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Abstract: In this paper, we compare the predictions on the market liquidity in crypto and fiat curren-
cies between two traditional time series methods, the autoregressive moving average (ARMA) and
the generalized autoregressive conditional heteroskedasticity (GARCH), and the machine learning
algorithm called the k-nearest neighbor (KNN) approach. We measure market liquidity as the log
rates of bid-ask spreads in a sample of three cryptocurrencies (Bitcoin, Ethereum, and Ripple) and
16 major fiat currencies from 9 February 2018 to 8 February 2019. We find that the KNN approach is
better suited for capturing the market liquidity in a cryptocurrency in the short-term than the ARMA
and GARCH models maybe due to the complexity of the microstructure of the market. Considering
traditional time series models, we find that ARMA models perform well when estimating the liquid-
ity of fiat currencies in developed markets, whereas GARCH models do the same for fiat currencies
in emerging markets. Nevertheless, our results show that the KNN approach can better predict the
log rates of the bid-ask spreads of crypto and fiat currencies than ARMA and GARCH models.

Keywords: Bitcoin; digital money; Ethereum; investor behavior; Ripple; time series analysis

1. Introduction

The popularity of cryptocurrency with financial intermediaries came about as a conse-
quence of the perceived failures of the monetary authorities in the global financial crisis of
2008 and the European sovereign debt crisis during 2010 to 2013 [1]. In terms of monetary
attributes, Yermack [2] explains that Bitcoin does not behave similarly to a fiat currency
according to the criteria widely used by economists. For instance, some economists view
the inelasticity in the supply of cryptocurrency as an advantage but some view it as
a disadvantage.

Cryptocurrencies are digital coins not issued by any government or legal entity [3];
they only use cryptography and a clever system to regulate their supply, control trading
operations and avoid frauds. The transactions are recorded digitally in a blockchain as an
accounting system [4]. Digital currencies are based on peer-to-peer authentication with
rules to determine the amount and condition produced [5]. These currencies plan the
peer-to-peer network as a set of nodes in a self-organizing connected network. Hayes [6]
has identified that the relative differences in the cost of mining on the margin determine
the prices of cryptocurrencies. The most popular cryptocurrency is Bitcoin, which was
developed in the seminal paper of Nakamoto [7]. Bitcoin, Ethereum, and Ripple are the
main cryptocurrencies capitalized by the market as reported by Blas [8].

Conversely, Dwyer [5] reports that governments create and certify fiat currencies that
are used by all. In terms of networks, this is similar to a client–server model in which one
server receives requests from clients and responds to them. The server ensures the data
precision of whatever information it provides. The issuer designs a fiat currency to hinder
counterfeiting and enforces laws that make counterfeiting a crime.
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What are the most important challenges in the cryptocurrency market? Encrybit [9],
a cryptocurrency exchange platform, conducted a survey among 1108 traders between 23
April and 30 April 2018 and identified the three biggest problems in the cryptocurrency
market: lack of security (40%), high trading fees (37%), and lack of liquidity (36%). The
first problem deals with more sophisticated hackers who endanger the exchange platforms.
The second problem arises because many exchanges split their trading fees into two
separate fees in which the maker fee is higher than the taker fee because the former adds
liquidity to the market. The third problem is price manipulation and high volatility in
which brokers do not place orders or execute them on time.

Crook [10] argues that the illiquidity problem needs to be solved in order to democ-
ratize access to the cryptocurrency market, make it more efficient, and avoid perverse
incentives from the different players. Jiang et al. [11] make a bibliometric research of 918 pa-
pers published between 2009 and 2019 about the cryptocurrency market and conclude that
there was a shift in the main topic from technological to economic. Furthermore, the most
important economic topic is explaining and forecasting the volatility in the cryptocurrency
market. The most common statistical models that studies use to explain or predict market
volatility are parametric such as the GARCH-type family.

The literature related to the liquidity of the cryptocurrency market is even more recent
than the literature related to its volatility and has different strands: market microstructure
explanations [12], the relation between liquidity and volatility [13,14], the factors that affect
market liquidity [15,16], and how to measure liquidity in the cryptocurrency market [17].

None of the above strands have tried to explain or predict the liquidity in the cryp-
tocurrency market. Furthermore, given the microstructure complexity of this liquidity,
we assert that the use of nonparametric models would be better for predicting it. In this
sense, we find that the k-nearest neighbor (KNN) approach, which is a supervised machine
learning algorithm, is better suited to predict the liquidity of the cryptocurrency market
than a classical linear model such as the autoregressive moving average (ARMA) model or
a nonlinear model such as the generalized autoregressive conditional heteroskedasticity
(GARCH) that are intensively used to predict volatility.

Although there have been several investors’ clampdown events on cryptocurrency
trading due to market news, these pieces of news are later incorporated into prices due
to the short-term memory of Bitcoin returns that exhibit short term momentum and re-
versals [18]. It is important to clarify that the mechanism through which news may be
added into cryptocurrency prices is short-term for cryptocurrencies’ returns, but long-
term for cryptocurrencies returns’ volatility. Nevertheless, liquidity is at the bottom of
the explanation.

Khuntia and Pattanayak [19] present an event history in the Bitcoin market from
January 2015–June 2018 and suggest that these events impact the trading volume and the
long-memory in volatility of bitcoin returns. Furthermore, Phillip et al. [20] found that
slower transacted cryptocurrencies, such as Bitcoin, have less long memory, whereas faster
transacted coins, such as Ripple display more long memory. In other words, the day-to-day
volatility correlation (long memory in return volatility) is dependent on completion times
and therefore liquidity.

Thus, the main objective of this study is to determine the best model for predicting the
short-term log rates of the bid-ask spreads in the three biggest cryptocurrencies—Bitcoin,
Ripple, and Ethereum—and in the 16 major fiat currencies listed by Bloomberg. Conse-
quently, our research question is the following: Is the KNN approach a better predictor
of the short-term liquidity of cryptocurrencies than classical time-series models? To the
best of our knowledge, there is no other study that has addressed this question, and given
the importance of market liquidity, we argue that it is necessary to find better ways to
assess the liquidity of the cryptocurrency market (long-term memory in the cryptocurrency
market liquidity is beyond the scope of our study).

This article is organized into five sections. In Section 2, we examine the literature on liq-
uidity. Sections 3–5 present the methodology, results, and discussion of the study, respectively.
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2. Literature Review

According to Jiang et al. [11], the research trend of the last decade in the published
papers related to cryptocurrency has changed from a technological perspective to an
economic one. Specifically, their focus has been to try to explain the volatility of cryptocur-
rencies with traditional statistical models such as generalized autoregressive conditional
heteroskedasticity model (GARCH) and its derivations.

Financial time series, as Ruppert [21] mentions, often exhibit volatility clustering
in assets returns, where periods of high volatility and periods of low volatility could be
present, i.e., time-varying volatility is more common than constant volatility. In this sense,
Nelson [22] comments that GARCH models elegantly capture the volatility and this feature
accounts for both their theoretical appeal and their empirical success. Thus, as Venter
and Maré [23] argue, the GARCH model has become increasingly popular among both
academics and practitioners for modelling time-varying volatility in financial time series
analysis, including cryptocurrencies.

GARCH-type models are actually used not only for examining mean returns but also
a volatility return transmission within the VAR-GARCH model; for example, Loverta and
Lopez [24] focus on credit default swap (CDS) spreads as a directly observable market
indicator of default risk within the VAR-BEKK-GARCH framework.

Kyriazis et al. [25] study the volatility of the three most highly capitalized digital
currencies (Bitcoin, Ethereum, and Ripple) during a bearish market and find that during
distressed times, no possibilities for hedging exist between the majority of cryptocurrencies
and the three major ones. Walther et al. [26] use the GARCH-MIDAS framework to identify
drivers of cryptocurrency volatility and find that the global real economic activity provides
superior volatility predictions for both bull and bear markets. Acereda et al. [27] study the
expected shortfall of the main cryptocurrencies and find that the best results come from
using a NGARCH.

Fakhfekh and Jeribi [28] model the volatility of 16 cryptocurrencies and find that
the TGARCH was the best specification, whereas Cerqueti et al. [29] find that relaxing
the normality assumption and considering skewed distributions, such as a skewed non-
Gaussian GARCH models, yield better predictions for the cryptocurrencies’ volatility.
One of the most comprehensive studies about the usefulness of GARCH-type models
for forecasting Bitcoin’s volatility is the one by Köchling et al. [30]. Interestingly, the
authors find that most GARCH-type models have equal predictive ability and that some
specifications are outperformed on a regular basis.

In the last two years, several authors have focused their attention on cryptocurren-
cies’ liquidity. Stenfors [31] defines the bid-ask spread as a bonus that is paid to market
makers for standing ready to absorb the risk borne by others “immediately” and that the
spread is closely connected to market liquidity. For the case of fiat exchange rate markets,
Stenfors [31] uses the spread as a proxy, whereas Dyhrberg et al. [12] use it for the case of
cryptocurrency markets. Kim [32] finds that Bitcoin markets have bid-ask spreads that are
approximately 2% lower than the main fiat currencies due to lower transaction costs.

Furthermore, there is a strong relation between the volatility and liquidity of the cryp-
tocurrency market. Wei [13] shows that volatility decreases as liquidity increases in cryp-
tocurrencies and that there is no sign of an illiquidity premium. Będowska-Sójka et al. [14]
obtain a contrasting result in that high volatility in the cryptocurrency market attracts new in-
vestors and that this attraction causes an increase in the market liquidity. Brauneis et al. [15]
and Scharnowski [16] show that the liquidity of cryptocurrencies depends specifically on
the volatility of their returns, the dollar trading volume, and the number of transactions
and that general financial market variables have no influence. Brauneis et al. [15] show that
a universal best measure for the liquidity of cryptocurrencies does not exist yet because it
depends on the application.

There is also research related to the long-term memory of cryptocurrencies returns’
volatility, where the long memory describes the high order correlation structure of a series.
Fakhfekha and Jeribi [28] studied sixteen of the most popular cryptocurrencies with five
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GARCH-type models to predict long-term memory in cryptocurrencies returns’ volatility
and found the TGARCH with double exponential distribution to be the best model.

Lahmiri et al. [33] studied the nonlinear patterns of volatility in seven Bitcoin markets.
They investigate the fractional long-range dependence in conjunction with the potential
inherent stochasticity of volatility time series under four diverse distributional assumptions
and found the existence of long memory in Bitcoin market volatility, irrespectively of
distributional inference. Hence, in explaining long memory in cryptocurrencies returns’
volatility it is useful to consider Markov-Switching Multifractal Models (MSM) or a sort
of hybrid model between pure parametric models and non-parametric ones, such as the
Fractionally Integrated GARCH model.

Finally, research has shifted towards non-parametric models to forecast cryptocur-
rencies returns’ volatility. Khaldi et al. [34] compared different type-GARCH models and
Artificial Neural Networks (ANN) models in an attempt to forecast the Bitcoin returns’
volatility. They found that a type of ANN (the Multilayer Perceptron-MLP) outperformed all
the parametric and nonparametric models, but it was only effective in short-term forecasting.

The previous review clearly finds that the most important economic concern in the
cryptocurrency market has been its volatility, but now the focus is starting to shift to
its liquidity. Nevertheless, so far there has been no attempt to predict this short-term
liquidity. Furthermore, there is no consensus on what the best method is for predicting the
market volatility (beyond a type of hybrid or a non-parametric model), nor what the best
measure is for predicting liquidity, but it is possible to use the bid-ask spread as a measure
of liquidity and a non-parametric model. Moreover, although there is a strong relation
between volatility and liquidity, there is no consensus on the direction of the relation or
whether all factors that affect this relation are within the market network.

3. Methodology
3.1. Data and Hypothesis

The study is motived by empirical evidence based on the idea that even though
cryptocurrencies exhibit similar features of fiat currencies their market structure is funda-
mentally different, as is noted by Dyhrberg et al. [12]. Furthermore, Saadah and Whafa [35]
pointed out that cryptocurrencies are the most fluctuating product on the market and their
high volatility makes liquidity prediction difficult. Therefore, modeling cryptocurrency
prediction using classical time series methods coupled with the scarcity of a reliable data
source could be a challenge. In this sense, KNN algorithm has been applied as a fundamen-
tal prediction technique when there is little or no prior knowledge about the distribution
of the data [36]. Due to the complexity of the market microstructure in crypto and fiat
currencies, we test whether nonparametric machine learning, such as the KNN approach,
is better suited for predicting short-term liquidity in the cryptocurrency market rather than
parametric time-series models that studies have widely used to predict volatility. Hence,
we propose the following hypothesis based on Gandal and Halaburda [4], Stenfors [31],
Kim [32], and Katsiampa [37].

Hypothesis 1. The nonparametric KNN approach is a better method to predict the short-term
liquidity of crypto and fiat currencies than classical ARMA and GARCH models.

The data are the log rates of the daily closing bid-ask spreads from 9 February 2018 to
8 February 2019, for a total of 259 observations for each of the 19 currencies in the study.
The log rates were calculated by taking the logarithm of the USD price ratio of the spreads
for each currency.

The sample comprises three cryptocurrencies (Bitcoin, Ethereum, and Ripple) and
16 major fiat currencies: the Australian dollar, Brazilian real, British pound, Canadian
dollar, Danish krone, euro, Japanese yen, Mexican peso, New Zealand dollar, Norwegian
krone, Singaporean dollar, South African rand, South Korean won, Swedish krona, Swiss
franc, and Taiwanese dollar. The data are publicly available on the Bloomberg database.
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3.2. ARMA and GARCH Models

First, we used the augmented Dickey–Fuller (ADF) statistic to test for the presence
of a unit root to rigorously verify the nonstationary nature of the log rates of the bid-ask
spreads, {Xt} with t = 1, . . . , n. If the null hypothesis of the presence of a unit root is
rejected, then the stationarity autoregressive is guaranteed at least in the mean [38].

Once we applied the ADF test, we continued to analyze the ARMA model pro-
posed by Box and Jenkins [39]. The generalized ARMA(p,q) model that includes both the
p-autoregressive and the q-moving average terms is represented as follows:

∅(L)Xt = δ + θ(L)εt (1)

∅(L)Xt = θ(L)εt for δ = 0

where ∅ and θ are the parameters for the autoregressive and moving average models,
respectively, such as ∅(L) = 1−∅1L−∅2L2 − . . .−∅pLp and θ(L) = 1− θ1L− θ2L2 −
. . .− θqLq; L is the delay operator, and the value of its exponent indicates the order of the
delay that means LsXt = Xt−s, ∀s ≥ 0; δ is the constant parameter; and εt is the residuals
with εt ∼ N

(
0, σ2).

We used the Schwarz criterion (SC) developed by Schwarz [40] that penalizes the in-
clusion of a greater number of parameters compared with the Akaike Information Criterion
(AIC) proposed by Akaike [41] and therefore avoids errors in the estimation of models with
large numbers of parameters. For ARMA models, Koehler and Murphree [42] confirms in
an empirical study that the SC is a better criterion than AIC and validates the results of
others that the AIC will overfit the data. To select the best ARMA(p,q), we used the model
with the lowest SC. Second, we applied the GARCH(p,q) model proposed by Bollerslev [43]
that considers the dependence of the conditional variance (σ2

t ) on the past squared residuals
of the model (ξ2

t−j, j = 1, . . . , p) and the past values of the variance (σ2
t−k, k = 1, . . . , q) for

the {Xt} time series. In this context, the modeling of the conditional mean and conditional
variance is governed by the following:

Xt = Xt−1 + ξt (2)

ξt = N
(

0, σ2
t

)
σ2

t = α0 + ∑p
j=1 αjξ

2
t−j + ∑q

k=1 δkσ2
t−k

Zt =
ξt

σt

where p is the time delay parameter of the squared residuals; q is the time delay parameter
of the past values of the variance; α0, αj with j = 1, . . . , p and δk with k = 1, . . . , q are
the estimated coefficients; and Zt represents the standardized residuals with Zt ∼ N(0, 1).
To select the parameters p, q, we also applied the SC, which has been shown to exhibit a
higher degree of accuracy in identifying the true data generating process than AIC [44].

3.3. Nearest Neighbor Method

Fix and Hodges [45] introduced the nearest neighbor rule as a non-parametric method
for pattern classification. Later, Cover and Hart [46] formalized mathematically the method.
As a nonparametric method, in the KNN algorithm no explicit assumptions about the
underlying data distribution are needed. The KNN besides a classification tool is also used
as forecasting technique that considers the spatial correlation between the points of a phase
space to improve short-term prediction.

Bajo-Rubio et al. [47] apply the KNN to the foreign exchange market to indicate the
potential utility not only as a tool for the prediction of the daily exchange rate but also for
the rules of purchase or sales in the technical analysis. Fernández-Rodríguez et al. [48]
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state that the basic idea behind these predictors is that pieces of the time series in the past
might resemble pieces in the future.

The KNN algorithm used in this study can be explained following the next steps from
Finkenstädt and Kuhbier [49], and Arroyo and Maté [50]:

(1) The time series considered, {Xt}, is transformed into a series of d-dimensional vectors:

Xd,τ
t =

(
Xt, Xt−τ , . . . , Xt−(d−1)τ

)
t = 1, . . . , n

(3)

where d,τ ∈ N with d being the number of lags and τ being the delay parameter.
In the KNN forecasting algorithm, d and τ are pre-determined parameters.

(2) To simplify, we shall only consider the case of τ = 1, then the resulting time series of

vectors is denoted by
{

Xd
t

}
, with t = d, . . . , n, which represents a vector of d consecu-

tive observations that can be characterized as a point in d -dimensional space:

Xd
t = (Xt, Xt−1, . . . , Xt−d+1)

t = 1, . . . , n
(4)

These d-dimensional vectors are often called d-histories, whereas the d-dimensional
space is referred to as the phase space of time series.

(3) The distance between the last vector, also called focal, Xd
n = (Xn, Xn−1, . . . , Xn−d+1)

and each vector in the time series
{

Xd
t

}
with t = d, . . . , n− 1 is computed. The dis-

tance used in this study is the sum over all dimensions of the absolute difference
between the values of the cases (Xd

n and Xd
t with t = d, . . . , n − 1) also called the

Manhattan distance or city block metric.

D
(

Xd
t , Xd

n

)
= ∑n−1

t=d

∣∣∣Xd
t − Xd

n

∣∣∣ (5)

(4) The k vector closest to Xd
n is selected and denoted by Xd

T1, Xd
T2, . . . , Xd

Tk. The k param-
eter is also pre-determined using a criteria selection, generally the k with the lowest
sum of squares residuals (SSRs).

(5) Given the k neighboring vectors Xd
T1, Xd

T2, . . . , Xd
Tk; their subsequent values,

Xd
T1+1, Xd

T2+1, . . . , Xd
Tk+1, are averaged to obtain the forecast, Xn+1.

Xn+1 =
∑Tk

T=T1 Xd
T+1

Tk
(6)

Thus, the KNN searches for segments with similar dynamic behavior and uses them
to produce the forecast. In this sense, the future short-term evolution of the time series will
then be calculated using the historical patterns. To compare the above time-series methods
and select the best model, we calculated the average of the sum-of-squares residual (SSR)
for the ARMA, GARCH, and KNN methods. The selected model had the lowest SSR.

4. Results
4.1. Descriptive Statistics

Table 1 lists the main descriptive statistics of the depreciation rates of crypto and
fiat currencies. Practically all currencies appreciate versus the USD during the time span
considered in this study, but the greatest appreciations occur for the cryptocurrencies. The
highest kurtosis and volatility values are quantified in the cryptocurrencies and emerging
market currencies, such as the Brazilian real and Mexican peso.
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Table 1. Depreciation rates, descriptive statistics.

Currency
Mean a SD a Skewness a Kurtosis a

% Rank b % Rank b Value Rank b Value Rank b

Brazilian real −0.049% 15 0.973% 05 0.697 02 3.242 01
Ripple c −0.342% 18 6.355% 01 0.737 01 2.170 02
Ethereum c −0.737% 19 6.066% 02 0.308 04 2.063 03
Bitcoin c −0.315% 17 4.181% 03 −0.345 18 1.597 04
Mexican peso −0.004% 02 0.785% 06 −0.398 19 1.478 05
New Zealand dollar −0.026% 08 0.537% 09 0.081 08 1.120 06
Danish krone −0.031% 11 0.437% 13 −0.260 16 0.803 07
British pound −0.028% 09 0.498% 12 0.028 09 0.780 08
Euro −0.030% 10 0.436% 14 −0.249 15 0.643 09
Swedish krona −0.051% 16 0.585% 07 0.223 05 0.602 10
Japanese yen −0.004% 01 0.391% 16 0.025 10 0.514 11
Australian dollar −0.036% 13 0.553% 08 0.003 11 0.435 12
South Korean won −0.009% 04 0.501% 11 0.092 07 0.389 13
Taiwanese dollar −0.018% 05 0.270% 18 0.187 06 0.384 14
Swiss franc −0.026% 07 0.378% 17 −0.112 13 0.294 15
Norwegian krone −0.033% 12 0.523% 10 −0.137 14 0.143 16
Singaporean dollar −0.008% 03 0.265% 19 −0.020 12 0.099 17
Canadian dollar −0.020% 06 0.426% 15 0.341 03 0.067 18
South African rand −0.043% 14 1.029% 04 −0.283 17 −0.045 19

Notes: a Depreciation rates are calculated as the first logarithmic difference of the last prices. Prices are based on U.S. dollars. b Statistics are
ordered from highest to lowest, and numbers in each rank’s column represent the place in the list of currencies. c Cryptocurrency. Source:
Own elaboration with Eviews7 and data from Bloomberg.

However, if we consider the log rates of the bid-ask spreads (see Table 2), the results
are mixed. Bitcoin and the main emerging currencies have lower log rates and volatilities
than Ripple and Ethereum, but all the cryptocurrencies of the sample are situated in the
lowest kurtosis values, which indicate fewer outliers.

Table 2. Bid-ask spread rate (log-transformation), descriptive statistics.

Currency
Mean SD Skewness Kurtosis

% Rank a % Rank a Value Rank a Value Rank a

Mexican peso 0.097% 10 0.090% 10 6.895 03 74.027 01
Singaporean dollar 0.049% 12 0.125% 05 7.413 02 67.219 02
South Korean won 0.208% 02 0.333% 01 7.653 01 60.429 03
South African rand 0.299% 01 0.232% 02 3.635 04 17.463 04
Brazilian real 0.047% 14 0.056% 12 3.060 05 14.781 05
New Zealand dollar 0.192% 03 0.177% 03 2.836 06 13.686 06
Swedish krona 0.110% 08 0.081% 11 2.550 07 9.588 07
Japanese yen 0.024% 19 0.023% 19 2.356 10 7.302 08
Canadian dollar 0.045% 15 0.045% 15 2.548 08 7.232 09
Swiss franc 0.055% 11 0.053% 13 2.430 09 6.807 10
British pound 0.105% 09 0.107% 08 2.284 11 6.206 11
Euro 0.038% 17 0.037% 18 1.990 12 4.188 12
Ethereum b 0.134% 06 0.108% 07 1.870 13 4.099 13
Norwegian krone 0.169% 05 0.120% 06 1.732 14 3.860 14
Australian dollar 0.114% 07 0.095% 09 1.548 15 2.264 15
Bitcoin b 0.049% 13 0.040% 17 1.302 16 2.167 16
Danish krone 0.042% 16 0.048% 14 1.125 18 1.363 17
Ripple b 0.181% 04 0.133% 04 1.135 17 0.912 18
Taiwanese dollar 0.037% 18 0.042% 16 0.877 19 −0.246 19

Notes: a Statistics are ordered from highest to lowest and numbers in each rank’s column represent the place in the list of currencies. b

Cryptocurrency. Source: Own elaboration with Eviews7 and data from Bloomberg.
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4.2. ARMA Models

Table 3 presents the ADF test. This test rejects the null hypothesis of the presence of
unit roots in all cases, which means the series is stationary, at least for the mean; thus, the
ARMA models can be applied. The research generally uses the Ljung–Box test to validate
the ARMA models. This test can confirm the null hypothesis that the residuals of the
model do not present a linear correlation. However, it does not allow for a distinction
between random and nonlinear dependence. Therefore, we consider the Brock, Dechert,
and Scheinkman (BDS) test to detect the presence of nonlinear dependence [51].

Table 3. Augmented Dickey–Fuller test and ARMA(p,q) model.

Currency ADF a ARMA(p,q) b Dim2 c Dim3 c Dim4 c Dim5 c

Canadian dollar f −4.949 7,2 0.009 d 0.009 d 0.008 d 0.006 d

British pound f −2.940 5,8 0.003 d 0.002 d −0.002 d −0.006 d

Ethereum −3.725 5,7 0.014 0.020 0.026 0.030
Australian dollar −4.024 5,7 0.011 e 0.019 0.023 0.020 e

Euro f −4.023 5,5 0.007 d 0.003 d 0.004 d −0.001 d

Japanese yen −3.993 5,5 0.014 0.017 d 0.019 d 0.015 d

Danish krone −4.881 5,5 0.012 0.018 0.026 0.027
Mexican peso −4.424 5,5 0.002 d 0.014 d 0.025 0.027
South African rand f −4.908 5,4 0.002 d −0.001 d −0.010 d −0.016 d

Swedish krona −5.232 5,4 0.034 0.044 0.039 0.036
Norwegian krone −4.298 5,4 0.018 0.032 0.036 0.036
Swiss franc f −4.260 5,0 0.014 e 0.018 d 0.017 d 0.014 d

New Zealand dollar f −4.910 4,5 0.009 d 0.011 d 0.008 d 0.005 d

Bitcoin −12.554 3,2 0.008 e 0.018 0.022 0.025
Taiwanese dollar f −13.999 2,2 0.008 d 0.009 d 0.009 d 0.010 d

Brazilian real −8.028 1,2 0.007 d 0.014 d 0.021 e 0.034
Ripple −2.913 1,1 0.016 0.033 0.039 0.042
Singaporean dollar f −16.508 1,0 −0.015 d −0.017 d −0.017 d −0.020 d

South Korean won −16.017 0,1 −0.014 d −0.030 e −0.041 −0.034 e

Notes: a ADF: Augmented Dickey–Fuller test statistic. b ARMA(p,q): Parameter p for the autoregressive model; table is ordered from
highest to lowest p, followed by the parameter q for the moving average model. c Dim#: BDS statistic for dimension # from residuals.
d H0:BDS = 0 is not rejected (5% significance, bootstrap probabilities). e H0:BDS = 0 is not rejected (1% significance, bootstrap probabilities).
f There is no evidence to reject the hypothesis that the residuals of the model are iid (BDS test). Source: Own elaboration with Eviews7 and
data from Bloomberg.

Eight currencies could be estimated through a linear stochastic model such as the
ARMA, as there was no evidence to reject the hypothesis that the residuals of the model
are an independently and identically distributed (iid) series: Canadian dollar, British
pound, euro, South African rand, Swiss franc, New Zealand dollar, Taiwanese dollar, and
Singaporean dollar. In addition, six of them had complex models with parameters p and q
above five. If we compare these results with Table 1, none of these currencies are among
the first five currencies with the highest kurtosis.

4.3. GARCH Models

The GARCH(p,q) method was also applied, and in the case of cryptocurrencies, the
GARCH(1,1) model was the best because it had the lower SC for a range of p and q from
one to three. For this reason and to compare the estimated coefficients between currencies,
Table 4 shows the results of the GARCH(1,1) models. The coefficient that was estimated
for the lagged square residuals indicates the sudden changes in the conditional variance
in response to strong changes in the unexpected component or unexpected news. In this
sense, cryptocurrencies and emerging market currencies, such as the Mexican peso and
Brazilian real, show higher values for these coefficients than do the euro or British pound.
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Table 4. GARCH(1,1).

Currency
ARCH a GARCH b

Dim2 d Dim3 d Dim4 d Dim5 d

Coeff. Rank c Coeff. Rank c

New Zealand dollar −0.022 18 1.014 01 −0.010 e −0.023 f −0.030 f −0.033
South Korean won g 0.041 10 1.013 02 0.000 e 0.000 e −0.001 e −0.001 e

British pound g 0.031 13 0.939 03 −0.002 e −0.012 e −0.026 f −0.032 f

Swiss franc g 0.037 11 0.936 04 0.000 e −0.006 e −0.013 e −0.016 e

Canadian dollar 0.023 14 0.907 05 −0.006 e −0.028 f −0.049 −0.056
Euro 0.016 15 0.886 06 −0.005 e −0.021 e −0.032 f −0.033
Danish krone g 0.016 16 0.862 07 0.008 e 0.006 e 0.003 e 0.001 e

Japanese yen g 0.050 09 0.839 08 0.002 e 0.004 e 0.002 e 0.001 e

Bitcoin g 0.111 07 0.835 09 0.000 e −0.003 e −0.003 e −0.003 e

Taiwanese dollar g 0.084 08 0.834 10 0.002 e 0.009 e 0.008 e 0.005 e

Mexican peso g 0.205 04 0.717 11 −0.012 e −0.022 f −0.029 f −0.032 f

Norwegian krone g 0.036 12 0.712 12 −0.003 e −0.010 e −0.010 e 0.001 e

Ripple g 0.262 03 0.663 13 0.002 e 0.005 e 0.000 e 0.003 e

Brazilian real g 0.491 01 0.644 14 0.004 e 0.001 e −0.004 e 0.000 e

Ethereum g 0.274 02 0.605 15 0.003 e 0.003 e 0.002 e 0.001 e

Singaporean dollar g −0.009 17 0.558 16 −0.021 f −0.027 e −0.029 e −0.032 e

Australian dollar g −0.034 19 0.490 17 −0.010 e −0.017 e −0.022 e −0.022 e

South African rand g 0.120 06 −0.208 18 0.000 e 0.004 e −0.002 e −0.010 e

Swedish krona g 0.124 05 −0.859 19 0.001 e −0.002 e −0.004 e −0.002 e

Notes: a Coefficient from GARCH(1,1) for square residuals lagged once. b Coefficient from GARCH(1,1) for conditional variance lagged once.
c Coefficients are ranked from highest to lowest values. d Dim#: BDS statistic for dimension # from standardized residuals. e H0:BDS = 0 is
not rejected (5% significance, bootstrap probabilities). f H0:BDS = 0 is not rejected (1% significance, bootstrap probabilities). g There is
no evidence to reject the hypothesis that the standardized residuals are iid (BDS test). Source: Own elaboration with Eviews7 and data
from Bloomberg.

Conversely, the estimated coefficients of the lagged conditional variance show inverse
results. Cryptocurrencies and emerging market currencies, such as the Mexican peso and
Brazilian real, have a lower probability of following trends (or lower persistence) in the
conditional variance than do the euro or British pound. The BDS test for the standardized
residual practically validated the GARCH models of all log-rate series, except for the euro,
the Canadian dollar, and the New Zealand dollar (Table 4). However, these three currencies
were validated by the BDS test for ARMA models.

4.4. KNN Approach

The last method applied to the log-rate series was the KNN approach. To choose
the best number of k, we considered a range between one and five, with the lowest SSRs
from the forecast. Figure 1 shows the predictor space charts based on three lags for the
spreads of Bitcoin, euro, Japanese yen, and Mexican peso as examples to visualize the
dispersion of the data. The points of the Bitcoin’s spreads are more dispersed over time
than those visualized in fiat currencies, which are more concentrated between each other.
For instance, the presence of outliers is more visible in the Mexican peso than the points
in the space chart of Bitcoin. As it was noted in Table 2, the highest kurtosis was found
in emerging countries’ currencies in comparison with cryptocurrencies. Therefore, due
the complexity of the liquidity microstructure of cryptocurrencies, and hence the greater
dispersions distance between each point of the chart space, more neighbor points should
be considered to improve predictions compared with fiat currencies. Thus, based in the
distance between each point and the k neighbors, we classify the charts into four categories
as follows:

I. Very large distance: Bitcoin (k = 2), Ethereum (k = 3), and Ripple (k = 3)
II. Large distance: Australian dollar (k = 2), Danish krone (k = 3), Japanese yen (k = 3),

Norwegian krone (k = 2), and Taiwanese dollar (k = 2)
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III. Medium distance: British pound (k = 1), Canadian dollar (k = 2), euro (k = 2),
Swedish krona (k = 3), and Swiss franc (k = 2)

IV. Small distance: Brazilian real (k = 2), Mexican peso (k = 1), New Zealand dollar
(k = 1), Singaporean dollar (k = 1), South African rand (k = 2), and South Korean
won (k = 1)
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Figure 1. Dispersion points in the predictor space chart for the k-nearest neighbor (KNN) approach. Source: Own
elaboration with SPSS 21 from Bloomberg data.

Figure 1 shows that the log rates of cryptocurrencies are more dispersed over time
than are those of fiat currencies. For this reason, more neighbor points must be considered
in cryptocurrencies than for fiat currencies to improve predictions. As an example of the
KNN prediction, Table 5 shows the results for 6 February 2019, which is the third-to-last
date of the study, as a selected focal case for the 19 currencies.

4.5. Comparative Analysis

Further, the SSRs for the three methods (ARMA, GARCH, and KNN) were calcu-
lated to compare the prediction ability and select the method with the minimum squared
residual mean. Table 6 shows that the KNN approach produced the best results in pre-
dicting the spread of the log rates of the bid-ask spreads compared with the ARMA and
GARCH models.

In terms of fiat currencies, the KNN approach provided the best prediction perfor-
mance for the Canadian dollar, euro, and Japanese yen. In the case of cryptocurrencies, the
prediction of the Bitcoin spread was better than that of Ripple and Ethereum.
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Table 5. Nearest neighbor predictions for 6 February 2019.

Currency Neighbor(s) a Distance(s) b Observed/Predicted c

13 November 2018, 7 November 18, 21 November 2018 0.000002, 0.000003, 0.000005 0.000001/0.000001
Ethereum 7 August 2018, 16 November 2018, 12 June 2018 0.000232, 0.000274, 0.000326 0.000727/0.000744
Japanese yen 26 December 2018, 14 February 2018, 27 September 2018 0.000112, 0.000141, 0.000194 0.000110/0.000111
Ripple 5 June 2018, 2 July 2018, 5 April 2018 0.000353, 0.000432, 0.000843 0.000000/0.000253
Swedish krona 25 April 2018, 26 September 2018, 24 October 2018 0.000174, 0.000254, 0.000259 0.000460/0.000470
Australian dollar 24 October 2018, 1 August 2018 0.000146, 0.000255 0.000281/0.000415
Bitcoin 16 April 2018, 11 September 2018 0.000094, 0.000084 0.000407/0.000404
Brazilian real 10 January 2019, 30 January 2019 0.000391, 0.00111 0.002959/0.002774
Canadian dollar 4 May 2018, 27 Abril 2018 0.000166, 0.00017 0.000529/0.000449
Euro 22 August 2018, 12 November 2018 0.000205, 0.000264 0.000176/0.000132
Norwegian krone 12 December 2018, 16 January 2019 0.000013, 0.00003 0.000854/0.000855
South African rand 9 May 2018, 17 October 2018 0.001357, 0.002655 0.002545/0.002034
Swiss franc 26 December 2018, 20 November 2018 0.000239, 0.000308 0.000301/0.000299
Taiwanese dollar 20 February 2018, 10 May 2018 0.00024, 0.000244 0.000555/0.000558
British pound 11 December 2018 0.000303 0.000696/0.000641
Mexican peso 14 November 2018 0.000295 0.000764/0.001021
New Zealand dollar 9 January 2019 0.00034 0.000885/0.000884
Singaporean dollar 21 February 2018 0.000786 0.000136/0.000265
South Korean won 21 January 2019 0.001488 0.000224/0.001702

Notes: a Nearest cases from the focal point (6 February 2019). b The distance between two cases (focal and its neighbor) is the sum, over all dimensions, of the absolute difference between values for the cases.
c As a focal case, 6 February 2019, the third-to-last date of the study, was selected. Source: Own elaboration with SPSS21 and data from Bloomberg.
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Table 6. Sum-of-squares residuals (SSR).

Currency
ARMA a GARCH b KNN c

SSR d Rank e SSR d Rank e SSR d Rank e

South African rand 0.0010380 02 0.0037240 02 0.0000134 01
New Zealand dollar 0.0004680 03 0.0026110 03 0.0000078 02
Mexican peso 0.0001520 07 0.0004550 14 0.0000068 03
Ethereum 0.0000846 10 0.0007740 06 0.0000019 04
Swedish krona 0.0000825 11 0.0004860 12 0.0000017 05
Ripple 0.0002380 05 0.0022430 04 0.0000016 06
Norwegian krone 0.0001480 08 0.0020730 05 0.0000015 07
Singaporean dollar 0.0003930 04 0.0004710 13 0.0000014 08
Australian dollar 0.0000995 09 0.0005720 10 0.0000010 09
British pound 0.0001540 06 0.0005830 09 0.0000008 10
South Korean won 0.0028720 01 0.0039790 01 0.0000008 11
Brazilian real 0.0000651 12 0.0007250 07 0.0000004 12
Swiss franc 0.0000524 13 0.0001520 15 0.0000004 13
Bitcoin 0.0000283 16 0.0001020 17 0.0000002 14
Danish krone 0.0000307 15 0.0001060 16 0.0000002 15
Taiwanese dollar 0.0000373 14 0.0000810 18 0.0000002 16
Canadian dollar 0.0000275 17 0.0006370 08 0.0000001 17
Euro 0.0000136 18 0.0005300 11 0.0000001 18
Japanese yen 0.0000085 19 0.0000280 19 0.0000001 19

Notes: a Autoregressive moving average model. b Autoregressive conditional heteroscedasticity model. c Nearest neighbor approach.
d SSR is the sum-of-squares residual from each model. e SSR are ordered from highest to lowest and numbers in each rank’s column
represent the place in the list of currencies. Source: Own elaboration with SPSS21 and data from Bloomberg.

5. Discussion

We compare the predictions on the short-term market liquidity of the major crypto
and fiat currencies by using classical time-series models such as ARMA and GARCH and
a nonparametric learning machine algorithm called the KNN approach. We find that the
KNN algorithm is a better predictor of the log rate of the bid-ask spreads of crypto and
fiat currencies than the ARMA and GARCH models given the nonlinearity of the market
liquidity and the complexity of its market microstructure, as stated by Bouoiyour et al. [3].

We also find that the log rates of cryptocurrencies behave differently than those
of the fiat currencies in developed markets. However, the short-term prediction (KNN
approach) is similar in the emerging markets with fiat currencies when using a wider
prediction timespan (GARCH model). The result of the cryptocurrency’s log rates is in
accordance with its more complex pattern than the fiat currencies, as mentioned in Gandal
and Halaburda [4], due to its time spatial dispersion performance derived from the KNN
approach and with the absence of outliers, as noted by the kurtosis statistic.

Considering a classical time-series analysis, ARMA models are better at capturing the
short-term liquidity of the fiat currencies in developed countries, whereas GARCH models
are better suited for estimating the behavior of the fiat currencies in the emerging market
countries because their currencies are more susceptible to sudden changes or unexpected
news with a lower probability of following trends. Nevertheless, the KNN approach is
better suited to capture the short-term liquidity of cryptocurrencies than the ARMA and
GARCH models.

The practical implications of this study are twofold. First, as the number of entities
that accept cryptocurrencies increases, this study shows that using the KNN approach
better explains the short-term liquidity of the cryptocurrency market than traditional
time-series models. This ability is important given the speculative nature of investors in
the cryptocurrency market. Second, other machine learning models are worth trying to
compare the results among them.
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Despite the above results, three limitation of the study we can be observed. First,
the sample used in this study is small because Bloomberg has a short time publishing
cryptocurrencies data and it is difficult to obtain a reliable and complete data, i.e., bid-ask
rates. Secondly, the cryptocurrencies analyzed in this paper is limited to three, and accord-
ing to Ong et al. [52], there is a large array of cryptocurrency variants, alternative coins,
or altcoins, that are introduced to the market on a daily basis; although, the information
about cryptocurrencies can be sparse [53].

For future research, other type GARCH models could be reviewed in the comparison
analyses, such as the VAR-BEKK-GARCH model proposed by Loverta and López [24] for log
spreads times series. On the other hand, it is also possible to consider besides KNN other
different intelligent algorithms that can be a route for cryptocurrencies behavior analysis,
for example, the Support Vector Machine (SVM) and the Long Short-Term Memory (LSTM)
model that was applied by Saadah and Wafa [36]. In addition, other possible direction for
future research might include a systematic quantitative analysis of the popularity and impact
of cryptocurrencies and how they spread in a macro level as suggested by Park and Park [54].

Finally, in this field it is necessary to deal with the interplay between liquidity, returns,
and volatility in the context of long-term memory while at the same time using more
nonparametric methods, such as machine learning, that may be better suited to deal with
the microstructure complexity of the cryptocurrency markets.
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