembles
and bagging (CART-EB) and multivariate adaptive regression splines (MARS). A novel ensemble
methodology is proposed based on the combination of CART and CART-EB models in a new
ensemble to regress the actual data using MARS. Results of a final exam test, control and home
assignments, and other learning activities to assess students’ knowledge and competencies in applied
mathematics are examined. The exam test combines problems on elements of mathematical analysis,
statistics and a small practical project. The project is the new competence-oriented element, which
requires students to formulate problems themselves, to choose different solutions and to use or not
use specialized software. Initially, empirical data are statistically modeled using six CART and six
CART-EB competing models. The models achieve a goodness-of-fit up to 96% to actual data. The
impact of the examined factors on the students’ success at the final exam is determined. Using the
best of these models and proposed novel ensemble procedure, final MARS models are built that
outperform the other models for predicting the achievements of students in applied mathematics.

Keywords: mathematical competency; assessment; machine learning; classification and regression
tree; CART ensembles and bagging; ensemble model; multivariate adaptive regression splines;
cross-validation

1. Introduction

The quality of mathematics training in higher education is essential for competitive
future professional achievements of students in engineering, software, economics and
other specialties. Alongside traditional teaching and learning methods in mathematics,
increasingly various information technologies, computer- and mobile-based methods are
applied using specialized software, as well as methodologies that involve project and team
work, group discussions, role playing, blended learning etc. [1,2]. In particular, in the
last two decades, an overall vision for teaching mathematical subjects in connection with
their possible practical applications has been actively developed regarding the concept
of competence. The concept is defined in [3] as follows: “Mathematical competency is
understood as the ability to understand, judge, do, and use mathematics in a variety of
intra- and extra-mathematical contexts and situations in which mathematics plays or could
play a role.”

In the context of higher education in engineering [3,4], the following eight key mathe-
matical competencies are formulated: C1—thinking mathematically; C2—reasoning mathe-
matically; C3—posing and solving mathematical problems; C4—modeling mathematically;
C5—representing mathematical entities; C6—handling mathematical symbols and formal-
ism; C7—communicating in, with, and about mathematics; C8—making use of aids and
tools. Based on these competencies, specific teaching and learning methods for mathemat-
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ics and assessment of student knowledge in engineering higher education and assessment
standards were discussed in [5,6], which report the results of statistical modeling of data
from a summative and competency-based assessment test using two machine learning and
data mining techniques—cluster analysis and classification and regression trees (CART).
With the aid of these methods, models are obtained for classification and determination
of dependencies, for predicting student achievements based on the grades from a linear
algebra and analytical geometry test and a short 10 min general mathematical competence
test. A recent paper [7] analyzes the results from a written test of knowledge and the
accompanying self-assessment survey of the examined students for individual problems
using the CART method.

To improve and measure the level of student knowledge and competencies, in litera-
ture both traditional and modern cognitive and statistical approaches are applied. Standard
multivariate statistical methods for the assessment of student knowledge are used, for
example, in [8] to measure mathematical competencies of students upon admission to
university with the help of Rash analysis and other analyses to provide insights into the
measures’ reliability and validity. A methodology for improving communication competen-
cies and skills by learning mathematics in engineering degree specialties is presented with
examples in [9]. Numerous publications use educational data mining (EDM) to establish
classifications and dependencies in heterogeneous types of information related to educa-
tion at all levels. EDM encompasses several research fields, such as data mining, machine
learning (ML) and statistics. A recent review article [10] provides systematic information
and analysis of a large number of studies, which use soft computing methods in EDM and
ML for 2010–2018. The authors emphasize that decision tree, random forest, artificial neural
network (ANN), fuzzy logic, support vector machine (SVM) and genetic/evolutionary
algorithms are a few examples of soft computing approaches that, given enough data, can
successfully deal with uncertainty, qualitatively stated problems and incomplete, imprecise
or even contradictory data sets. These types of methods have a wide scope of application
for research into various problems. Classifying and predicting students’ academic success
are carried out in [11] using several decision tree algorithms. A model is obtained which
successfully predicts 79% of the grades of the students involved. To predict the student’s
performance in the Introduction to Informatics module, the authors in [12] applied six ML
techniques, namely naïve Bayes, decision trees C4.5, NN, instance-based learning, logistic
regression and SVM. It was found that the naïve Bayes algorithm is the most appropriate
technique. In [13], decision trees, artificial neural networks and naïve Bayes models are
built to predict students’ academic performance based on their academic record, personal
data and social information. Decision tree classification and regression models are built and
studied for evaluation of mathematical competencies and student success in [7], achieving
model performance of over 90% for both types of models. The highly effective data mining
and ML technique, random forest (RF), is used in [14] for predicting students’ dropout from
university. In [15], a comparative study of seven predictive models for high school student
performance in mathematics is performed using ML, deep learning and other techniques.
The RF models show the best qualities with over 90% predictive performance. The same
authors apply four ML techniques in [16] and also build hybrid models utilizing principal
component analysis. The best predictive results of up to 98% with minimal relative error
are obtained by RF models. SVM, ANN, fuzzy functions and other types of ML models
are obtained and analyzed in several papers [17–21]. Other examples of ML methods with
applications in education can be found in review papers [22–24]. Recent advances related
to all kinds of ensemble learning algorithms, frameworks and methodologies, and their
applications, can be found in [25].

The aim of this study is to demonstrate a combined traditional and competence-
oriented approach to conducting an examination test in mathematics, as well as to de-
termine factors affecting students’ mathematics achievements and competencies using
powerful predictive ML techniques. A case study is performed with results from the final
exam in the course of Applied Mathematics with the first year students in specialty Busi-
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ness Information Technologies at University of Plovdiv Paisii Hilendarski, Bulgaria, which
also includes as its principal component a small practical project. The main predictors used
in the analyses are students’ grades from ongoing testing during the trimester (control
works and home assignments), attendance at lectures and laboratory practice, as well as
the scores on individual problems in the exam and a small practical project. The modeling
of the empirical data is performed with the methods CART and CART ensembles and
bagging (CART-EB). To improve the result of the prediction of the exam test points, the
best of these models are assembled with MARS.

This is the first time that the CART-EB method is applied for statistical modeling of
data in the field of education. Another contribution is the use of the MARS method to
generate new ensemble models from other ensemble models.

2. Materials and Methods
2.1. Methodology

The main part of each training process in education is the assessment of knowledge
and skills, acquired by the students at a given stage. Depending on the curriculum for
a given mathematical subject, in order to pass the exam, the student attends a certain
number of lectures and laboratory practices, takes intermediate tests (control tests), solves
assignments at home, works on individual or group projects, prepares presentations etc.
Usually this type of control is evaluated with a certain score. This combination of activities
is denoted as preparatory. At the end of their education, the students take a final exam,
which can be written, oral or a combination of the two, or another type of assessment. It
is assumed that the grade from the exam is influenced by the combination of preparatory
activities during the course of the education. In order to apply a competency-oriented
approach to the assessment of acquired knowledge and skills, a small practical-oriented
project is used as a component of the final exam. All preparatory activities and the
components of the exam test can be assigned a certain type of measurement and the
respective dataset can be derived, where the grades are presented as variables. Exam
grades can be considered to be a dependent or target variable, and the rest are predictors.
Potential predictors are, for example, homework grades, course project grades, reports,
gender of the student, the high school he or she graduated from.

Our experimental empirical study sets out to perform the following tasks:

• Construction of the integrated competency-based test for the final exam in mathemat-
ics;

• Construction, analysis and improvement of predictive models for evaluation of stu-
dents’ achievements using ML techniques;

• Application of the models for determining the importance of the preparatory activities
and individual components of the exam to its assessment and, in particular, the
importance of the project.

In essence, these tasks point to finding hidden similarities and patterns in the data
using ML regression-type modeling techniques.

2.2. Machine Learning Methods Used for Statistical Analyses

The term ML (also referred to as learning analytics) denotes a class of methods and
algorithms of artificial intelligence. Usually ML is used for classification and regression
problems, and self-learning is achieved through various algorithms for cross-validation,
improvement of model accuracy and fitting quality. This is achieved by combining features
of computational statistics tools, numerical methods, optimization methods, probability
theory, graph theory etc. ML methods are nonparametric and allow the detection of
nonlinearities and relationships in the data without the need to model them explicitly; that
is, they are data driven. Their core advantage is the generation of numerous distribution free
and robust models, among which the most adequate and optimal model in a given sense
can be selected. The following ML methods are widely used to model educational data:
logistic regression, cluster analysis, decision trees (CART), support vector machines (SVM),
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multivariate adaptive regression splines (MARS), random forest (RF), neural networks
(NN), fuzzy logic and others [10,24].

2.2.1. Classification and Regression Tree (CART)

The CART method [26] is a typical representative of decision tree algorithms and can
be used for classification or regression. The main concept of the method is to classify the
data from the training dataset through a recursive procedure into a binary tree structure
with nodes. At each stage, the cases in the current node, called parent node, can be split
into two child nodes according to the threshold value of some predictor variable. The
predicted value in a terminal node is simply the average of the response values located in
that node [24]. The threshold value is determined by a greedy algorithm, which checks
all variables and their values so that the model minimizes the current selected type of
summary error of the predicted values or other criteria in the terminal nodes of the tree.
The splitting criterion for regression trees can be least squares or least absolute deviation.
Once the tree is constructed, branches that do not contribute to the improvement of the
model are removed and a final pruned tree is obtained. The researcher presets the settings
and hyperparameters to select an optimal model, the type of cross-validation or other ML
procedure, and adjusts the algorithm. For more details, see [27,28].

2.2.2. CART Ensembles and Bagging (CART-EB)

There are cases in which regression CART models may show instability in prediction
under the influence of outliers, unsignificant predictors, predictors with small variation
and others. There may also arise overfitting of the model [29]. Then, it is appropriate
to use an ensemble of trees in combination with a bagging (also known as bootstrap
aggregation) algorithm. There are many ML methods involving these techniques. In the
current study, the algorithm of the CART-EB method was applied using the analysis engine
CART ensembles and bagger of the Salford Predictive Modeler software suite [30]. Some
other implementations in literature can be found in [31,32]. The initial CART tree of the
ensemble is constructed with the entire data sample and all predictors. Then, it is pruned
using 10-fold cross-validation. Bagged trees are built independently one from the other on
bootstrap samples with or without repeated cases. They use a random subset of predictor
variables at each decision split as in the RF algorithm. Ensemble trees can be built as
exploratory (unpruned) maximal trees or they can be pruned by cross-validation. The
case-predicted value is the average of the predictions of all the trees in the ensemble.

2.2.3. Multivariate Adaptive Regression Splines (MARS)

MARS is a nonparametric data mining and machine learning method, developed
in [33]. If the dependent variable (here Exam) is y = y(X) and X = (X1,X2, . . . ,Xp) are p
predictors with dimension n, the regression MARS model ŷ = ŷ[M] has the following form:

ŷ[M] = b0 +
M

∑
j=1

bjBFj(X) (1)

where b0,bj, j = 1,2, . . . ,M are the coefficients in the model, BFj(X) are its basis functions
(BF), M is the number of BFs. The one-dimensional BF is written in the form

BFj(X) = max
Xk

(0, Xk − ck,j) or BFj(X) == max
Xk

(ck,j − Xk, 0), (2)

where the nodes ck,j ∈ Xk are determined by the MARS algorithm. For the nonlinear
interactions, BFs are built as products of other BFs.

The control parameters chosen by the researcher are the maximum number of basis
functions and the maximum number of their multipliers (i.e., degree of interactions) in
BFs. The algorithm involves two steps. The first step starts by setting b0 (for example,
b0 = min

1≤i≤n
yi) and then the model is complemented consistently by BFs of type (2). For each
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model with a given number of BFs, the MARS algorithm defines variables and nodes so as
to minimize a predefined loss function, such as the root mean square error. In the second
step, BFs that do not contribute significantly to the accuracy of the model are removed. For
more details, see [33].

2.2.4. Model Evaluation Metrics

In this study, the best ML models were selected using the highest coefficient of deter-
mination R2 and the minimum values of the root mean square error (RMSE) given by the
expressions

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

, RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

where ŷi and yi stand for model predicted and Exam values, respectively.
The performance of the models was also evaluated using the Theil’s forecast accuracy

coefficient UII [34]:

UI I =

√√√√√√√
n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
yi

2
. (4)

The lower the value of the coefficient, the better the accuracy of the model. The
coefficient UI I is dimensionless and is used to compare models obtained by different
methods, as well as to identify large values. The model is considered to be of good quality
when (4) is less than 1.

When choosing from nested models, the parsimony principle was applied [35].

3. Results
3.1. Test Design

An experiment was conducted with the Applied Mathematics course. The final exam
test combines three main components with problems in mathematical analysis, probability
theory and applied statistics. It includes:

• Problems in math analysis (5 problems), 15 points, 50%;
• Problems in probability (2 problems), 5 points, 17%;
• A small practical project in applied statistics, 10 points, 33%.

The percentage indicates the relative weight within the total number of 30 points
for the entire exam. Unsolved problems are evaluated with 0 points. A sample version
of the exam test with 7 type variations is given in Figure 1. Each student works on an
individual test. It needs to be noted that the problems in the first two components are of
traditional type; these problems have been used in exams in this course of studies over
the last 7–8 years. The added project includes some general instructions without explicitly
stating how the problem is to be solved.

The exam was taken by 68 first-year students in the specialty of Business Information
Technologies at the Faculty of Mathematics and Informatics, University of Plovdiv Paisii
Hilendarski, Plovdiv, Bulgaria. According to the first trimester curriculum, these students
have taken a linear algebra and analytic geometry course, and during the second trimester,
the course in Information Technology for Mathematics, where students are trained to use
Wolfram Mathematica to solve mathematical problems using a computer. The current
course in Applied Mathematics is in the third trimester.

The results of the preliminary activities and the final exam in number of points are
described with the variables: Exam (total exam points, up to 30), Math_An (mathematical
analysis, up to 15), Stat (statistics, up to 5), Project (up to 10), A1_12 (home assignment 1, up
to 12), A2_20 (assignment 2, up to 20), CW1_30 (homework 1, up to 30), CW2_30 (homework
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2, up to 30), Attn_Lect (attendance to lectures, up to 10) and Attn_Labs (attendance to labs,
up to 10).
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3.2. Measurement of Competencies by the Exam Test

Following the recommendations of [4], the experience in [5,36] and with the aid of a
three-dimensional scale, we defined the correspondence between the eight competencies
and the elements of the exam test, as shown in Table 1. Here T1–T5 mean subproblems
A–E in problem 1; S1 and S2 in problem 2; P1–P4, the instructions to the project. It is shown
that all competencies are included with the exception of C7 because the exam is individual
and does not allow for any communication with other students and/or external sources. In
addition, Figure 1 shows that the probability theory problem Stat requires a solution with
pen and paper and does not duplicate the project. As a whole, the project is independent
in terms of curriculum covered and supplements the competencies, which are not included
in the first two test components. The level of solution of the project indicates the degree
to which the students have acquired the necessary knowledge and skills in statistics in
order to solve on their own a complete mathematical problem—from the data, through the
analyses to the interpretation of the results obtained.

It should be noted that the students have solved the project in different ways, with
different methods. Some managed to make only descriptive statistics, with different statis-
tics selected. Other students continued with cluster analysis, factor analysis or principal
component analysis. More often, regression analysis was performed in one-dimensional or
multidimensional case.
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Table 1. Assessments of the level of mathematical competencies in problems from the Exam test 1.

Competency Exam Elements

T1 T2 T3 T4 T5 S1 S2 P1 P2 P3 P4

C1 Thinking mathematically − − − − 0 + + 0 0 0 0
C2 Reasoning mathematically − − 0 − 0 0 0 − 0 0 −
C3 Problem solving 0 0 0 0 + + + 0 0 0 −
C4 Modeling mathematically − − − − − − − + + + 0
C5 Representation 0 0 + + 0 + − − − − −
C6 Symbols and formalism 0 0 0 0 0 − − 0 0 0 −
C7 Communication − − − − − − − − − − −
C8 Aids and tools − 0 − + + − − + + + −

1 The meaning of the signs: +, “very important”; 0, “medium important”; −, “less important”.

3.3. Initial Processing and Analysis of the Data

Descriptive statistics of the variables used in the study are given in Table 2 and the
distributions in the form of box plots with unstandardized data are shown in Figure 2a,b.
Table 2 and Figure 2b show that the mean values of the results for Stat and Project are quite
low, and their median is 0. The reason is because only 31 students, or 45%, worked on the
project. In addition, Table 2 and Figure 2a,b lead us to the conclusion that most of the vari-
ables are not normally distributed (A2_20, CW_30, Stat, Project etc.). This is evidenced by the
relatively high values of the ratios of skewness/std. error of skewness, kurtosis/std. error
of kurtosis, as well as from the box plots. For example, for the target variable Exam we have
the ratios Skewness

Std. Err. Skewneess = 1.14
0.29 = 3.931 > 1.96 and Kurtosis

Std. Err. Kurtosis = 1.85
0.57 = 2.643 > 1.96,

which is an indication for non-normal distribution of the variable. In addition, a one-
sample Kolmogorov–Smirnov test with Lilliefors significance correction was applied,
which reaffirms that Exam did not follow a normal distribution as the calculated p-value is
0.000. Furthermore, the relationships between the variables are hidden and possibly highly
nonlinear.

Table 2. Descriptive statistics of the initial predictors and the target variable.

Statistics Attn_
Lect

Attn_
Labs

A1_
12

A2_
20

CW1_
30

CW2_
30

Math_
An Stat Project Exam

Mean 6.87 5.63 6.65 12.46 10.07 7.88 8.67 1.76 2.48 12.91
Median 8.00 5.00 7.00 15.75 9.25 6.00 8.75 0.00 0.00 12.00

Std. Deviation 3.44 3.11 3.71 6.94 8.35 7.24 3.64 2.234 3.18 4.88
Variance 11.82 9.67 13.75 48.13 69.73 52.46 13.25 4.99 10.12 23.78
Skewness −0.81 0.19 −0.32 −0.90 0.51 0.44 0.12 0.81 0.86 1.14

Std. Error of
Skewness 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

Kurtosis −0.72 −1.38 −0.85 −0.79 −0.68 −1.12 −1.018 −0.91 −0.79 1.85
Std. Error of

Kurtosis 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

Range 10 10 12 19.5 30.0 22 2.0 0.00 10.0 25.0
Minimum 0 0 0 0.0 0.0 0 15.0 7.00 0.0 4.0
Maximum 10 10 12 19.5 30 22 8.7 1.76 10.0 29.0

3.4. Results from the CART Models

Multiple regression trees were built using the CART method. The dependent variable
is Exam and the factors on which its values depend are the remaining nine variables, i.e.,
Math_An, Stat, Project, A1_12, A2_20, CW1_30, CW2_30, Attn_Lect, and Attn_Labs. The
objective was to define which independent factors have the strongest influence on the
Exam and to what extent. Before applying the algorithm, hyperparameters m1 (minimum
cases in parent node) and m2 (minimum cases in child node) were set. Regression tree
procedure on the learn (training) set is carried out using 10-fold cross-validation, which
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is recommended for small samples [27,28]. The least squares method was selected as a
splitting criterion.
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For m1 = 5, m2 = 2 in Figure 3a, a diagram is shown of the relative error of the
generated CART models depending on the number of their terminal nodes. For the case of
m1 = 6, m2 = 3, the scheme with the relative errors of the constructed models is presented
in Figure 3b. Relative errors are calculated as the ratio of the least square error of the
current model divided by the root node error. Models with relative errors distinguished by
one standard error (1 SE) are colored in green. This means that all models in green from
Figure 3a,b can be considered as a set of competing models. From Figure 3a, it is evident
that the model with a minimum relative error of 0.321 has 13 terminal nodes. We denote it
by M1. In addition, two models were analyzed—the M2 model with a minimum number
of 9 nodes and the maximum M3 model with 22 nodes. Besides these, in the same way we
denote the model with a minimum relative error of 0.310 and 11 terminal nodes with M4,
the model with 9 terminal nodes with M5, and the model with 19 terminal nodes with M6,
respectively.

Table 3 contains summary statistics for the competing six CART models M1, M2, . . . ,
M6 that are selected. We compare the two optimal models M1 and M4. Although model M4
has larger constraints of m1 = 6 and m2 = 3, it shows the highest value of R2 test = 0.698,
and the minimum value of RMSE Test = 2.694. At the same time, this model is inferior
to the prediction statistics, especially with the relatively large RMSE = 1.517, which is
16% higher than that of M1. From the first group of “finer” models, M1 is comparable to
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M4 with R2 Test = 0.621 compared to 0.698 for M4 (1%), RMSE Test = 2.743, with a small
difference of 0.049, or less than 2%. The goodness-of-fit R2 Learn = 0.928 of the M1 model is
3% higher than the M4 statistic (0.902). Next, we make a comparison between M1 and M6.
The statistics of these two models are almost identical, but the M6 model is more complex
as it contains 19 terminal nodes compared to the 13 of M1. From the set of competing
models considered, we should reject M2 and M5. This is due to the most unsatisfactory
statistics—the smallest R2 and the largest RMSE Learn of the prediction. Model M3 has a
less favorable relative error compared to M1 (with 4%), outperforming M1 narrowly for the
main indicators (4) by 1 to 9%. Since the M3 model is the most complex, having 22 terminal
nodes, compared to the 13 of M1, we have to apply the parsimony principle [34,35] (see
also Figure 3a). We will further consider CART models M1 and M4. Note that all Theil’s
coefficients are sufficiently small.

Mathematics 2021, 9, x FOR PEER REVIEW 9 of 17 
 

 

nodes and the maximum M3 model with 22 nodes. Besides these, in the same way we 
denote the model with a minimum relative error of 0.310 and 11 terminal nodes with M4, 
the model with 9 terminal nodes with M5, and the model with 19 terminal nodes with M6, 
respectively. 

 

(a) 

 

(b) 

Figure 3. Relative error of the constructed classification and regression tree (CART) models depending on the number of 
terminal nodes: (a) m1 = 5, m2 = 2; (b) m1 = 6, m2 = 3. 

Table 3 contains summary statistics for the competing six CART models M1, M2, …, 
M6 that are selected. We compare the two optimal models M1 and M4. Although model M4 
has larger constraints of m1 = 6 and m2 = 3, it shows the highest value of R2 test = 0.698, 
and the minimum value of RMSE Test = 2.694. At the same time, this model is inferior to 
the prediction statistics, especially with the relatively large RMSE = 1.517, which is 16% 
higher than that of M1. From the first group of “finer” models, M1 is comparable to M4 
with R2 Test = 0.621 compared to 0.698 for M4 (1%), RMSE Test = 2.743, with a small dif-
ference of 0.049, or less than 2%. The goodness-of-fit R2 Learn = 0.928 of the M1 model is 
3% higher than the M4 statistic (0.902). Next, we make a comparison between M1 and M6. 
The statistics of these two models are almost identical, but the M6 model is more complex 
as it contains 19 terminal nodes compared to the 13 of M1. From the set of competing mod-
els considered, we should reject M2 and M5. This is due to the most unsatisfactory statis-
tics—the smallest R2 and the largest RMSE Learn of the prediction. Model M3 has a less 
favorable relative error compared to M1 (with 4%), outperforming M1 narrowly for the 
main indicators (4) by 1 to 9%. Since the M3 model is the most complex, having 22 terminal 
nodes, compared to the 13 of M1, we have to apply the parsimony principle [34,35] (see 
also Figure 3a). We will further consider CART models M1 and M4. Note that all Theil’s 
coefficients are sufficiently small. 

Table 3. Summary statistics of the selected regression CART models for assessment of students’ 
achievements. 

Statistic 
Model 

M1 M2 M3 M4 M5 M6 
Terminal nodes 13 9 22 10 9 19 

m1-m2 5-2 5-2 5-2 6-3 6-3 6-3 

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R
el

at
iv

e 
Er

ro
r

Number of Nodes

0.321

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
el

at
iv

e 
Er

ro
r

Number of Nodes

0.310

Figure 3. Relative error of the constructed classification and regression tree (CART) models depending on the number of
terminal nodes: (a) m1 = 5, m2 = 2; (b) m1 = 6, m2 = 3.

Table 3. Summary statistics of the selected regression CART models for assessment of students’
achievements.

Statistic
Model

M1 M2 M3 M4 M5 M6

Terminal nodes 13 9 22 10 9 19
m1-m2 5-2 5-2 5-2 6-3 6-3 6-3

Relative error 0.321 0.333 0.335 0.310 0.319 0.325
R2, Test 0.621 0.683 0.678 0.698 0.690 0.685

R2, Learn 0.928 0.892 0.940 0.902 0.899 0.929
RMSE, Test 2.743 - - 2.694 - -

RMSE, Learn 1.298 1.588 1.188 1.517 1.616 1.291
Theil’s UII 0.0089 0.0133 0.0074 0.0121 0.0137 0.0088

Table 4 presents the values of the relative importance of the nine factors studied on
the Exam points according to their participation in the exploratory Learn CART trees. Here,
too, stability is clearly visible, with small differences. The largest factor of importance
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(100 relative points) is the Project factor—the points from the exam obtained for solving
the small practical project. The next main factors, in descending order of their relative
importance, are the scores on Math_An (93–95 relative units) and A2_30 (50–54 units).
The points from solving the problems in the Stat statistics have a small impact, within
20–22 relative units. Table 4 also shows that the influence of the predictors obtained in
the chosen optimal model M1 is almost identical to that of model M3, as well as the other
maximal model M6.

Table 4. Relative importance of the initial predictors used in the selected CART models.

Predictors
CART Models

M1 M2 M3 M4 M5 M6

Project 100 100 100 100 100 100
Math_An 95.25 93.76 95.27 93.25 93.08 94.15

A2_20 54.34 50.52 54.59 52.80 50.52 54.17
CW1_30 37.79 35.99 38.63 36.36 35.99 37.97
A1_12 36.02 35.10 36.29 35.29 35.29 36.68

Attn_Labs 34.15 34.27 34.45 34.27 34.27 33.90
CW2_30 22.66 19.72 23.31 22.12 19.72 22.84

Stat 21.74 20.28 21.57 22.04 20.28 21.58
Attn_Lect 6.23 5.03 6.90 6.26 5.03 6.39

The calculation of the coefficients of importance in Table 3 is performed using se-
quential aggregation. At level 0, the mean value of target (Exam) as predicted by the
model is calculated for the entire sample and the RMSE is calculated. At the first split (as
shown in Figure 4), the CART algorithm selected the Math_An as a splitter predictor and its
threshold value is 11.25. After the split, the predictions (mean values) are calculated in both
child nodes along with their RMSEs. The relative improvement of the current accuracy
achieved is calculated against the root, and the value obtained is added to the coefficient of
importance of the predictor. The process is repeated until the tree is built.
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Figure 4 presents the regression tree of model M1 with the splitting variables and
their threshold values at each split. The initial splitting variable at the tree root is Math_An.
The rule for splitting each root case into two is “cases with a value of Math_An <= 11.25
go into the left child node and the rest into the right one”. Here the threshold value is
Math_An = 11.25. At the next (first) level, the splitting variable for both nodes is Project
with the same splitting rule for the cases: “Project <= 4.5” etc. The process which generates
the CART tree M1, shown in Figure 4, is stopped to a depth 5, having 13 terminal nodes,
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marked with a colored square. The value predicted by the model for each case of the given
terminal node is the arithmetical mean of Exam points from the cases classified in that node.

The tree of the M4 model shown in Figure 5 has an identical structure as the tree of
the M1 model from Figure 4. An almost complete match is observed; therefore, stability of
the CART models is obtained.
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The predicted scores obtained from the six CART models in Table 4 were statistically
examined with a Wilcoxon signed rank test for paired samples. It was found that all
Wilcoxon signed rank tests were statistically unsignificant and the differences of each two
models had symmetrical distributions. This is an indicator that the models do not differ
significantly from each other.

Figure 6 shows the actual versus predicted values of the Exam obtained by model M1.
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Figure 7 presents line plots of Exam and model predictions obtained by models M1
and E7. For both models there are larger differences with Exam at the highest values.
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3.5. Results from the CART Ensembles and Bagged Models

The same values of the hyperparameters as in the CART models were used in the
construction of the CART-EB models. For the minimum number of cases in a parent
node (m1) and the minimum number of cases in a child node (m2), two options were
set: 5-2 and 6-3, respectively. All trees in the ensemble were trained with 10-fold cross-
validation. Bagged trees were built with repeated cases. Due to the small sample size
(n = 68), the ensembles were built with 10, 15, 20 and 25 trees. The family of these models
are denoted by E1, E2, . . . , E8. Of these, the first group E1, E2 and E3 are built using values
of the hyperparameters m1-m2 equal to, respectively, 6-3. For the second group with the
remaining models, these parameters are 5-2. The first models of each group, namely E1
and E4, are initial CART trees. Table 5 presents the statistical indicators obtained for these
models. The models E2 and E3 show relatively low R2 Test and the largest errors RMSE Test
and Learn. Also the corresponding Theil’s coefficients are larger than those of the models
with m1 = 5 and m2 = 2. Model E6 has the best test statistics with R2 Test (0.922) and RMSE
Test (1.838). The next model E7 has the best indicators for the training sample—R2 Learn
(0.961) and RMSE Learn (1.278). As the number of terminal nodes increases, the statistics
become less favorable, as seen from those of model E8. Therefore, in further analysis we
consider the models E6 and E7. The predictive properties of model E7 are illustrated in
Figures 6b and 7.

Table 5. Summary statistics of regression CART ensembles and bagged models for assessment of students’ achievements.

Statistic
CART Ensembles and Bagged Model

E1
Initial
Tree

E2 E3

E4
Initial
Tree

E5 E6 E7 E8

Number of trees - 10 15 - 10 15 20 25
m1-m2 6-3 6-3 6-3 5-2 5-2 5-2 5-2 5-2
R2, Test 0.845 0.886 0.897 0.845 0.916 0.922 0.883 0.807

R2, Learn - 0.923 0.942 - 0.936 0.953 0.961 0.945
RMSE, Test 2.400 2.222 2.055 2.368 2.092 1.838 1.908 2.302

RMSE, Learn - 1.724 1.583 - 1.610 1.370 1.278 1.368
Theil’s UII - 0.0121 0.0132 - 0.0177 0.0104 0.0086 0.0098

The results of the Wilcoxon signed rank tests show that the built CART-EB models do
not differ significantly from each other.



Mathematics 2021, 9, 62 13 of 17

3.6. Combination of CART and CART Ensembles and Bagged Models Using MARS

To improve the quality of prediction, MARS regression models of the dependent
variable Exam were built using the selected four best models M1, M4, E6 and E7 as predictors.
Due to the almost linear behavior of the Exam curve, only a linear MARS method was
applied. The MARS models generated are denoted by MM1, MM2 and MM3. Furthermore,
by finding the importance of individual regression trees models, it can be determined
which of them has the best predictive properties. The models were trained with 10-fold
cross-validation. The summary statistics of the models obtained are presented in Table 6.

Table 6. Summary statistics of regression of MARS models built using CART and CART-EB models
as predictors 1.

Statistic
MARS Model

MM1 MM2 MM3

Predictors M1, E7 M1, E6, E7 M1, M4, E6, E7
Number of BFs 4 5 6

Variable importance 2 23, 100 42, 29, 100 97, 0, 55, 100
R2 Test 0.960 0.956 0.954

R2 Learn 0.972 0.974 0.978
GCV R2 0.958 0.960 0.960

RMSE Test 0.966 1.021 1.035
RMSE Learn 0.804 0.749 0.726

Theil’s UII 0.0034 0.0029 0.0028
1 GCV R2 stands for general cross-validation R2 [30,33]. 2 Variable importance corresponds to the
order of the predictors in column 4.

The statistics of the built models in Table 6 are almost the same. Using all four models
(see MM3), we found that the greatest influence was exerted by model E7 (100 relative units),
followed by M1 (97 units), E6 (55 units) and M4 (0 units). By successively reducing the
predictors, the other models are obtained. We choose the simplest MM1 model for optimal.
MM1 outperforms the separately taken CART and CART-EB models in all evaluation
metrics from (4). The MM1 model has the form

Êxam = 3.64249 + 1.52178 ∗ BF1 + 0.275286 ∗ BF3− 0.843117 ∗ BF5 + 0.321376 ∗ BF7,
BF1 = max(0, E7 − 5.605), BF3 = max(0, E7 − 14.1583),

BF5 = max(0, E7 − 9.5625), BF7 = max(0, M1 − 10.1875).
(5)

Figure 8 shows the scatter plot of the actual Exam values versus MM1 model predictions.
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4. Discussion with Conclusions

This study presents, models and analyzes results from a competency-based exam in
applied mathematics together with the results of preparatory academic activities. They are
modeled using three ML methods—CART, CART ensembles and bagging, and MARS.

The CART method was first applied. Table 3 indicates that the six CART models
selected have high goodness-of-fit indicators with coefficients of determination R2 over
90% and RMSE around 1.5, or within 5%. As optimal models, we selected M1 and M4. M1
shows R2 = 0.928, RMSE = 1.298, as well as a small value of the Theil’s forecast accuracy
coefficient UI I = 0.0089.

The CART models allow for determining the influence of individual educational
components on exam results for the specific subject of applied mathematics. The importance
of the predictors in the M1 model in relative units is Project (100), Math_An (95), A2_20 (54),
CW1_30 (38), A1_12 (36) etc., as presented in Table 4. Therefore, the solution of the project
and the tasks of mathematical analysis determine to the greatest extent the achievements of
the students. Other important factors are the grades from the second homework, the first
control test etc. The influence of students’ success with problem 2 in statistics (variable Stat)
reaches only about 22% relative weight. This indicates an unsatisfactory level of theoretical
knowledge in probabilities and statistics. Using these results with Table 1 of competencies,
it is apparent that following a reduction of competencies for the two problems from Stat,
the exam test can be assessed mainly by the acquisition of competencies with the most “+”
and “0”. These competencies are C3, C4, C6 and C8.

The data were also modeled using the CART ensembles and bagging method. Six
CART-EB models were built. The analysis of these models showed that the best statistical
evaluation indicators were for models E6 and E7, with 15 and 20 trees in the ensemble,
respectively. As an optimal model, E7 achieved R2 = 0.961, RMSE = 1.278, as well as
a Theil’s accuracy coefficient UI I = 0.0086. Although the EB models do not derive the
influence of individual predictors, they serve as confirmatory and complementary to CART
models for predicting student achievement.

The idea arose to combine the four best models—two CART and two CART-EB models
for regression of the dependent variable Exam. A linear MARS method was applied. Three
models with predictors M1, M4, E6 and E7 were built. The models showed very close
goodness-of-fit indices. The final model selected, MM1, used M1 and E7 and achieved
R2 = 0.972, RMSE = 0.804 and Theil’s accuracy coefficient UI I = 0.0034. This model
showed a significant improvement in the prediction of the lowest and highest exam scores.

The results obtained are comparable to those obtained by us in [6], where regression-
type CART models were constructed to predict the final exam results in linear algebra and
analytical geometry for students in two other specialties at the same university, using a
short mathematical competency test and mid-term test results. In [6], the models reached
to fit the actual data with R2 = 93%. The results obtained here are also similar to those
in [11,13].

It should be noted that for the first time the CART ensemble and bagging method for
data from education was applied. In addition, for the first time, combining the predictions
of the individual competing models using the MARS method is used. The combined MARS
models obtained exceed the qualities of the predictors included in all statistical indicators.

Essentially, the approach for modeling the data we present consists of two consecutive
steps: (1) building regression trees and regression trees ensemble models (Sections 3.4 and 3.5)
using the initial predictors, and (2) building MARS models (Section 3.6), where the predictors
are the resulting variables with values predicted in step (1). Based on this, we can formulate
some advantages and potential capabilities of this approach, namely:

• As part of the family of regression trees, the CART and CART-EB methods we use
can successfully deal with uncertainty, qualitatively stated problems and incomplete,
imprecise or even contradictory data sets, as stated in [10]. These can process both
nominal and numerical data, handle multidimensional and multivariety data, easily
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identify patterns and nonlinear complex relationships between the predictors, thus
facilitating the interpretation of models.

• At step (1), the variable importance of initial predictors in models is assessed directly,
which allows us to ignore/screen unsignificant predictors. This would be especially
useful in the case of a large number of predictors for reducing the dimensionality of
the problem.

• At step (2), numerical-type data are used, enabling the implementation of the MARS
method, whereby it is combined with the predictions from (1). In particular, the results
of our study showed that MARS models improve the predictions of the smallest and
largest values of the target variable, including its outliers. In this manner, it is possible
to eliminate or reduce the effect of this type of flaw, typical for all ensemble methods.

• The importance of the models from step (1), used as predictors, is determined with the
help of MARS in step (2). In this manner, the best regression trees model is identified.
Indirectly, if it determines the influence of the initial predictors, additional useful
information may be obtained to interpret the overall statistical analysis.

In addition to this, the proposed research method has several limitations. The models
can be built if at least 50 data records are available. Furthermore, the CART-EB algorithm
used does not deduce the relative importance of the predictors in the model, which makes
any direct interpretation of the results difficult. Another disadvantage typical for all ML
methods is that results depend to a certain degree on accuracy criterion, variable and model
selection.

The proposed methods and models in this study can be used to direct and improve
exam tests for students in subsequent courses, making changes at the tutor’s discretion.
Changes can be made both in the educational content, tests and the academic programs,
and the management of other basic factors that influence grades, as determined using the
models. This approach promises to find hidden relationships between factors contributing
to learning and teaching, and also benefits tutors/authorities by making predictions and
helping them make better decisions. Future research can be planned in this regard. By
applying the approach we propose, another crucial practical issue for further research is
determining the factors and predicting which students may drop out.

We can conclude that the use of small practical projects as a competency-oriented
approach and combined with the application of powerful ML methods for processing the
data set related to the learning process are effective for assessment of students’ knowledge
and competencies in mathematics.
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