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Abstract: Human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus (HIV)
are two famous retroviruses that share similarities in their genomic organization, and differ in their
life cycle as well. It is known that HTLV-I and HIV have in common a way of transmission via direct
contact with certain body fluids related to infected patients. Thus, it is not surprising that a single-
infected person with one of these viruses can be dually infected with the other virus. In the literature,
many researchers have devoted significant efforts for modeling and analysis of HTLV or HIV single
infection. However, the dynamics of HTLV/HIV dual infection has not been formulated. In the
present paper, we formulate an HTLV/HIV dual infection model. The model includes the impact
of the Cytotoxic T lymphocyte (CTLs) immune response, which is important to control the dual
infection. The model describes the interaction between uninfected CD4+T cells, HIV-infected cells,
HTLV-infected cells, free HIV particles, HIV-specific CTLs, and HTLV-specific CTLs. We establish
that the solutions of the model are non-negative and bounded. We calculate all steady states of the
model and deduce the threshold parameters which determine the existence and stability of the steady
states. We prove the global asymptotic stability of all steady states by utilizing the Lyapunov function
and Lyapunov–LaSalle asymptotic stability theorem. We solve the system numerically to illustrate
the our main results. In addition, we compared between the dynamics of single and dual infections.

Keywords: HTLV/HIV dual infection; global stability; Lyapunov function; immune response

1. Introduction

Human immunodeficiency virus (HIV) infects the human body and causes acquired
immunodeficiency syndrome (AIDS), which is one of the deadly diseases. HIV is a retro-
virus that infects the uninfected CD4+T cells, which play an important role in the immune
system. Cytotoxic T lymphocytes (CTLs) and antibodies are the two arms of the immune
system. HIV-specific CTLs kill the HIV-infected cells. On the other side, B cells gen-
erate HIV-specific antibodies to neutralize viruses circulating in the plasma. Therefore,
the infection can relatively be controlled for a long period up to 10 or even 15 years [1].
During this long period, the concentration of uninfected CD4+T cells in the blood are
decaying. The concentration of CD4+T cells in an uninfected individual is 1000 cells/mm3.
The individual is called an AIDS patient if the concentration of CD4+T cells goes below
200 cells/mm3. During the last few decades, mathematical modeling of HIV infections
have witnessed a significant development [2–7]. Stability analysis has also become one
of the very important and helpful methods for better understanding the within-host HIV
dynamics (see e.g., [8–17]).

Nowak and Bangham [3] have formulated the basic HIV infection model which
describes the interaction between uninfected CD4+T cells, HIV-infected CD4+T cells, and
free HIV particles as:
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dS
dt = ρ− αS− η1SV,
dI
dt = η1SV − aI,
dV
dt = bI − εV,

(1)

where S = S(t), I = I(t) , and V = V(t) are the concentrations of uninfected CD4+T
cells, HIV-infected cells, and free HIV particles at time t, respectively. The HIV virions
can replicate using free-to-cell transmission. The uninfected CD4+T cells are produced at
specific constant rate ρ. The term η1SV refers to the rate at which new infections appear
by free-to-cell contact between free HIV particles and uninfected CD4+T cells. The term
bI refers to the rate at which free HIV particles are generated. The natural death rates of
the uninfected CD4+T cells, HIV-infected cells, and free HIV particles are given by αS, aI,
and εV, respectively. To incorporate the effect of the CTL immune response, Nowak and
Bangham [3] have presented the following model:

dS
dt = ρ− αS− η1SV,
dI
dt = η1SV − aI − µ1CI I,
dV
dt = bI − εV,
dCI

dt = σ1CI I − π1CI ,

(2)

where CI = CI(t) is the concentration of HIV-specific CTLs at time t. The term µ1CI I is the
killing rate of active HIV-infected cells due to their specific immunity. The expansion rate
of effective HIV-specific CTLs is given by σ1CI I. The term π1CI represents the death rate
of effective HIV-specific CTLs.

Human T-lymphotropic virus type I (HTLV-I) is an exogenous retrovirus that infects
the human body and can lead to two diseases, one of them an inflammatory of the central
nervous system known as HTLV-I-associated myelopathy/tropical spastic paraparesis
(HAM/TSP) and the other an adult T-cell leukemia (ATL). The discovery of the first human
retrovirus HTLV-I is back to 1980, and, after three years, the HIV was determined [18].
The infection is endemic in the Caribbean, southern Japan, the Middle East, South Amer-
ica, parts of Africa, Melanesia, and Papua New Guinea [19]. HTLV-I is a provirus that
targets the uninfected CD4+T cells. HTLV-I can spread to uninfected CD4+T cells from
infected-to-cell through the virological synapse [20]. During the primary infection stage
of HTLV-I, the proviral load can reach high level, approximately 30–50% [21]. For HTLV-I
carriers, about 2–5% percent develop symptoms of ATL and another 0.25–3% develop
HAM/TSP [22]. Many researchers have shown concern towards studying the dynamical
behavior and analysis of the HTLV-I single infection models which have been addressed in
several works [23–28]. It has been reported in [29] that the CTLs play an effective part in
limiting HTLV-I replication. They can identify and kill the Tax-expressing HTLV-infected
CD4+T cells. The within-host HTLV-I dynamics model with CTL immune response is
given as follows [2]: 

dS
dt = ρ− αS− η2SY,
dY
dt = ϕη2SY− δY− µ2CYY,
dCY

dt = σ2CYY− π2CY,
(3)

where Y = Y(t) and CY = CY(t) being the concentrations of HTLV-infected cells and
HTLV-specific CTLs at time t, respectively. In contrast with HIV, the transmission of HTLV-
I can only be from infected-to-cell, that is, the HTLV virions can survive only inside the host
CD4+T cells and cannot be detectable in the plasma. The uninfected CD4+T cells become
HTLV-infected cells due to infected-to-cell contact at rate η2SY. The parameter ϕ ∈ (0, 1) is
a fraction represents the newly infected CD4+T cells after surviving the immune response.
The HTLV-infected cells are killed by their specific CTLs at rate µ2CYY. The term σ2CYY
represents the expansion rate of HTLV-specific CTLs. The terms δY and π2CY denote the
death rates of the HTLV-infected cells and HTLV-specific CTLs, respectively. This model has
been developed and extended in several works which discussed the dynamical behavior
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of HTLV-I infection models, and how CTL immunity contributes to limiting the HTLV-I
duplication in vivo (see [2,19,30–38]).

It has been discovered that the simultaneous infection by the two viruses affects the
pathogenic development and influences the outcomes for associated chronic diseases [39].
In fact, concurrent infections with HTLV-I and HIV have occurred frequently in areas
where people living at high risk activities such as needle injection sharing and unprotected
sexual relationships. In addition, HTLV/HIV dual infections have documented in specific
geographic regions where both retroviruses become endemic [40], and among those who
belonged to a specific ethnic as well. For instance, the dual infection rates in peoples living
in some parts of Brazil have reached 16% of HIV-infected patients [41]. In a recent work,
it has been estimated that the HIV single infected patients have more exposure to be dual
infected with HTLV-I at a higher rate initiating from 100 to 500 times in comparison with
the uninfected peoples [42]. Moreover, some seroepidemiologic studies have reported that
HTLV-infected patients are at risk to have a concurrent infection with HIV, and vice versa
compared to those who are infection-free from the general population [40]. HTLV-I and
HIV mainly attack the CD4+T cells and lead to immune dysfunction as well; however,
they also conflict no doubt with respect to the etiology of their pathogenic and clinical
outcomes [43]. HTLV-I and HIV dual infection appears to have an overlap on the course
of associated clinical outcomes with both viruses [40]. Many researchers have reported
that HIV infected individuals who are possibly dual infected with HTLV-I can potentially
be associated with clinical progression with AIDS. In contrast, HIV can modify HTLV-I
expression in dual infected patients which leads them to a higher risk of developing HTLV-I
related diseases such as TSP/HAM and ATL [40,42].

While many efforts have been made to investigate mathematical modeling and analy-
sis of both HTLV-I and HIV single infection, almost none have focused on the modeling
of HTLV/HIV dual infection dynamics. The only exception is the work of Elaiw and
AlShamrani [44], where they have proposed an HTLV/HIV dual infection. The model
presented in [44] is 8-dimensional ODEs which incorporated the latently HIV-infected and
HTLV-infected cells. The model contained 23 parameters, however, to estimate such a large
number of parameters requires a large number of measurements (blood samples) which are
very difficult to obtain. Therefore, the aim of the present paper is to formulate and analyze
a more applicable HTLV/HIV dual infection model with a smaller number of parameters.
We show that the model is well-posed by establishing that the solutions of the model
are non-negative and bounded. We derive a set of threshold parameters which govern
the existence and stability of the steady states of the model. Global stability of all steady
states is proven by formulating Lyapunov functions and utilizing the Lyapunov–LaSalle
asymptotic stability theorem. We perform some numerical simulations to illustrate the
theoretical results. Our proposed model and its mathematical analysis will be needed to
help clinicians on estimating the appropriate time to initiate treatment in dually infected
patients. Since an individual can be infected with two or more viruses in the same time, our
model may be helpful to study different dual infections such as Coronavirus/Influenza,
HIV/HCV, HIV/HBV, and HIV/Malaria.

The rest of the paper is organized as follows: In Section 2, we propose an HTLV/HIV
dual infection model. In Section 3, we prove the non-negativity and boundedness of
solutions of the proposed model. Then, we study the existence of all possible steady
states of the model which depend on eight threshold parameters in Section 4. Moreover,
in Section 5, we investigate the global stability of the eight equilibria by constructing
suitable Lyapunov functions. These results are illustrated by numerical simulations in
Section 6. Finally, in Section 7, we present some discussions and brief conclusions.

2. HTLV/HIV Dual Infection Model Formulation

In this section, we introduce an HTLV/HIV dual infection dynamics model. The dy-
namics of HTLV/HIV dual infection is schematically shown in Figure 1.
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Figure 1. The schematic diagram of the HTLV/HIV dual infection dynamics in vivo.

We propose the following model:

dS
dt = ρ− αS− η1SV − η2SY,
dI
dt = η1SV − aI − µ1CI I,
dY
dt = ϕη2SY− δY− µ2CYY,
dV
dt = bI − εV,
dCI

dt = σ1CI I − π1CI ,
dCY

dt = σ2CYY− π2CY,

(4)

where (S, I, Y, V, CI , CY) = (S, I, Y, V, CI , CY)(t). All variables and parameters have the
same biological definition as given above.

3. Preliminaries

Lemma 1. For model (4), there exist ∆j > 0, j = 1, ..., 5 such that

0 ≤ S(t), I(t) ≤ ∆1, 0 ≤ Y(t) ≤ ∆2, 0 ≤ V(t) ≤ ∆3, 0 ≤ CI(t) ≤ ∆4, 0 ≤ CY(t) ≤ ∆5.

Proof. We have

dS
dt
|S=0= ρ > 0,

dI
dt
|I=0= η1SV ≥ 0 for all S, V ≥ 0,

dY
dt
|Y=0= 0,

dV
dt
|V=0= bI ≥ 0 for all I ≥ 0,

dCI

dt
|CI=0= 0,

dCY

dt
|CY=0= 0.

This confirms that (S, I, Y, V, CI , CY)(t) ∈ R6
≥0 for all t ≥ 0 when (S, I, Y, V, CI , CY)(0)

∈ R6
≥0. Let

Ψ = S + I +
1
ϕ

Y +
a

2b
V +

µ1

σ1
CI +

µ2

ϕσ2
CY.

Then,

dΨ
dt

= ρ− αS− a
2

I − δ

ϕ
Y− aε

2b
V − µ1π1

σ1
CI − µ2π2

ϕσ2
CY

≤ ρ− φ

(
S + I +

1
ϕ

Y +
a

2b
V +

µ1

σ1
CI +

µ2

ϕσ2
CY
)
= ρ− φΨ,
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where φ = min{α, a
2 , δ, ε, π1, π2}. It follows that 0 ≤ Ψ(t) ≤ ∆1 if Ψ(0) ≤ ∆1 for t ≥ 0,

where ∆1 = ρ
φ . Since S, I, Y, V, CI , and CY are all non-negative, then 0 ≤ S(t), I(t) ≤ ∆1,

0 ≤ Y(t) ≤ ∆2, 0 ≤ V(t) ≤ ∆3, 0 ≤ CI(t) ≤ ∆4, 0 ≤ CY(t) ≤ ∆5 if S(0) + I(0) +
1
ϕ Y(0) + a

2b V(0) + µ1
σ1

CI(0) + µ2
ϕσ2

CY(0) ≤ ∆1, where ∆2 = ϕ∆1, ∆3 =
2b∆1

a
, ∆4 =

σ1∆1

µ1

and ∆5 =
ϕσ2∆1

µ2
.

4. Steady States

Now, we calculate all possible steady states of system (4). The steady states of the
system satisfy the following algebraic equations:

0 = ρ− αS− η1SV − η2SY, (5)

0 = η1SV − aI − µ1CI I, (6)

0 = ϕη2SY− δY− µ2CYY, (7)

0 = bI − εV, (8)

0 = (σ1 I − π1)CI , (9)

0 = (σ2Y− π2)CY. (10)

We find that system (4) has eight possible steady states:
(i) Infection-free steady state, Ð0 = (S0, 0, 0, 0, 0, 0), where S0 = ρ/α. In this case,

the body is free from HIV and HTLV.
(ii) Persistent HIV single infection steady state with an ineffective immune response,

Ð1 = (S1, I1, 0, V1, 0, 0), where

S1 =
aε

η1b
, I1 =

εα

η1b

(
η1bS0

aε
− 1
)

, V1 =
α

η1

(
η1bS0

aε
− 1
)

.

Therefore, Ð1 exists when
η1bS0

aε
> 1.

It is clear that at the steady state Ð1 the HIV single infection persists with an ineffective
immune response. The basic HIV single infection reproduction number for system (4) is
given by:

<1 =
η1bS0

aε
.

The parameter <1 decides whether or not a persistent HIV infection can be established.
In terms of <1, we can write

S1 =
S0

<1
, I1 =

εα

η1b
(<1 − 1), V1 =

α

η1
(<1 − 1).

(iii) Persistent HTLV single infection steady state with an ineffective immune response,
Ð2 = (S2, 0, Y2, 0, 0, 0), where

S2 =
δ

ϕη2
, Y2 =

α

η2

(
ϕη2S0

δ
− 1
)

.

Therefore, Ð2 exists when
ϕη2S0

δ
> 1.
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At the steady state Ð2, the chronic HTLV single infection persists with an ineffective
immune response. The basic HTLV single infection reproduction number for system (4) is
given as:

<2 =
ϕη2S0

δ
.

The parameter <2 decides whether or not a persistent HTLV infection can be estab-
lished. In terms of <2, we can write

S2 =
S0

<2
, Y2 =

α

η2
(<2 − 1).

(iv) Persistent HIV single infection steady state with only effective HIV-specific CTL,
Ð3 = (S3, I3, 0, V3, CI

3, 0), where

S3 =
εσ1ρ

π1η1b + αεσ1
, I3 =

π1

σ1
, V3 =

b
ε

I3 =
bπ1

εσ1
, CI

3 =
a

µ1

[
σ1ρη1b

a(π1η1b + αεσ1)
− 1
]

.

We note that Ð3 exists when
σ1ρη1b

a(π1η1b + αεσ1)
> 1. We define the HIV-specific CTL

reproduction number in case of HIV single infection as follows:

<3 =
σ1ρη1b

a(π1η1b + αεσ1)
.

Thus, CI
3 =

a
µ1

(<3− 1). The parameter <3 determines whether or not the HIV-specific

CTL immune response is effective in the absence of HTLV.
(v) Persistent HTLV single infection steady state with only effective HTLV-specific

CTL, Ð4 = (S4, 0, Y4, 0, 0, CY
4 ), where

S4 =
σ2ρ

π2η2 + ασ2
, Y4 =

π2

σ2
, CY

4 =
δ

µ2

[
σ2ρϕη2

δ(π2η2 + ασ2)
− 1
]

.

We note that Ð4 exists when
σ2ρϕη2

δ(π2η2 + ασ2)
> 1. The HTLV-specific CTL reproduction

number in the case of HTLV single infection is stated as:

<4 =
σ2ρϕη2

δ(π2η2 + ασ2)
.

Thus, CY
4 =

δ

µ2
(<4 − 1). The parameter <4 determines whether or not the HTLV-

specific CTL immune response is effective in the absence of HIV.
(vi) Persistent HTLV/HIV dual infection steady state with only effective HIV-specific

CTL, Ð5 = (S5, I5, Y5, V5, CI
5, 0), where

S5 =
δ

ϕη2
= S2, I5 =

π1

σ1
= I3, V5 =

bπ1

εσ1
= V3,

Y5 =
π1η1b + αεσ1

εη2σ1

[
ρϕεη2σ1

δ(π1η1b + αεσ1)
− 1
]

,

CI
5 =

a
µ1

(
η1bδ

aεϕη2
− 1
)
=

a
µ1

(<1/<2 − 1).

We note that Ð5 exists when <1/<2 > 1 and ρϕεη2σ1
δ(π1η1b+αεσ1)

> 1. The HTLV infection
reproduction number in the presence of HIV infection is stated as:

<5 =
ρϕεη2σ1

δ(π1η1b + αεσ1)
.
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It is obvious that the parameter <5 determines whether or not HIV-infected patients

could be dually infected with HTLV. Thus, Y5 =
π1η1b + αεσ1

εη2σ1
(<5 − 1).

(vii) Persistent HTLV/HIV dual infection steady state with only effective HTLV-
specific CTL, Ð6 = (S6, I6, Y6, V6, 0, CY

6 ), where

S6 =
aε

η1b
= S1, I6 =

ε(π2η2 + ασ2)

bη1σ2

[
ρbη1σ2

aε(π2η2 + ασ2)
− 1
]

, Y6 =
π2

σ2
= Y4,

V6 =
π2η2 + ασ2

η1σ2

[
ρbη1σ2

aε(π2η2 + ασ2)
− 1
]

, CY
6 =

δ

µ2

(
aεϕη2

η1bδ
− 1
)
=

δ

µ2
(<2/<1 − 1).

We note that Ð6 exists when <2/<1 > 1 and ρbη1σ2
aε(π2η2+ασ2)

> 1. The HIV infection
reproduction number in the presence of HTLV infection is stated as:

<6 =
ρbη1σ2

aε(π2η2 + ασ2)
.

Thus, I6 =
ε(π2η2 + ασ2)

bη1σ2
(<6 − 1), V6 =

π2η2 + ασ2

η1σ2
(<6 − 1). It is clear that the parameter

<6 determines whether or not HTLV-infected patients could be dually infected with HIV.
(viii) Persistent HTLV/HIV dual infection steady state with effective HIV-specific CTL

and HTLV-specific CTL, Ð7 = (S7, I7, Y7, V7, CI
7, CY

7 ), where

S7 =
εσ1σ2ρ

π1η1bσ2 + π2η2εσ1 + αεσ1σ2
,

I7 =
π1

σ1
= I3 = I5, Y7 =

π2

σ2
= Y4 = Y6, V7 =

bπ1

εσ1
= V3 = V5,

CI
7 =

a
µ1

[
η1bσ1σ2ρ

a(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
− 1
]

,

CY
7 =

δ

µ2

[
ϕη2εσ1σ2ρ

δ(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
− 1
]

.

It is obvious that Ð7 exists when
η1bσ1σ2ρ

a(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
> 1 and

ϕη2εσ1σ2ρ

δ(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
> 1. Now, we define

<7 =
η1bσ1σ2ρ

a(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
,

<8 =
ϕη2εσ1σ2ρ

δ(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
.

Clearly, Ð7 exists when <7 > 1 and <8 > 1 and we can write CI
7 =

a
µ1

(<7 − 1)

and CY
7 =

δ

µ2
(<8 − 1). The parameter <7 is the competed HIV-specific CTL reproduction

number in case of HTLV/HIV dual infection. The parameter <8 is the competed HTLV-
specific CTL reproduction number in case of HTLV/HIV dual infection.

The eight threshold parameters are given as follows:

<1 =
η1bS0

aε
, <2 =

ϕη2S0

δ
, <3 =

σ1ρη1b
a(π1η1b + αεσ1)

,

<4 =
σ2ρϕη2

δ(π2η2 + ασ2)
, <5 =

ρϕεη2σ1

δ(π1η1b + αεσ1)
, <6 =

ρbη1σ2

aε(π2η2 + ασ2)
,

<7 =
η1bσ1σ2ρ

a(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
, <8 =

ϕη2εσ1σ2ρ

δ(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)
. �
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According to the above discussion, we sum up the existence conditions for all steady
states in Table 1.

Table 1. Model (4) equilibria and their existence conditions.

Steady State Definition Existence Conditions

Ð0 = (S0, 0, 0, 0, 0, 0) Infection-free steady state None

Ð1 = (S1, I1, 0, V1, 0, 0) Persistent HIV single infection steady state
with an ineffective immune response

<1 > 1

Ð2 = (S2, 0, Y2, 0, 0, 0) Persistent HTLV single infection steady state
with an ineffective immune response

<2 > 1

Ð3 = (S3, I3, 0, V3, CI
3, 0) Persistent HIV single infection steady state

with only effective HIV-specific CTL
<3 > 1

Ð4 = (S4, 0, Y4, 0, 0, CY
4 )

Persistent HTLV single infection steady state
with only effective HTLV-specific CTL

<4 > 1

Ð5 = (S5, I5, Y5, V5, CI
5, 0) Persistent HTLV/HIV dual infection steady

state with only effective HIV-specific CTL
<5 > 1 and <1/<2 > 1

Ð6 = (S6, I6, Y6, V6, 0, CY
6 )

Persistent HTLV/HIV dual infection steady
state with only effective HTLV-specific CTL

<6 > 1 and <2/<1 > 1

Ð7 = (S7, I7, Y7, V7, CI
7, CY

7 )
Persistent HTLV/HIV dual infection steady
state with effective HIV-specific CTL and
HTLV-specific CTL

<7 > 1 and <8 > 1

5. Global Stability Analysis

In this section, we analyze the global asymptotic stability of all steady states by
the Lyapunov method. For constructing Lyapunov functions, we follow the work of
Korobeinikov [45].

To prove Theorems 1–8, we need the arithmetic-geometric mean inequality

1
n

n

∑
i=1

χi ≥ n

√
n

∏
i=1

χi, χi ≥ 0, i = 1, 2, ... (11)

Let a function Φj(S, I, Y, V, CI , CY) and Υ
′
j be the largest invariant subset of

Υj =

{
(S, I, Y, V, CI , CY) :

dΦj

dt
= 0

}
, j = 0, 1, 2, ..., 7.

Theorem 1. If <1 ≤ 1 and <2 ≤ 1, then Ð0 is globally asymptotically stable (G.A.S).

Proof. Define Φ0(S, I, Y, V, CI , CY) as:

Φ0 = S0z
(

S
S0

)
+ I +

1
ϕ

Y +
a
b

V +
µ1

σ1
CI +

µ2

ϕσ2
CY, (12)

where
z(υ) = υ− 1− ln υ.

Clearly, Φ0(S, I, Y, V, CI , CY) > 0 for all S, I, Y, V, CI , CY > 0, and Φ0(S0, 0, 0, 0, 0, 0) = 0.
Calculating dΦ0

dt along the solutions of system (4) as:
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dΦ0
dt

=

(
1− S0

S

)
(ρ− αS− η1SV − η2SY) + η1SV − aI − µ1CI I +

1
ϕ

(
ϕη2SY− δY− µ2CYY

)
+

a
b
(bI − εV) +

µ1
σ1

(
σ1CI I − π1CI

)
+

µ2
ϕσ2

(
σ2CYY− π2CY

)
=

(
1− S0

S

)
(ρ− αS) + η1S0V + η2S0Y− δ

ϕ
Y− aε

b
V − µ1π1

σ1
CI − µ2π2

ϕσ2
CY .

Using S0 = ρ/α, we obtain

dΦ0

dt
= −α

(S− S0)
2

S
+

aε

b
(<1 − 1)V +

δ

ϕ
(<2 − 1)Y− µ1π1

σ1
CI − µ2π2

ϕσ2
CY. (13)

Therefore, dΦ0
dt ≤ 0 for all S, Y, V, CI , CY > 0 with equality holding when (S, Y, V, CI ,

CY) = (S0, 0, 0, 0, 0). The solutions of system (4) converge to Υ
′
0 [46]. The elements of Υ

′
0

satisfy V = 0 and then dV
dt = 0. The fourth equation of system (4) implies

0 =
dV
dt

= bI.

This yields I(t) = 0 for all t. Therefore, Υ
′
0 = {Ð0} and, applying the Lyapunov–

LaSalle asymptotic stability theorem [47–49], we obtain that Ð0 is G.A.S.

Theorem 2. Let <1 > 1, <2/ <1 ≤ 1 and <3 ≤ 1, then Ð1 is G.A.S.

Proof. Define a function Φ1(S, I, Y, V, CI , CY) as:

Φ1 = S1z
(

S
S1

)
+ I1z

(
I
I1

)
+

1
ϕ

Y +
a
b

V1z
(

V
V1

)
+

µ1

σ1
CI +

µ2

ϕσ2
CY.

Calculating dΦ1
dt as:

dΦ1

dt
=

(
1− S1

S

)
(ρ− αS− η1SV − η2SY) +

(
1− I1

I

)(
η1SV − aI − µ1CI I

)
+

1
ϕ

(
ϕη2SY− δY− µ2CYY

)
+

a
b

(
1− V1

V

)
(bI − εV)

+
µ1

σ1

(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
σ2CYY− π2CY

)
=

(
1− S1

S

)
(ρ− αS) + η1S1V + η2S1Y− η1SV

I1

I
+ aI1 + µ1CI I1

− δ

ϕ
Y− aε

b
V − aI

V1

V
+

aε

b
V1 −

µ1π1

σ1
CI − µ2π2

ϕσ2
CY.

Using the steady state conditions for Ð1:

ρ = αS1 + η1S1V1, η1S1V1 = aI1 =
aε

b
V1,

we obtain
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dΦ1

dt
=

(
1− S1

S

)
(αS1 − αS) + η1S1V1

(
1− S1

S

)
+ η2S1Y− η1S1V1

SVI1

S1V1 I
+ η1S1V1

+ µ1CI I1 −
δ

ϕ
Y− η1S1V1

IV1

I1V
+ η1S1V1 −

µ1π1

σ1
CI − µ2π2

ϕσ2
CY

= −α
(S− S1)

2

S
+ η1S1V1

(
3− S1

S
− SVI1

S1V1 I
− IV1

I1V

)
+

δ

ϕ

(
ϕη2S1

δ
− 1
)

Y

+ µ1

(
I1 −

π1

σ1

)
CI − µ2π2

ϕσ2
CY. (14)

Therefore, Equation (14) becomes

dΦ1

dt
= −α

(S− S1)
2

S
+ η1S1V1

(
3− S1

S
− SVI1

S1V1 I
− IV1

I1V

)
+

δ

ϕ
(<2/<1 − 1)Y

+
µ1(εασ1 + π1η1b)

σ1η1b
(<3 − 1)CI − µ2π2

ϕσ2
CY. (15)

Using inequality (11), we get

S1

S
+

SVI1

S1V1 I
+

IV1

I1V
≥ 3.

Since <2/<1 ≤ 1 and <3 ≤ 1, then dΦ1
dt ≤ 0 for all S, I, Y, V, CI , CY > 0. In addition,

dΦ1
dt = 0 when (S, I, V, Y, CI , CY) = (S1, I1, V1, 0, 0, 0). It follows that Υ′1 = {Ð1}. Then, Ð1

is G.A.S using the Lyapunov–LaSalle asymptotic stability theorem.

Theorem 3. If <2 > 1, <1/<2 ≤ 1 and <4 ≤ 1, then Ð2 is G.A.S.

Proof. The candidate Lyapunov function is

Φ2(S, I, Y, V, CI , CY) = S2z
(

S
S2

)
+ I +

1
ϕ

Y2z
(

Y
Y2

)
+

a
b

V +
µ1

σ1
CI +

µ2

ϕσ2
CY.

We calculate dΦ2
dt as:

dΦ2

dt
=

(
1− S2

S

)
(ρ− αS− η1SV − η2SY) + η1SV − aI − µ1CI I

+
1
ϕ

(
1− Y2

Y

)(
ϕη2SY− δY− µ2CYY

)
+

a
b
(bI − εV)

+
µ1

σ1

(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
σ2CYY− π2CY

)
. (16)

Collecting terms of Equation (16), we derive

dΦ2

dt
=

(
1− S2

S

)
(ρ− αS) + η1S2V + η2S2Y− δ

ϕ
Y− η2SY2

+
δ

ϕ
Y2 +

µ2

ϕ
CYY2 −

aε

b
V − µ1π1

σ1
CI − µ2π2

ϕσ2
CY.

Using the steady state conditions for Ð2:

ρ = αS2 + η2S2Y2, η2S2Y2 =
δ

ϕ
Y2, (17)
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we obtain

dΦ2

dt
=

(
1− S2

S

)
(αS2 − αS) + η2S2Y2

(
1− S2

S

)
+ η1S2V − η2S2Y2

S
S2

+ η2S2Y2 +
µ2

ϕ
CYY2 −

aε

b
V − µ1π1

σ1
CI − µ2π2

ϕσ2
CY.

= −α
(S− S2)

2

S
+ η2S2Y2

(
2− S2

S
− S

S2

)
+

aε

b

(
η1S2b

aε
− 1
)

V

− µ1π1

σ1
CI +

µ2

ϕ

(
Y2 −

π2

σ2

)
CY

= −(α + η2Y2)
(S− S2)

2

S
+

aε

b
(<1/<2 − 1)V − µ1π1

σ1
CI

+
µ2(ασ2 + η2π2)

ϕη2σ2
(<4 − 1)CY.

Thus, if <1/<2 ≤ 1 and <4 ≤ 1, then dΦ2
dt ≤ 0 for all S, V, CI , CY > 0 with equality

holding when (S, V, CI , CY) = (S2, 0, 0, 0). The solutions of system (4) tend to Υ
′
2. The ele-

ments of Υ
′
2 satisfy S = S2 and V = 0. Then, dS

dt = dV
dt = 0 and, from the first and fourth

equations of system (4), we have

0 =
dS
dt

= ρ− αS2 − η2S2Y,

0 =
dV
dt

= bI,

which give Y(t) = Y2 and I(t) = 0 for all t. Therefore, Υ
′
2 = {Ð2}. Applying the Lyapunov–

LaSalle asymptotic stability theorem, we get that Ð2 is G.A.S.

Theorem 4. For system (4), suppose that <3 > 1 and <5 ≤ 1, then Ð3 is G.A.S.

Proof. Define a function Φ3 as:

Φ3 = S3z
(

S
S3

)
+ I3z

(
I
I3

)
+

1
ϕ

Y +
η1S3

ε
V3z

(
V
V3

)
+

µ1

σ1
CI

3z
(

CI

CI
3

)
+

µ2

ϕσ2
CY.

We calculate dΦ3
dt as:

dΦ3

dt
=

(
1− S3

S

)
(ρ− αS− η1SV − η2SY) +

(
1− I3

I

)(
η1SV − aI − µ1CI I

)
+

1
ϕ

(
ϕη2SY− δY− µ2CYY

)
+

η1S3

ε

(
1− V3

V

)
(bI − εV)

+
µ1

σ1

(
1−

CI
3

CI

)(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
σ2CYY− π2CY

)
. (18)

We collect the terms of Equation (18) as:

dΦ3

dt
=

(
1− S3

S

)
(ρ− αS) + η2S3Y− aI − η1SV

I3

I
+ aI3 + µ1CI I3 −

δ

ϕ
Y +

η1S3

ε
bI

− η1S3

ε
bI

V3

V
+ η1S3V3 −

µ1π1

σ1
CI − µ1CI

3 I +
µ1π1

σ1
CI

3 −
µ2π2

ϕσ2
CY.
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Using the steady state conditions for Ð3:

ρ = αS3 + η1S3V3, η1S3V3 = aI3 + µ1CI
3 I3, I3 =

π1

σ1
, V3 =

b
ε

I3 =
bπ1

εσ1
,

we obtain

dΦ3

dt
=

(
1− S3

S

)
(αS3 − αS) + η1S3V3

(
1− S3

S

)
+

(
η2S3 −

δ

ϕ

)
Y

− η1S3V3
SVI3

S3V3 I
+ η1S3V3 − η1S3V3

IV3

I3V
+ η1S3V3 −

µ2π2

ϕσ2
CY

= −α
(S− S3)

2

S
+ η1S3V3

(
3− S3

S
− SVI3

S3V3 I
− IV3

I3V

)
+

δ

ϕ

(
ϕη2S3

δ
− 1
)

Y− µ2π2

ϕσ2
CY

= −α
(S− S3)

2

S
+ η1S3V3

(
3− S3

S
− SVI3

S3V3 I
− IV3

I3V

)
+

δ

ϕ
(<5 − 1)Y− µ2π2

ϕσ2
CY.

Hence, if <5 ≤ 1, then dΦ3
dt ≤ 0 for all S, I, Y, V, CY > 0 with equality holding when

(S, I, V, Y, CY) = (S3, I3, V3, 0, 0). The solutions of system (4) tend to Υ
′
3 which contains

elements with (S, I, V) = (S3, I3, V3). It follows that dI
dt = 0. The second equation of

system (4) becomes

0 =
dI
dt

= η1S3V3 − aI3 − µ1CI I3,

which gives CI(t) = CI
3 for all t and then Υ

′
3 = {Ð3}. Applying the Lyapunov–LaSalle

asymptotic stability theorem, we get that Ð3 is G.A.S.

Theorem 5. Let <4 > 1 and <6 ≤ 1, then Ð4 is G.A.S.

Proof. Consider Φ4(S, I, Y, V, CI , CY) as:

Φ4 = S4z
(

S
S4

)
+ I +

1
ϕ

Y4z
(

Y
Y4

)
+

a
b

V +
µ1

σ1
CI +

µ2

ϕσ2
CY

4 z
(

CY

CY
4

)
.

Calculating dΦ4
dt as:

dΦ4

dt
=

(
1− S4

S

)
(ρ− αS− η1SV − η2SY) + η1SV − aI − µ1CI I

+
1
ϕ

(
1− Y4

Y

)(
ϕη2SY− δY− µ2CYY

)
+

a
b
(bI − εV)

+
µ1

σ1

(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
1−

CY
4

CY

)(
σ2CYY− π2CY

)
. (19)

Collecting terms of Equation (19), we obtain

dΦ4

dt
=

(
1− S4

S

)
(ρ− αS) + η1S4V + η2S4Y− δ

ϕ
Y− η2SY4 +

δ

ϕ
Y4

+
µ2

ϕ
CYY4 −

aε

b
V − µ1π1

σ1
CI − µ2π2

ϕσ2
CY − µ2

ϕ
CY

4 Y +
µ2π2

ϕσ2
CY

4 .
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Using the steady state conditions for Ð4:

ρ = αS4 + η2S4Y4, η2S4Y4 =
δ

ϕ
Y4 +

µ2

ϕ
CY

4 Y4, Y4 =
π2

σ2
.

We obtain

dΦ4

dt
=

(
1− S4

S

)
(αS4 − αS) + η2S4Y4

(
1− S4

S

)
+ η1S4V − η2S4Y4

S
S4

+ η2S4Y4 −
aε

b
V − µ1π1

σ1
CI

= −(α + η2Y4)
(S− S4)

2

S
+
(

η1S4 −
aε

b

)
V − µ1π1

σ1
CI

= −(α + η2Y4)
(S− S4)

2

S
+

aε

b
(<6 − 1)V − µ1π1

σ1
CI .

Clearly, for all S, V, CI > 0, we have dΦ4
dt ≤ 0 . Moreover, dΦ4

dt = 0 when (S, V, CI) =

(S4, 0, 0). The solutions of system (4) tend to Υ
′
4 which includes elements with S = S4,

V = 0, and hence dS
dt = dV

dt = 0. From the first and fourth equations of system (4),
we obtain

0 =
dS
dt

= ρ− αS4 − η2S4Y,

0 =
dV
dt

= bI,

which give Y(t) = Y4 and I(t) = 0 for all t. Using dY
dt = 0 and the third equation of system

(4), we get

0 =
dY
dt

= ϕη2S4Y4 − δY4 − µ2CYY4,

which ensures that CY(t) = CY
4 for all t and, therefore, Υ

′
4 = {Ð4}. Applying the Lyapunov–

LaSalle asymptotic stability theorem, we get that Ð4 is G.A.S.

Theorem 6. If <5 > 1, <8 ≤ 1 and <1/<2 > 1, then Ð5 is G.A.S.

Proof. Define Φ5(S, I, Y, V, CI , CY) as:

Φ5 = S5z
(

S
S5

)
+ I5z

(
I
I5

)
+

1
ϕ

Y5z
(

Y
Y5

)
+

η1S5

ε
V5z

(
V
V5

)
+

µ1

σ1
CI

5z
(

CI

CI
5

)
+

µ2

ϕσ2
CY.

Calculating dΦ5
dt as:

dΦ5

dt
=

(
1− S5

S

)
(ρ− αS− η1SV − η2SY) +

(
1− I5

I

)(
η1SV − aI − µ1CI I

)
+

1
ϕ

(
1− Y5

Y

)(
ϕη2SY− δY− µ2CYY

)
+

η1S5

ε

(
1− V5

V

)
(bI − εV)

+
µ1

σ1

(
1−

CI
5

CI

)(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
σ2CYY− π2CY

)
=

(
1− S5

S

)
(ρ− αS) + η2S5Y− aI − η1SV

I5

I
+ aI5 + µ1CI I5 −

δ

ϕ
Y− η2SY5 +

δ

ϕ
Y5

+
µ2

ϕ
CYY5 + η1S5

bI
ε
− η1S5V5

bI
εV

+ η1S5V5 −
µ1π1

σ1
CI − µ1CI

5 I +
µ1π1

σ1
CI

5 −
µ2π2

ϕσ2
CY.
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Using the steady state conditions for Ð5:

ρ = αS5 + η1S5V5 + η2S5Y5, η1S5V5 = aI5 + µ1CI
5 I5, η2S5Y5 =

δ

ϕ
Y5, I5 =

π1
σ1

, V5 =
bI5
ε

.

We obtain

dΦ5

dt
=

(
1− S5

S

)
(αS5 − αS) + (η1S5V5 + η2S5Y5)

(
1− S5

S

)
− η1S5V5

SVI5

S5V5 I

+ η1S5V5 − η2S5Y5
S
S5

+ η2S5Y5 − η1S5V5
IV5

I5V
+ η1S5V5 +

µ2

ϕ

(
Y5 −

π2

σ2

)
CY

= −α
(S− S5)

2

S
+ η1S5V5

(
3− S5

S
− SVI5

S5V5 I
− IV5

I5V

)
+ η2S5Y5

(
2− S5

S
− S

S5

)
+

µ2

ϕ

(
Y5 −

π2

σ2

)
CY

= −(α + η2Y5)
(S− S5)

2

S
+ η1S5V5

(
3− S5

S
− SVI5

S5V5 I
− IV5

I5V

)
+

µ2(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)

ϕη2εσ1σ2
(<8 − 1)CY.

It is obvious that, for all S, I, V, CY > 0, we have dΦ5
dt ≤ 0. We also have dΦ5

dt = 0 when
(S, I, V, CY) = (S5, I5, V5, 0). The system’s solutions tend to Υ

′
5, which includes elements

satisfying S = S5, I = I5, V = V5, and this implies that dS
dt = dI

dt = 0. The first and second
equations of system (4) become

0 =
dS
dt

= ρ− αS5 − η1S5V5 − η2S5Y,

0 =
dI
dt

= η1S5V5 − aI5 − µ1CI I5,

which give Y(t) = Y5 and CI(t) = CI
5 for all t and, therefore, Υ

′
5 = {Ð5}. Applying the

Lyapunov–LaSalle asymptotic stability theorem, we get that Ð5 is G.A.S.

Theorem 7. If <6 > 1, <7 ≤ 1 and <2/<1 > 1, then Ð6 is G.A.S.

Proof. Define Φ6(S, I, Y, V, CI , CY) as:

Φ6 = S6z
(

S
S6

)
+ I6z

(
I
I6

)
+

1
ϕ

Y6z
(

Y
Y6

)
+

η1S6

ε
V6z

(
V
V6

)
+

µ1

σ1
CI +

µ2

ϕσ2
CY

6 z
(

CY

CY
6

)
.

Calculating dΦ6
dt as:

dΦ6

dt
=

(
1− S6

S

)
(ρ− αS− η1SV − η2SY) +

(
1− I6

I

)(
η1SV − aI − µ1CI I

)
+

1
ϕ

(
1− Y6

Y

)(
ϕη2SY− δY− µ2CYY

)
+

η1S6

ε

(
1− V6

V

)
(bI − εV)

+
µ1

σ1

(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
1−

CY
6

CY

)(
σ2CYY− π2CY

)
. (20)
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We collect the terms of Equation (20) to get

dΦ6

dt
=

(
1− S6

S

)
(ρ− αS) + η2S6Y− aI − η1SV

I6

I
+ aI6 + µ1CI I6

− δ

ϕ
Y− η2SY6 +

δ

ϕ
Y6 +

µ2

ϕ
CYY6 + η1S6

bI
ε
− η1S6V6

bI
εV

+ η1S6V6 −
µ1π1

σ1
CI − µ2π2

ϕσ2
CY − µ2

ϕ
CY

6 Y +
µ2π2

ϕσ2
CY

6 .

Using the steady state conditions for Ð6:

ρ = αS6 + η1S6V6 + η2S6Y6, η1S6V6 = aI6, η2S6Y6 =
δ

ϕ
Y6 +

µ2
ϕ

CY
6 Y6, Y6 =

π2
σ2

, V6 =
bI6
ε

.

We obtain

dΦ6

dt
=

(
1− S6

S

)
(αS6 − αS) + (η1S6V6 + η2S6Y6)

(
1− S6

S

)
− η1S6V6

SVI6

S6V6 I

+ η1S6V6 − η2S6Y6
S
S6

+ η2S6Y6 − η1S6V6
IV6

I6V
+ η1S6V6 + µ1

(
I6 −

π1

σ1

)
CI

= −α
(S− S6)

2

S
+ η1S6V6

(
3− S6

S
− SVI6

S6V6 I
− IV6

I6V

)
+ η2S6Y6

(
2− S6

S
− S

S6

)
+ µ1

(
I6 −

π1

σ1

)
CI

= −(α + η2Y6)
(S− S6)

2

S
+ η1S6V6

(
3− S6

S
− SVI6

S6V6 I
− IV6

I6V

)
+

µ1(π1η1bσ2 + π2η2εσ1 + αεσ1σ2)

η1bσ1σ2
(<7 − 1)CI .

Hence, if <7 ≤ 1, then dΦ6
dt ≤ 0 for all S, I, V, CI > 0. Furthermore, dΦ6

dt = 0 occurs at
(S, I, V, CI) = (S6, I6, V6, 0). The system’s solutions tend to Υ

′
6, which includes elements

satisfying S = S6, V = V6, and hence dS
dt = 0. From the first equation of system (4), we have

0 =
dS
dt

= ρ− αS6 − η1S6V6 − η2S6Y,

which gives Y(t) = Y6 and dY
dt (t) = 0 for all t and, from the third equation of system (4),

implies that

0 =
dY
dt

= ϕη2S6Y6 − δY6 − µ2CYY6,

which ensures that CY(t) = CY
6 for all t and hence Υ

′
6 = {Ð6}. Applying the Lyapunov–

LaSalle asymptotic stability theorem, we get that Ð6 is G.A.S.

Theorem 8. If <7 > 1 and <8 > 1, then Ð7 is G.A.S.

Proof. Define Φ7(S, I, Y, V, CI , CY) as:

Φ7 = S7z
(

S
S7

)
+ I7z

(
I
I7

)
+

1
ϕ

Y7z
(

Y
Y7

)
+

η1S7
ε

V7z
(

V
V7

)
+

µ1
σ1

CI
7z
(

CI

CI
7

)
+

µ2
ϕσ2

CY
7 z
(

CY

CY
7

)
.

Calculating dΦ7
dt as:
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dΦ7

dt
=

(
1− S7

S

)
(ρ− αS− η1SV − η2SY) +

(
1− I7

I

)(
η1SV − aI − µ1CI I

)
+

1
ϕ

(
1− Y7

Y

)(
ϕη2SY− δY− µ2CYY

)
+

η1S7

ε

(
1− V7

V

)
(bI − εV)

+
µ1

σ1

(
1−

CI
7

CI

)(
σ1CI I − π1CI

)
+

µ2

ϕσ2

(
1−

CY
7

CY

)(
σ2CYY− π2CY

)
. (21)

Collecting terms of Equation (21), we obtain

dΦ7

dt
=

(
1− S7

S

)
(ρ− αS) + η2S7Y− aI − η1SV

I7

I
+ aI7 + µ1CI I7 −

δ

ϕ
Y

− η2SY7 +
δ

ϕ
Y7 +

µ2

ϕ
CYY7 + η1S7

bI
ε
− η1S7V7

bI
εV

+ η1S7V7 −
µ1π1

σ1
CI

− µ1CI
7 I +

µ1π1

σ1
CI

7 −
µ2π2

ϕσ2
CY − µ2

ϕ
CY

7 Y +
µ2π2

ϕσ2
CY

7 .

Using the steady state conditions for Ð7:

ρ = αS7 + η1S7V7 + η2S7Y7, η1S7V7 = aI7 + µ1CI
7 I7,

η2S7Y7 =
δ

ϕ
Y7 +

µ2

ϕ
CY

7 Y7, I7 =
π1

σ1
, Y7 =

π2

σ2
, V7 =

bI7

ε
.

We obtain

dΦ7

dt
=

(
1− S7

S

)
(αS7 − αS) + (η1S7V7 + η2S7Y7)

(
1− S7

S

)
− η1S7V7

SVI7

S7V7 I
+ η1S7V7

− η2S7Y7
S
S7

+ η2S7Y7 − η1S7V7
IV7

I7V
+ η1S7V7

= −(α + η2Y7)
(S− S7)

2

S
+ η1S7V7

(
3− S7

S
− SVI7

S7V7 I
− IV7

I7V

)
.

Hence, dΦ7
dt ≤ 0 for all S, I, V > 0 where dΦ7

dt = 0 occurs at (S, I, V) = (S7, I7, V7).
The system’s solutions (4) tend to Υ

′
7, which includes elements satisfying (S, I, V) =

(S7, I7, V7), and then dS
dt = dI

dt = 0. The first and second equations of system (4) become

0 =
dS
dt

(t) = ρ− αS7 − η1S7V7 − η2S7Y(t),

0 =
dI
dt

(t) = η1S7V7 − aI7 − µ1CI(t)I7,

which ensure that Y(t) = Y7, dY
dt (t) = 0 and CI(t) = CI

7 for all t. The third equation of
system (4) gives

0 =
dY
dt

= ϕη2S7Y7 − δY7 − µ2CYY7,

which guarantees that CY(t) = CY
7 for all t and then Υ

′
7 = {Ð7}. Applying the Lyapunov–

LaSalle asymptotic stability theorem, we get that Ð7 is G.A.S.

The global stability results given in Theorems 1–8 are summarized in Table 2.
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Table 2. Conditions on the global stability of the steady state of model (4).

Steady State Global Stability Conditions

Ð0 = (S0, 0, 0, 0, 0, 0) <1 ≤ 1 and <2 ≤ 1

Ð1 = (S1, I1, 0, V1, 0, 0) <1 > 1, <2/<1 ≤ 1 and <3 ≤ 1

Ð2 = (S2, 0, Y2, 0, 0, 0) <2 > 1, <1/<2 ≤ 1 and <4 ≤ 1

Ð3 = (S3, I3, 0, V3, CI
3, 0) <3 > 1 and <5 ≤ 1

Ð4 = (S4, 0, Y4, 0, 0, CY
4 ) <4 > 1 and <6 ≤ 1

Ð5 = (S5, I5, Y5, V5, CI
5, 0) <5 > 1, <8 ≤ 1 and <1/<2 > 1

Ð6 = (S6, I6, Y6, V6, 0, CY
6 ) <6 > 1, <7 ≤ 1 and <2/<1 > 1

Ð7 = (S7, I7, Y7, V7, CI
7, CY

7 ) <7 > 1 and <8 > 1

6. Numerical Simulations

In this section, we numerically show the global stability of steady states using the
values of the parameters given in Table 3. Moreover, we present a comparison between
single and dual infections.

Table 3. The values of parameters of system (4).

Parame-
ter

Value Parame-
ter

Value Parame-
ter

Value Parame-
ter

Value

ρ 10 a 0.5 π1 0.1 ε 2

α 0.01 ϕ 0.2 π2 0.1 σ1 Varied

η1 Varied δ 0.2 µ1 0.2 σ2 Varied

η2 Varied b 5 µ2 0.2

6.1. Stability of the Steady States

In this subsection, we numerically solve the system with three different initial states
(S, I, Y, V, CI , CY)(0) as:

Initial-1: (600, 1.5, 1, 5, 1, 0.2),
Initial-2: (500, 1, 1.5, 2, 2, 0.1),
Initial-3: (300, 0.5, 2, 1.5, 3, 0.05).
We choose the values of η1, η2, σ1 and σ2 according to the following sets:
Set 1 (Stability of Ð0): η1 = 0.0001, η2 = 0.0005 and σ1 = σ2 = 0.2. For this set of

parameters, we have <1 = 0.50 < 1 and <2 = 0.50 < 1. Figure 2 demonstrates that the
trajectories starting from different initials reach the steady state Ð0 = (1000, 0, 0, 0, 0, 0).
This confirms that Ð0 is G.A.S based on Theorem 1. In this situation, both HIV and HTLV
will be cleared.

Set 2 (Stability of Ð1): η1 = η2 = 0.0005, σ1 = 0.003 and σ2 = 0.2. With such choice,
we get <2 = 0.50 < 1 < 2.50 = <1, <3 = 0.48 < 1 and hence <2/<1 = 0.2 < 1. The steady
state Ð1 exists with Ð1 = (400, 12, 0, 30, 0, 0), and the conditions given in Table 1 are verified.
Figure 3 shows the stability of the system around Ð1 initiating from different states. Thus,
the numerical simulations support the result obtained in Theorem 2. This leads to the
situation of persistent HIV single infection but with an ineffective CTL immune response.

Set 3 (Stability of Ð2): η1 = 0.0001, η2 = 0.002, σ1 = 0.001 and σ2 = 0.01. Then,
we calculate <1 = 0.50 < 1 < 2 = <2, <4 = 0.67 < 1 and then <1/<2 = 0.25 < 1. It is
obvious that the conditions mentioned in Table 1 are satisfied and Ð2 = (500, 0, 5, 0, 0, 0).
Figure 4 declares that the solutions of the system starting from different states tend to the
steady state Ð2. This shows the consistency between the numerical results and theoretical
result of Theorem 3. Thus, a persistent HTLV single infection with an ineffective CTL
immune response will be reached.
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Figure 2. Solutions of system (4) when <1 ≤ 1 and <2 ≤ 1.

Set 4 (Stability of Ð3): η1 = 0.001, η2 = 0.003 and σ1 = σ2 = 0.01. Then, we calculate
<3 = 1.43 > 1 and <5 = 0.86 < 1. From Table 1 and Figure 5, we conclude that the
trajectories starting with different states tend to Ð3 = (285.83, 10, 0, 24.97, 1.07, 0). Therefore,
Ð3 is G.A.S, and this is compatible with Theorem 4. This leads to the case of persistent HIV
single infection with an effective HIV-specific CTL immune response.
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Figure 3. Solutions of system (4) when <1 > 1, <2/<1 ≤ 1 and <3 ≤ 1.

Set 5 (Stability of Ð4): η1 = 0.00025, η2 = 0.005, σ1 = 0.05 and σ2 = 0.02. Then,
we calculate <4 = 1.43 > 1 and <6 = 0.36 < 1. According to Table 1, Ð4 exists with
Ð4 = (285.70, 0, 5, 0, 0, 0.43). In Figure 6, we draw the solutions of the system with three
different initial states. It is clear that Ð4 is G.A.S, which supports Theorem 5. In this case,
a persistent HTLV single infection with effective HTLV-specific CTL is reached.
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Figure 4. Solutions of system (4) when <2 > 1, <1/<2 ≤ 1 and <4 ≤ 1.

Set 6 (Stability of Ð5): η1 = 0.001, η2 = 0.0015, σ1 = 0.15 and σ2 = 0.033. Then,
we calculate <5 = 1.29 > 1, <8 = 0.93 < 1 and <1/<2 = 3.33 > 1. The numerical
results demonstrated in Table 1 and Figure 7 show that Ð5 = (667.12, 0.67, 2.22, 1.67, 5.84, 0)
exists and based on Theorem 6, Ð5 is G.A.S. This case leads to a persistent dual infection
with HTLV and HIV where the HIV-specific CTL is effective while the HTLV-specific CTL
is ineffective.
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Figure 5. Solutions of system (4) when <3 > 1 and <5 ≤ 1.

Set 7 (Stability of Ð6): η1 = 0.0007, η2 = 0.005, σ1 = 0.005 and σ2 = 0.1. We compute
<6 = 2.33 > 1, <7 = 0.70 < 1 and <2/<1 = 1.43 > 1. Based on the conditions in
Table 1, the steady state Ð6 = (285.72, 11.43, 1, 28.58, 0, 0.43) exists. In Figure 8, we plot the
numerical solutions of the system and show that Ð6 is G.A.S (Theorem 7). This situation
leads to a persistent dual infection with HTLV and HIV where the HTLV-specific CTL is
effective and the HIV-specific CTL does not work.
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Figure 6. Solutions of system (4) when <4 > 1 and <6 ≤ 1.

Set 8 (Stability of Ð7): η1 = 0.002, η2 = 0.0026, σ1 = 0.04 and σ2 = 0.1. These data
give <7 = 3.98 > 1 and <8 = 1.04 > 1. Based on the data mentioned in Table 1, the steady
state Ð7 = (398.48, 2.50, 1, 6.25, 7.46, 0.04) exists. Figure 9 illustrates that the solutions of
the system initiating with three different states tend to Ð7. In this case, a persistent dual
infection with HTLV and HIV is reached where both immune responses are well working.
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Figure 7. Solutions of system (4) when <5 > 1, <8 ≤ 1, and <1/<2 > 1.

For further confirmation, we study the local stability of the system’s steady states.
We first calculate the Jacobian matrix J = J(S, I, Y, V, CI , CY) of system (4) as:

J =



−(α + η1V + η2Y) 0 −η2S −η1S 0 0
η1V −

(
a + µ1CI) 0 η1S −µ1 I 0

ϕη2Y 0 ϕη2S−
(
δ + µ2CY) 0 0 −µ2Y

0 b 0 −ε 0 0
0 σ1CI 0 0 σ1 I − π1 0
0 0 σ2CY 0 0 σ2Y− π2

.
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Figure 8. Solutions of system (4) when <6 > 1, <7 ≤ 1, and <2/<1 > 1.
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Figure 9. Solutions of system (4) when <7 > 1 and <8 > 1.

Then, we compute the eigenvalues λi, i = 1, 2, ..., 6 of J at each steady state. The steady
state is locally stable if the eigenvalues satisfy Re(λi) < 0, for all i = 1, 2, ..., 6. We use the
values of the parameters η1, η2, σ1, and σ2 given in Sets 1–8 and compute all non-negative
steady states and the corresponding real parts of the eigenvalues (see Table 4). The local
stability results agree with the global stability results given in Theorems 1–8.
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Table 4. Local stability of positive steady state Ði, i = 0, 1, ..., 7.

Set Steady States (Re(λi),i = 1, 2, ..., 6) Stability

1 Ð0 = (1000, 0, 0, 0, 0, 0) (−2.28,−0.22,−0.1,−0.1,−0.1,−0.01) stable

2 Ð0 = (1000, 0, 0, 0, 0, 0)
Ð1 = (400, 12, 0, 30, 0, 0)

(−3, 0.5,−0.1,−0.1,−0.1,−0.01)
(−2.5,−0.16,−0.1,−0.01,−0.01,−0.06)

unstable
stable

3
Ð0 = (1000, 0, 0, 0, 0, 0)
Ð2 = (500, 0, 5, 0, 0, 0)

(−2.28,−0.22, 0.2,−0.1,−0.1,−0.01)
(−2.15,−0.35,−0.1,−0.05,−0.01,−0.01)

unstable
stable

4

Ð0 = (1000, 0, 0, 0, 0, 0)
Ð1 = (200, 16, 0, 40, 0, 0)
Ð2 = (333.33, 0, 6.67, 0, 0, 0)
Ð3 = (285.83, 10, 0, 24.97, 1.07, 0)

(−3.61, 1.11, 0.4,−0.1,−0.1,−0.01)
(−2.51,−0.02,−0.02,−0.1,−0.08, 0.06)
(−2.74, 0.24,−0.1,−0.02,−0.02,−0.03)
(−2.72,−0.01,−0.01,−0.1,−0.03,−0.02)

unstable
unstable
unstable
stable

5

Ð0 = (1000, 0, 0, 0, 0, 0)
Ð1 = (800, 4, 0, 10, 0, 0)
Ð2 = (200, 0, 8, 0, 0, 0)
Ð3 = (888.89, 2, 0, 5, 0.28, 0)
Ð4 = (285.70, 0, 5, 0, 0, 0.43)

(−2.60, 0.8,−0.1,−0.1, 0.10,−0.01)
(−2.50, 0.6,−0.1, 0.1,−0.01,−0.01)
(−2.15,−0.35,−0.1,−0.03,−0.03, 0.06)
(−2.56, 0.69,−0.1,−0.001,−0.001,−0.01)
(−2.21,−0.29,−0.01,−0.01,−0.1,−0.02)

unstable
unstable
unstable
unstable
stable

6

Ð0 = (1000, 0, 0, 0, 0, 0)
Ð1 = (200, 16, 0, 40, 0, 0)
Ð2 = (666.67, 0, 3.33, 0, 0, 0)
Ð3 = (857.14, 0.67, 0, 1.67, 8.21, 0)
Ð4 = (687.5, 0, 3.03, 0, 0, 0.03)
Ð5 = (667.12, 0.67, 2.22, 1.67, 5.84, 0)

(−3.61, 1.11, 0.1,−0.1,−0.1,−0.01)
(−2.51, 2.3,−0.14,−0.02,−0.02,−0.1)
(−3.22, 0.72,−0.1,−0.01,−0.01, 0.01)
(−4.12,−0.01,−0.01,−0.1, 0.06,−0.01)
(−3.25, 0.75,−0.1,−0.004,−0.004,−0.01)
(−3.65,−0.01,−0.01,−0.03,−0.01,−0.01)

unstable
unstable
unstable
unstable
unstable
stable

7

Ð0 = (1000, 0, 0, 0, 0, 0)
Ð1 = (285.71, 14.29, 0, 35.71, 0, 0)
Ð2 = (200, 0, 8, 0, 0, 0)
Ð4 = (666.67, 0, 1, 0, 0, 2.33)
Ð6 = (285.72, 11.43, 1, 28.58, 0, 0.43)

(−3.27, 0.8, 0.77,−0.1,−0.1,−0.01)
(−2.50,−0.1,−0.02,−0.01, 0.09,−0.03)
(−2.37, 0.7,−0.13,−0.1,−0.025,−0.025)
(−2.95, 0.45,−0.0004,−0.0004,−0.1,−0.01)
(−2.50,−0.01,−0.01,−0.01,−0.01,−0.04)

unstable
unstable
unstable
unstable
stable

8

Ð0 = (1000, 0, 0, 0, 0, 0)
Ð1 = (100, 18, 0, 45, 0, 0)
Ð2 = (384.62, 0, 6.15, 0, 0, 0)
Ð3 = (444.44, 2.5, 0, 6.25, 8.61, 0)
Ð4 = (793.65, 0, 1, 0, 0, 1.06)
Ð5 = (384.62, 2.5, 1.35, 6.25, 7.12, 0)
Ð7 = (398.48, 2.50, 1, 6.25, 7.46, 0.04)

(−4.5, 2, 0.32,−0.1,−0.1,−0.01)
(−2.51, 0.62,−0.04,−0.04,−0.15,−0.1)
(−3.35, 0.85, 0.52,−0.1,−0.01,−0.01)
(−4.20,−0.01,−0.01,−0.1, 0.03,−0.02)
(−4.17, 1.67,−0.0003,−0.0003,−0.1,−0.01)
(−3.91,−0.01,−0.01, 0.03,−0.01,−0.01)
(−3.98,−0.01,−0.01,−0.004,−0.004,−0.01)

unstable
unstable
unstable
unstable
unstable
unstable
stable

6.2. Comparison Study

In this part, we make a comparison between single and dual infection dynamics.
Influence of HTLV infection on the dynamics of HIV single infection
To study the effect of HTLV infection on the dynamics of HIV single infection, we make

a comparison between model (2) and (4). We select η1 = 0.002, η2 = 0.005, σ1 = 0.02,
and σ2 = 0.04 and take the following initial condition:

Initial-4: (300, 4, 1.5, 10, 3, 0.05).
Figure 10 shows that, if an individual who only has HIV infection is dually infected

with HTLV, then the concentrations of uninfected CD4+T cells and HIV-specific CTLs are
decayed, while the concentration of free HIV particles reaches the same value in both HIV
single infection and HTLV/HIV dual infection. In fact, this observation is consistent with
the recent study [50], where it has been found that there are no noteworthy differences
in the concentration of HIV particles in comparisons between HIV single infected and
HTLV/HIV dual infected patients.
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Figure 10. Comparison between the dynamics of HIV single infection and HTLV/HIV dual infection.

Influence of HIV infection on the dynamics of HTLV single infection
To see the effect of HIV infection on the dynamics of HTLV single infection, we perform

a comparison between models (3) and (4).
We select the values η1 = 0.001, η2 = 0.006, σ1 = 0.027, and σ2 = 0.02 and take the

following initial state:
Initial-5: = (220, 3.5, 5, 9, 0.03, 0.35).
Figure 11 displays the solutions of two systems (3) and (4). We observe that the

concentrations of uninfected CD4+T cells and HTLV-specific CTLs are smaller in the case
of dual infection than that of HTLV single infection. In contrast, the concentration of HTLV-
infected cells reaches the same value in both HTLV single and HTLV/HIV dual infections.
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Figure 11. Comparison between the dynamics of HTLV-I single infection and HTLV/HIV dual infection.

7. Conclusions and Discussions

This work proposes and investigates a within host HTLV/HIV dual infection model.
The model contains six compartments, uninfected CD4+T cells, HIV-infected cells, free
HIV particles, HIV-specific CTLs, HTLV-infected cells, and HTLV-specific CTLs. HIV was
assumed to be transmitted through free-to-cell touch, while the HTLV was transmitted
via direct infected-to-cell touch. We first showed that the model is biologically acceptable
by proving that the solutions are non-negative and bounded. We calculated eight steady
states in which their existence and stability are determined by eight threshold parameters.
We constructed suitable Lyapunov functions and applied the Lyapunov–LaSalle asymptotic
stability theorem to prove the global asymptotic stability of all steady states. We solved the
system numerically and concluded that both theoretical and numerical results are matched.
We compared between the dynamical behavior of single HTLV (or HIV) infection and dual
HTLV/HIV infection. The model analysis suggested that dual infected individuals with
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both viruses will have a smaller number of uninfected CD4+T cells in comparison with
HIV or HTLV single infected individuals.

Our model can be extended in many directions:

• In model (4), we supposed that uninfected CD4+T cells are created at a constant
rate ρ and die at linear rate αS. In fact, it would be more acceptable to examine the
density dependent creation rate. One possibility is to consider a logistic growth for
the uninfected CD4+T cells. Moreover, the model assumed bilinear incidence rate of
infection. However, such bilinear form may not describe the virus dynamics during
the full course of infection. Therefore, it is reasonable to consider other forms of the
incidence rate such as: saturated incidence, Beddington–DeAngelis incidence and
general incidence [51].

• Model (4) assumed that once uninfected CD4+T cells are contacted by HIV particles or
HTLV-infected cells, they become infected instantaneously. However, such a process
needs time. The effect of intracellular time delay on the dynamics of dual infection has
a significant importance. Delayed single virus infection models have been formulated
and analyzed in many articles (see, e.g., [52–56]). Another way to include such delay
period is to consider two types of infected cells: latent and active [45].

• Model (4) supposes that the viruses and cells are equally distributed in the domain
with no spatial variations. Taking into account spatial variations in the case of
HTLV/HIV dual infection will be significant [16,57].
We mention that these extensions may increase the numbers of parameters, and this
requires a large number of measurements (blood samples) for estimation of the
parameters.

We leave these extensions as future work.
It is well known that CTLs play a significant role in controlling HTLV and HIV single

infections by killing infected cells. When the CTL immunity is not considered, model (4)
leads to a model with competition between HTLV and HIV on CD4+T cells:

dS
dt = ρ− αS− η1SV − η2SY,
dI
dt = η1SV − aI,
dY
dt = ϕη2SY− δY,
dV
dt = bI − εV.

(22)

This system has only three steady states: infection-free steady state, Ð0 = (S0, 0, 0, 0),
persistent HIV single infection steady state, Ð1 = (S1, I1, 0, V1), and persistent HTLV
single infection steady state, Ð2 = (S2, 0, Y2, 0), where S0, S1, I1, V1, S2 and Y2 are given
in Section 4. The existence of these three steady states is determined by two threshold
parameters <1 and <2, which are also defined in Section 4.

Corollary 1. For system (22), the following statements hold true.

(i) If <1 ≤ 1 and <2 ≤ 1, then Ð0 is G.A.S.
(ii) If <1 > 1 and <2/<1 ≤ 1, then Ð1 is G.A.S.
(iii) If <2 > 1 and <1/<2 ≤ 1, then Ð2 is G.A.S.

Therefore, the system will tend to one of the three steady states Ð0, Ð1 and Ð2.
The above result says that, in the absence of CTL immunity, in the competition between
HTLV and HIV consuming common resources, only one type of viruses with maximum
basic reproduction number can survive. However, in our proposed model (4) involving
HIV- and HTLV-specific CTLs, HTLV and HIV coexist in a steady state. We can consider
this situation as follows. Since CTL immune responses suppress viral progression, the com-
petition between HTLV and HIV is also suppressed, and the coexistence of HTLV and HIV
occurs [58].
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It has been reported in [4] that HIV has two classes of target cells, CD4+T cells and
macrophages. In this case, HIV has two resources and then the coexistence of HTLV and
HIV can occur even when the immune system is workless. HIV single infection models with
two classes of target cells have been studied in several works (see, e.g., [6,10]) Therefore,
our model can be extended to take into account the second class of target cells for HIV,
macrophages. We leave this extension for future works.
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