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Abstract: This paper is dedicated to development of mathematical models for polynomial spline
curve formation given extreme vector derivatives. This theoretical problem is raised in the view of
a wide variety of theoretical and practical problems considering motion of physical objects along
certain trajectories with predetermined laws of variation of speed, acceleration, jerk, etc. The analysis
of the existing body of work on computational geometry performed by the authors did not reveal
any systematic research in mathematical model development dedicated to solution of similar tasks.
The established purpose of the research is therefore to develop mathematical models of formation
of spline curves based on polynomials of various orders modeling the determined trajectories. The
paper presents mathematical models of spline curve formation given extreme derivatives of the
initial orders. The paper considers construction of Hermite and Bézier spline curves of various
orders consisting of various segments. The acquired mathematical models are generalized for the
cases of vector derivatives of higher orders. The presented models are of systematic nature and are
universal, i.e., they can be applied in formation of any polynomial spline curves given extreme vector
derivatives. The paper provides a number of examples validating the presented models.

Keywords: segment; spline curve; extreme derivatives; order of polynomial; connection smoothness

1. Introduction

Formation of composite polynomial spline curves given the initial extreme derivatives
at the endpoints of the segments is finding increasing application in solutions to a variety
of tasks of science and manufacture. For example, in computer animation, camera motion
along a curvilinear trajectory is modeled as motion along a curved line r(t), t1 ≤ t ≤ t2.
Camera trajectory calculation is performed with consideration for laws of variation of
camera velocity v(t) = dr

dt and acceleration a(t) = dv
dt = d2r

dt2 throughout the trajectory [1].
In machine-building cutting tool trajectory calculation through Hermite cubic spline

interpolation is applied in pocket machining of surfaces of arbitrary shape. In this regard,
it is noted that that cutting tool acceleration is not continuous, which results in machining
defects [2].

One of the main problems in development of high-speed cutting NC systems is
achieving seamless cutting tool motion. The models of NC systems developed for this
purpose ensure smoothness of acceleration a(t) and continuity of jerk defined by the third
vector derivative [3–5]: j = da

dt = d3r
dt3 .

The fourth vector derivative is called snap dj
dt = d4r

dt4 . It is applied, for example, in
development of minimum snap trajectory for quadrotors [6].

Papers [7,8] apply the sixth vector derivative in Apophis asteroid trajectory calculation
in Earth gravity field.

As follows from the mentioned papers, spline curve formation through extreme
derivatives SC(n)

ED (spline curve extreme derivative of nth order) is relevant in solution to a
variety of practical tasks.
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There are approaches to development of mathematical models of SC(n)
ED formation

known from scientific papers on spline curve theory. One should trace the origins of this
development to cubic spline interpolation through formation of Hermite segments given
first-order extreme derivatives subsequently connected with smoothness C2 into cubic
SC(3)

ED [1,9–19]. The SC(3)
ED model later became the basis for development of mathematical

model of a Hermite segment SCS(5)
ED (spline curve segment) described by a polynomial of

the fifth order given the extreme derivatives of the first and the second order [1]. However,
in subsequent formation of the SC(5)

ED mathematical model, the first and the second vector
derivatives at the first point of the first segment and at the final point of the final segment
were not initially specified, therefore the mathematical model resulted in a system of linear
equations with the number of unknown values exceeding the number of equations. In the
course of development of this system, the fact that it is incomplete has been revealed. The
author of paper [1] made a decision to reduce the number of unknown values down to
the number of equations by assigning values to certain extreme vector derivatives. The
resultant approach to solution of the problem of SC(5) formation is of purely theoretical
nature. In practice, the more relevant approach is SC(5)

ED formation. According to this

approach, both the segment SCS(5)
ED and the composite curve SC(5)

ED acquired through
connection of segments with smoothness C4 are formed through the same mathematical
model.

We have to acknowledge the paper of theoretical nature proposing a mathematical
model of SC(3)

ED and SC(4)
ED formation in the form of B-spline curves interpolating discrete

arrays of points in the plane [20]. The paper considers vector derivatives of orders one to
three as given extreme derivatives. It is noted that the problem of spatial interpolation
with consideration for curvature and torsion in order to acquire SCED does not yet have
a solution. In this regard, the authors of the paper [20] provide an explanation that it is
virtually impossible to evaluate corresponding directions and magnitudes of vectors of the
second and the third derivative in SCED formation. We were unable to find more modern
papers in this area of research.

Therefore, with regard for practical requirements in models and algorithms for for-
mation of curves SC(n)

ED, n > 3 and taking into account the existing theoretical basis of
mathematical models of spline curves, the following purpose of the research is established:
to develop mathematical models of formation of polynomial curves SC(n)

ED, n > 3 and to
validate these models on numeric experiments.

Section 2 of the present paper considers the conditions for formation of spline curves
given extreme derivatives of the initial orders and provides generalizations for the case of
first k vector derivatives.

Section 3 considers the mathematical models and many examples for closed and
non-closed polynomial spline curves of various orders and consisting of various numbers
of segments.

2. Conditions for Spline Curve Formation Given Extreme Derivatives

At the initial stage of analytical spline curve shaping given extreme derivatives it is
essential to know the total number of conditions for shaping. Knowing the total number of
conditions allows one to determine the degree of a polynomial describing the segment—or
each segment—of the desired spline curve.

2.1. Conditions for Hermite Cubic Sspline Curve Shaping

It is known that a cubic spline segment can be constructed given boundary conditions
P1, P′1 and P2, P′2 [1,9–19] (see Figure 1).
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ber of the unknown coefficients of all polynomials of the third degree describing the con-
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Figure 1. Hermitian cubic segment.

In the general case, the order of polynomial describing the segment through extreme
derivatives is determined through formula n = 2m + 1, where m represents the number
of pairs of extreme derivatives at segment endpoints. As follows from the technique of

algebraic definition of polynomial coefficients of cubic spline p(t) =
4
∑

i=1
Aiti−1, t1 ≤ t ≤ t2,

the existence of four boundary conditions resulting in respective algebraic equations is
sufficient for unambiguous definition of four coefficients of the polynomial.

Eight conditions defining four vector coefficients of each polynomial describing a
segment are required in order to define a cubic spline curve consisting of two segments.
These conditions include the given boundary conditions P1, P′1; P3, P′3, and intermediate
conditions in connection point P2 (see Figure 2): P2 = p1(t = t2), P2 = p2(t = 0);
P′2 = p′1(t = t2), P′2 = p′2(t = 0), where p1(t) and p2(t) are polynomials of respective
segments s1 and s2.
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Figure 2. Two-segment Hermite cubic spline curve.

As follows from the intermediate conditions, the point P2 should be considered double
as well as the unknown derivative P′2 at that point. Each boundary and intermediate
condition is described by a linear algebraic equation. Simultaneously, these equations
unambiguously define the unknown coefficients of the polynomials of the connected
segments. A general cubic spline curve consisting of (j − 1) segments, where j is the
number of points of the curve, is formed through a total number of N conditions, where N
is obviously defined through formula N = 4(j− 1). This number is also the total number
of the unknown coefficients of all polynomials of the third degree describing the connected
segments.

2.2. Conditions for Formation of a Spline Curve of Segments Described by Polynomials of Higher Degree

A segment with two pairs of extreme derivatives (see Figure 3) is described, accord-

ing to the formula n = 2m + 1, by a polynomial of the fifth degree p(t) =
6
∑

i=1
Aiti−1,

t1 ≤ t ≤ t2. Six conditions P1, P′1, P′′1 ; P2, P′2, P′′2 unambiguously define six coefficients of
this polynomial [1].
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Figure 3. Hermitian fifth-degree segment.

Formation of a spline curve consisting of two segments defined by fifth-degree poly-
nomials requires 12 conditions. These conditions include the given boundary conditions
P1, P′1, P′′1 ; P3, P′3, P′′3 ; the intermediate conditions in connection point P2 (see Figure 4):
P2 = p1(t = t2), P2 = p2(t = 0); P′2 = p′1(t = t2), P′2 = p′2(t = 0); P′′2 = p′′1 (t = t2),
P′′2 = p′′2 (t = 0), where p1(t) and p2(t) are polynomials of the fifth degree of respective
segments s1 and s2.
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Figure 4. Fifth-degree Hermite spline curve of two segments.

Obviously, the point P2 should be considered double, as well as the first- and the
second-order derivatives at it. The algorithms of formation of Hermite spline curves
based on fifth-degree and seventh-degree polynomials are thoroughly considered in
Sections 3.1–3.5 respectively.

Formation of a general spline curve consisting of (j− 1) smoothly connected segments
defined by fifth-degree polynomials requires the total number of N = 6(j − 1) condi-
tions. This number is also the total number of the unknown coefficients of all fifth-degree
polynomials describing (j− 1) segments.

If we consider two given points P1 and P2, as well as the first k vector derivatives
at each point, then, according to the formula n = 2m + 1, the degree of the polynomial
defining a segment with endpoints P1 and P2 equals n = 2k + 1. It is possible to define
the total number of conditions for formation of a general spline curve consisting of (j− 1)
segments each described by a polynomial of degree 2k + 1. It is calculated through the
formula N = 2(k + 1)(j − 1). Thus, for example, if k = 2 and j = 3, N = 12, which
correlates to the spline curve depicted on Figure 4.

2.3. Conditions for Closed Spline Curve Formation

In order to form a closed spline curve given a discrete array of j points, it is required
to fulfill the total number of N = 2(k + 1)j conditions. Here k represents the number of
pairs of extreme derivatives of the initial orders at the endpoints of the formed spline curve,
j represents the number of segments. For example, given four points Pj, j = 1, . . . , 4 with

respective derivatives P′j, P′′j it is possible to form a closed Hermite spline curve based on
a fifth-degree polynomial (see Figure 5). The resultant curve consists of four segments
connected with smoothness C4.
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Obviously, the total number of conditions defining this spline curve equals N = 24, i.e.,
six conditions for each segment of the curve. Let us list them: the boundary (given) condi-
tions P1, . . . P4, whereby P1 = p4(t = t4), P1 = p1(t = 0); P2 = p1(t = t1), P2 = p2(t = 0);
P3 = p2(t = t2), P3 = p3(t = 0); P4 = p3(t = t3), P4 = p4(t = 0); 0 ≤ t ≤ tj; the interme-

diate (sought) conditions in the segments connection points are as follows: P′1 = p′4(t = t4),
P′1 = p′1(t = 0), P′2 = p′1(t = t1), P′2 = p′2(t = 0), P′3 = p′2(t = t2), P′3 = p′3(t = 0),
P′4 = p′3(t = t3), P′4 = p′4(t = 0); P′′1 = p′′4 (t = t4), P′′1 = p′′1 (t = 0), P′′2 = p′′1 (t = t1),
P′′2 = p′′2 (t = 0), P′′3 = p′′2 (t = t2), P′′3 = p′′3 (t = 0), P′′4 = p′′3 (t = t3), P′′4 = p′′4 (t = 0).

Obviously, in formation of a polynomial closed spline curve each point of the given
discrete array is considered double, as well as each defined vector derivative at any point
of the array. The formation of closed polynomial splines is thoroughly considered on
examples in Sections 3.3 and 3.7.

3. Spline Curve Formation Given Extreme Derivatives

In the following section let us consider the construction of mathematical models of
polynomial spline curves consisting of various numbers of smoothly connected segments.
The segmental formation of spline curves is based on the concept of a continuous (or
smooth) connection of segments at their common point. In the theory of spline curves
and spline surfaces two types of smoothness are known: geometric Gn and parametric
Gn [1,9,13]. Within the framework of this work, we use the strict concept of Cn smoothness.

3.1. Construction of a Hermite Segment Given First- and Second-Order Extreme Derivatives

Let us assume the points P1(x1, y1, z1) and P2(x2, y2, z2), as well as respective bound-
ary conditions P′1, P′′1 and P′2, P′′2 are given (see Figure 6).
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 
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Let us construct a Hermite spline curve segment p(t) =
n
∑

i=1
Aiti−1, t1 ≤ t ≤ t2 passing

through the points P1, P2 and conforming to the given boundary conditions. Given the
two endpoints and the initial m pairs of derivatives in the endpoints, it is possible to
calculate the interpolating polynomial of order 2m + 1. It is therefore obvious that the
sought segment has to be described by a fifth-order polynomial

p(t) =
6

∑
i=1

Aiti−1, t1 ≤ t ≤ t2. (1)

The vectors P′1, P′2 are the first vector derivatives constituting tangent vectors at
the endpoints of the sough segment s, while P′′1 , P′′2 are the second vector derivatives
constituting vectors of acceleration of a point tracing out the segment s. Obviously, the
given conditions are sufficient in order to define the vector coefficients Ai of the Formula (1).

Let us express the equations for the vector coefficients in the final matrix form[
A
]
= [T] ·

[
G
]
:

[
A
]
=



A1

A2

A3

A4

A5

A6


=



1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1
2 0

−10 10 −6 −4 − 3
2

1
2

15 −15 8 7 3
2 −1

−6 6 −3 −3 − 1
2

1
2


·



P1

P2

P′1
P′2
P′′1
P′′2


. (2)

The matrix Formula (2) of equations defining the vector coefficients of a fifth-degree
polynomial describing a Hermite segment corresponds to the known matrix form by D.
Solomon [1]. The Formula (2) is the basis for computational algorithms of spline curve
formation considered further in the present paper. By substitution of the values of vector
coefficients (2) into the Formula (1) we acquire the sought equation of Hermite spline curve
segment with parameterization 0 ≤ t ≤ 1.

3.2. Construction of a Fifth-Degree Hermite Spline Curve of Two Segments and Generalization for
the Case of (j − 1) Segments

Let us consider the connection of two Hermite segments s1 and s2 (see Figure 7) given
the same boundary conditions as for the previously considered case of one segment s.
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Parameterization of the segments is fulfilled in range t1 ≤ t ≤ t2 for the segment s1
and t2 ≤ t ≤ t3 for the segment s2. Without loss of generality, we accept that t1 = 0 at the
initial point of segment s1 and t2 = 0 at the initial point of segment s2. Let us express the
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polynomial equation of the segments in the following form: pk(t) =
6
∑

i=1
A(k)

i ti−1; k = 1, 2.

Let us express the derivatives of vector function pk(t)

p′k(t) =
6
∑

i=2
A(k)

i (i− 1)ti−2, p′′k (t) =
6
∑

i=3
A(k)

i (i− 1)(i− 2)ti−3,

p′′′k (t) =
6
∑

i=4
A(k)

i (i− 1)(i− 2)(i− 3)ti−4, p′′′′k (t) =
6
∑

i=5
A(k)

i (i− 1)(i− 2)(i− 3)(i− 4)ti−5.

For k = 1 at the initial point P1(t1 = 0) of segment s1 we acquire

p1(0) = P1 = A(1)
1 , p′1(0) = P′1 = A(1)

2 , p′′1 (0) = P′′1 = 2A(1)
3 . (3)

At the final point P2(t2) of segment s1 we acquire

p1(t2) = P2 =
6

∑
i=1

A(1)
i ti−1

2 , p′1(t2) = P′2 =
6

∑
i=2

A(1)
i (i− 1)ti−2

2 , p′′1 (t2) = P′′2 =
6

∑
i=3

A(1)
i (i− 1)(i− 2)ti−3

2 .

For k = 2 at the initial point P2(t2 = 0) of segment s2 we acquire

p2(0) = P2 = A(2)
1 , p′2(0) = P′2 = A(2)

2 , p′′2 (0) = P′′2 = 2A(2)
3 . (4)

At the final point P3(t3) of segment s2 we acquire

p2(t3) = P3 =
6

∑
i=1

A(2)
i ti−1

3 , p′2(t3) = P′3 =
6

∑
i=2

A(2)
i (i− 1)ti−2

3 , p′′1 (t3) = P′′3 =
6

∑
i=3

A(2)
i (i− 1)(i− 2)ti−3

3 .

Thus, through (3), we acquire the expressions for the first three coefficients of the

equation for the first segment s1: A(1)
1 = P1, A(1)

2 = P′1, A(1)
3 = 1

2 P′′1 . The remaining vector

coefficients A(1)
4 , A(1)

5 , A(1)
6 are determined through the system of three linear equations

6
∑

i=1
A(1)

i ti−1
2 − P2 = 0,

6
∑

i=2
A(1)

i (i− 1)ti−2
2 − P′2 = 0,

6
∑

i=3
A(1)

i (i− 1)(i− 2)ti−3
2 − P′′2 = 0.

(5)

The expressions of the first three vector coefficients of segment s2 follow from (4):

A(2)
1 = P2, A(2)

2 = P′2, A(2)
3 = 1

2 P′′2 . The remaining vector coefficients A(2)
4 , A(2)

5 and A(2)
6

are determined through the system of three linear equations

6
∑

i=1
A(2)

i ti−1
3 − P3 = 0,

6
∑

i=2
A(2)

i (i− 1)ti−2
3 − P′3 = 0,

6
∑

i=3
A(2)

i (i− 1)(i− 2)ti−3
3 − P′′3 = 0.

. (6)

The equations for these coefficients are of the following expanded form
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A(2)
4 = − 10(P2−P3)

t3
3

− 6P′2
t2
3
− 4P′3

t2
3
− 1.5P′′2

t3
+

0.5P′′3
t3

,

A(2)
5 = 15(P2−P3)

t4
3

+ 8P′2
t3
3
+ 7P′3

t3
3
+

1.5P′′2
t2
3
− P′′3

t2
3

,

A(2)
6 = − 6(P2−P3)

t5
3
− 3P′2

t4
3
− 3P′3

t4
3
− 0.5P′′2

t3
3

+
0.5P′′3

t3
3

.

In order to connect segments s1 and s2 in point P2, it is required to determine vectors
P′2 and P′′2 . This can be achieved through equality of the third and the fourth derivatives of
vector functions of the segments at the connection point: p′′′1 (t = t2) = p′′′2 (t = 0) , or in
expanded form

6A(1)
4 + 24A(1)

5 t2 + 60A(1)
6 t2

2 = 6A(2)
4 . (7)

p′′′′1 (t = t2) =p′′′′2 (t = 0) , or in expanded form

120A(1)
6 + 24A(1)

5 t2 = 24A(2)
5 . (8)

The system of linear Equations (7) and (8), with consideration (5) and (6) allows us to
determine the sought vectors P′2 and P′′2 .

P′2 = k1P′1 + k2P′3 + k3P′′1 + k4P′′3 + 10 (k5P1 + k6P2 + k7P3), (9)

P′′2 = n1P′1+ n2P′3+ n3P′′1+ n4P′′3+ 5(n5P1+ n6P2+ n7P3), (10)

where:

k1 = 2(4t2
2t3

3 + 3t2t4
3)α, k2 = 2(4t3

2t2
3 + 3t4

2t3)α, k3 = (t3
2t3

3 + t2
2t4

3)α,

k4 = −(t4
2t2

3 + t2
2t3

3)α, k5 = (2t2t3
3 + t4

3)α, k6 = (t4
2 + 2t3

2t3 − 2t2t3
3 − 1t4

3)α,

k7 = −(t4
2 + 2t3

2t3)α;

n1 = (16t3
2t3

3 + 5t2
2t4

3 + 5t2t5
3)β, n2 = (5t5

2t3 − 5t4
2t2

3 − 16t3
2t3

3)β, n3 = (2t4
2t3

3 + t3
2t4

3 − t2
2t5

3)β,

n4 = (t5
2t2

3 − t4
2t3

3 − 2t3
2t4

3)β, n5 = (8t2
2t3

3 + t4
2t4

3 − t5
3)β,

n6 = (t5
2 − t4

2t3 − 8t3
2t2

3 − 8t2
2t3

3 − t2t4
3 + t5

3)β, n7 = −(t5
2 − t4

2t3 − 8t3
2t2

3)β;

α = − 1
4t2t3(t3

2+3t2
2t3+3t2

2t3+3t2t2
3+t3

3)
, β = 2

3t2
2t2

3(t2+t3)(t2
3+2t2t3+t2

3)
.

Under the condition of parameterization of segments s1: 0 ≤ t ≤ 1 and s2: 0 ≤ t ≤ 1
the coefficients kr, nr, r = 1, . . . , 7 and α, β have the following values

k1 = − 7
16 , k2 = − 7

16 , k3 = − 1
16 , k4 = 1

16 , k5 = − 15
16 , k6 = 0, k7 = 15

16 ;

n1 = 4
3 , n2 = − 4

3 , n3 = 1
6 , n4 = 1

6 , n5 = 10
3 , n6 = − 20

3 , n7 = 10
3 ;

α = − 1
44 , β = 1

12 .

(11)

The mathematical model of two-segment shaping of a spline-curve proposed in this
subsection is structurally different from the well-known model [1] due to the assignment
of extreme derivatives.

Matrix Formula (2) and Algorithm 1 make it possible to generalize to the case of the
formation of a smooth spline Hermite curve from (j − 1) segments. In the generalized
representation the matrix of vector coefficients

[
A
]
= [T] ·

[
G
]

for the equations of the
segments of the Hermitian spline curve of the fifth degree, connected by the smoothness
C4, has the Formula (12).
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[
A
]
=



A(1)
1

A(1)
2

A(1)
3

A(1)
4

A(1)
5

A(1)
6

. . .

A(j−1)
1

A(j−1)
2

A(j−1)
3

A(j−1)
4

A(j−1)
5

A(j−1)
6



=



1 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 1
2 0 . . . 0 0

−10 10 . . . 0 0 −6 −4 . . . 0 0 − 3
2

1
2 . . . 0 0

15 −15 . . . 0 0 8 7 . . . 0 0 3
2 −1 . . . 0 0

−6 6 . . . 0 0 −3 −3 . . . 0 0 − 1
2

1
2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 1 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 1
2 0

0 0 . . . −10 10 0 0 . . . −6 −4 0 0 . . . − 3
2

1
2

0 0 . . . 15 −15 0 0 . . . 8 7 0 0 . . . 3
2 −1

0 0 . . . −6 6 0 0 . . . −3 −3 0 0 . . . − 1
2

1
2



·



P1

P2

. . .

Pj−1

Pj

P′1

P′2

. . .

P′j−1

P′j

P′′1

P′′2

. . .

P′′j−1

P′′j



. (12)

Example 1. Given the following conditions for the three segments: P1(0, 0, 0), P2(20, 30, 10),
P3(50, 30, 20), P4(80, 40, 30), P′1(1, 3, 1), P′4(−17, 85, 18), P′′4 (1,−40,−7), it is required to
construct a Hermite spline curve consisting of three segments connected with smoothness C4.

In order to construct a spline curve, let us apply the matrix Formula (19) for the case
(j− 1) = 3. In this case the vector parameters of the geometric matrix

[
G
]

are determined
through a uniquely solvable system of four linear equations in four unknowns. The system
can be solved through one of the direct methods known in the field of linear algebra,
e.g., the Gauss–Jordan method.

Figure 8 depicts visual rendering of the result of the calculation. It demonstrates the
sought three segments and their subsequent connection with the order of smoothness C4.
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Algorithm 1 For obtaining a spline curve with polynomial equations of the fifth degree of
segments s1 and s2 has the following text form:

1. Vector derivatives P′2 and P′′2 at the joining point P2 of segments s1 and s2 are determined
based on the Formulas (9) and (10).

2. Determine the vector coefficients A(1)
i in the segment equation s1 based on the matrix (2). In

this case, the boundary conditions of the segment s1 are the given vector derivatives P′1 and
P′′1 at the knot P1 and the vector derivatives P′2 and P′′2 at the knot P2 determined according
to item 1.

3. Determine the vector coefficients A(2)
i in the segment equation s2 based on matrix (2). In

this case, the boundary conditions of the segment s2 are the vector derivatives P′2 and P′′2 at
the knot P2 determined according to item 1 and the given vector derivatives P′3 and P′′3 at
the knot P3.

The values of curvature and torsion at boundary points Pj, j = 1, . . . , 4 of the connected
segments are listed in Table 1.

Table 1. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1: p1(t)
P1, t = 0 3.941914854 −0.5087014266

P2, t = 1 0.02817282676 −0.002966524102

s2: p2(t)
P2, t = 0 0.02817282676 −0.002966524102

P3, t = 1 0.02036895463 0.006197310968

s3: p3(t)
P3, t = 0 0.02036895463 0.006197310968

P4, t = 1 5.641693337 7.620878085

Example 2. Figure 9 and Table 2 show the result of construction of a fifth-degree Hermite
spline curve consisting of seven segments given the following knot points and boundary condi-
tions: P1(0, 0, 0), P2(20, 30, 10), P3(50, 30, 20), P4(80, 40, 30), P5(110, 40, 40), P6(140, 50, 30),
P7(200, 50, 20), P8(240, 0, 10), P′1(1, 3, 1), P′8(0, 1,−1), P′′1 (−1, 1, 2), P′′8 (0, 2, 1). The method
and the algorithm are identical to the ones applied in Example 1.
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Table 2. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1: p1(t)
P1, t = 0 0.1938188331 5.856231764

P2, t = 1 0.02278819120 0.000690202

s2: p2(t)
P2, t = 0 0.02278819120 0.000690202

P3, t = 1 0.04837483783 0.019236811

. . . . . . . . . . . .

s6: p6(t)
P6, t = 0 0.00690588217 0.182303253

P7, t = 1 0.01015952078 0.001620745

s7: p7(t)
P7, t = 0 0.01015952078 0.001620745

P8, t = 1 1.060660172 215.2425767

The solution of the examples 1 and 2 allow us to generalize the proposed algorithm
and solution method for the case of (j− 1) connected segments of fifth-degree Hermite
spline curve.

The system of linear equations for the case of unknown P′2, P′3, . . . , P′j−2, P′j−1 and
P′′2 , P′′3 , . . . , P′′j−2, P′′j−1 is of the following form

16P′2 + 7P′3 − P′′3 = −15(P1 − P3)− 7P′1 − P′′1 ,

−4P′3 − 3P′′2 + 1
2 P′′3 = −10(P1 − 2P2 + P3) + 4P′1 +

1
2 P′′1 ,

7P′2 + 16P′3 + 7P′4 + P′′2 − P′′4 = −15(P2 − P4),

4P′3 − 4P′4 +
1
2 P′′2 − 3P′′3 + 1

2 P′′4 = −10(P2 − 2P3 + P4),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7P′j−2 + 16P′j−1 + P′j−2 = −15(Pj−2 − Pj)− 7P′j + P′′j ,

4P′j−1 +
1
2 P′j−2 − 3P′′j−1 = −10(Pj−2 − 2Pj−1 + Pj)− 4P′j +

1
2 P′′j .

. (13)

The generalized system of Equation (13) can be expressed in the following matrix form
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The generalized system matrix (parametric matrix) (13) or (14) consists of 2( 2)j −
linear equations in 2( 2)j −  unknown. It is of size 2( 2) 2( 2)j j− × −  and holds real num-
bers. This matrix is invertible and therefore the system of linear equations is uniquely 
solvable. It can be solved through Gauss–Jordan method, just as the Example above. The 
matrix Formula (14) of the generalized system of Equation (13) conforms to this method. 

3.3. Construction of a Closed Fifth-Degree Hermite Spline Curve 
In order to construct a closed Hermite spline curve of i segments subsequently con-

nected in the given j knot points with smoothness 4C , it is required to fulfill the following 
boundary conditions at connection points: 1 1( 0)P p t′ ′= = , 1 1( 0)P p t′′ ′′= = , 1 ( 1)jP p t′ ′= = , 

1 ( 1)jP p t′′ ′′= = . Taking these conditions into account the matrix (15) is used to determine the 
vector coefficients of the segment equations. 

Example 3. It is required to construct a closed Hermite spline curve of four segments subsequently 
connected with smoothness 4C  at knot points 1(0,0,0)P , 2 (0,100,10)P , 3 (100,100,20)P , 

4(100,0,30)P . 

Let us add vectors 1 1,  P P′ ′′  and 4 4,P P′ ′′  to the list of unknown vectors in the system 
of equations and acquire the system of eight equations in eight unknowns: 

The generalized system matrix (parametric matrix) (13) or (14) consists of 2(j− 2)
linear equations in 2(j− 2) unknown. It is of size 2(j− 2)× 2(j− 2) and holds real numbers.
This matrix is invertible and therefore the system of linear equations is uniquely solvable.
It can be solved through Gauss–Jordan method, just as the Example above. The matrix
Formula (14) of the generalized system of Equation (13) conforms to this method.
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3.3. Construction of a Closed Fifth-Degree Hermite Spline Curve

In order to construct a closed Hermite spline curve of i segments subsequently con-
nected in the given j knot points with smoothness C4, it is required to fulfill the following
boundary conditions at connection points: P′1 = p′1(t = 0), P′′1 = p′′1 (t = 0), P′1 = p′j(t = 1),
P′′1 = p′′j (t = 1). Taking these conditions into account the matrix (15) is used to determine
the vector coefficients of the segment equations.

Example 3. It is required to construct a closed Hermite spline curve of four segments subse-
quently connected with smoothness C4 at knot points P1(0, 0, 0), P2(0, 100, 10), P3(100, 100, 20),
P4(100, 0, 30).

Let us add vectors P′1, P′′1 and P′4, P′′4 to the list of unknown vectors in the system of
equations and acquire the system of eight equations in eight unknowns:

7P′1 + 16P′2 + 7P′3 + P′′1 − P′′3 = −15(P1 − P3),

4P′1 − 4P′3 +
1
2 P′′1 − 3P′′2 + 1

2 P′′3 = −10(P1 − 2P2 + P3),

7P′2 + 16P′3 + 7P′4 + P′′2 − P′′4 = −15(P2 − P4),

4P′2 − 4P′4 +
1
2 P′′2 − 3P′′3 + 1

2 P′′4 = −10(P2 − 2P3 + P4),

7P′1 + 7P′3 + 16P′4 − P′′1 + P′′3 = −15(P3 − P1),

−4P′1 + 4P′3 +
1
2 P′′1 + 1

2 P′′3 − 3P′′4 = −10(P3 − 2P4 + P1),

16P′1 + 7P′2 + 7P′4 − P′′2 + P′′4 = −15(P4 − P2),

−4P′2 + 4P′4 − 3P′′1 + 1
2 P′′2 + 1

2 P′′4 = −10(P4 − 2P1 + P2).

. (15)

Let us transform the system (15) into matrix form in order to facilitate the solution
through Gauss–Jordan method (16).

The unknown vector coefficients A(k)
i , k = 1, . . . , 4; i = 1, . . . , 6 are calculated through

(16) taking into account the closure. In the case of a closed spline, the matrix for calculating

vector coefficients A(k)
i is expanded by adding a closing segment, the equation of which

contains vector coefficients A(k)
i , i = 1, . . . , 6. Figure 10 and Table 3 show the result of

construction of a closed spline curve of four segments.
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Figure 10. Closed fifth-degree Hermite spline curve of four segments.

Table 3. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1: p1(t)
P1, t = 0 0.001781606146 0.2447808764

P2, t = 1 0.005681042934 −0.001318648614

s2: p2(t)
P2, t = 0 0.005681042934 −0.001318648614

P3, t = 1 0.02148171241 −0.005905294855

s3: p3(t)
P3, t = 0 0.02148171241 −0.005905294855

P4, t = 1 0.01654790405 0.02790910517

s4: p4(t)
P4, t = 0 0.01654790405 0.02790910517

P5, t = 1 0.001781606146 0.2447808764

The system of Equation (15) and the matrix Formula (16) can be generalized for the
case of j knot points and j segments of a closed Hermite spline curve. The generalized
system of equations is of the following matrix form:
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The matrix of generalized system of equations consists of 2 j  linear equations in 2 j  
unknown 1 2 1, ,... ,j jP P P P−′ ′ ′ ′ ; 1 2 1, ,... ,j jP P P P−′′ ′′ ′′ ′′  and is of size 2 2j j× . Its elements are also real 
numbers. It is invertible and therefore the system of linear equations is uniquely solvable. 
It can also be solved through the Gauss–Jordan method. The matrix Formula (17) con-
forms to this method. 

Example 4. Figure 11 and Table 4 show the results of construction of a closed Hermite spline curve 
of 14 segments given the knot points: 1(0,0,0)P , 2(20,30,10)P , 3 (50,30,20)P , 4 (80,40,30)P , 

5(110,40,40)P , 6 (140,50,30)P , 7 (200,50,20)P , 8(240,0,10)P , 9 (200, 50,0)P − , 10(140, 50,10)P − ,

11(110, 30,30)P − , 12(80, 40,40)P − , 13(50, 30,50)P − , 14 (20, 30,10)P − . The method and the algorithm are 
identical to the ones applied in Example 3. 

Table 4. Curvature and torsion values at boundary points of the segments. 

Segment Segment Boundary Knot Point jP  Curvature Value Torsion Value 

1 1:  ( )s p t  1P , t = 0 0.02804073313 0.01755939453 

2P , t = 1 0.03647568313 −0.009461103708 

2 2:  ( )s p t  2P , t = 0 0.03647568313 −0.009461103708 

The matrix of generalized system of equations consists of 2j linear equations in 2j
unknown P′1, P′2, . . . P′j−1, P′j; P′′1 , P′′2 , . . . P′′j−1, P′′j and is of size 2j× 2j. Its elements are
also real numbers. It is invertible and therefore the system of linear equations is uniquely
solvable. It can also be solved through the Gauss–Jordan method. The matrix Formula (17)
conforms to this method.
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Example 4. Figure 11 and Table 4 show the results of construction of a closed Hermite spline curve
of 14 segments given the knot points: P1(0, 0, 0), P2(20, 30, 10), P3(50, 30, 20), P4(80, 40, 30),
P5(110, 40, 40), P6(140, 50, 30), P7(200, 50, 20), P8(240, 0, 10), P9(200,−50, 0), P10(140,−50, 10),
P11(110,−30, 30), P12(80,−40, 40), P13(50,−30, 50), P14(20,−30, 10). The method and the
algorithm are identical to the ones applied in Example 3.
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Table 4. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1: p1(t)
P1, t = 0 0.02804073313 0.01755939453

P2, t = 1 0.03647568313 −0.009461103708

s2: p2(t)
P2, t = 0 0.03647568313 −0.009461103708

P3, t = 1 0.02872143869 0.006884363759

. . . . . . . . . . . .

s13: p13(t)
P13, t = 0 0.06756281437 0.008605623218

P13, t = 1 0.02578660580 0.005023460581

s14: p14(t)
P14, t = 0 0.02578660580 0.005023460581

P14, t = 1 0.02804073313 0.01755939453

3.4. Construction of a Hermite Segment Given Boundary Derivatives of First, Second, and Third Orders

Given points P1(x1, y1, z1) and P2(x2, y2, z2) with the respective boundary conditions
P′1, P′′1 , P′′′1 and P′2, P′′2 , P′′′2 (see Figure 12), it is required to construct a segment of a Hermite
spline curve.
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Obviously, a segment of Hermite spline curve has to be described by a polynomial

p(t) =
8

∑
i=1

Aiti−1, t1 ≤ t ≤ t2. (18)

Vectors P′1, P′2 are the first vector derivatives constituting tangent vectors at the
endpoints of the sought segment s. P′′1 , P′′2 are the second vector derivatives constituting
vectors of acceleration of a point tracing out the segment s and P′′′1 , P′′′2 are the third vector
derivatives constituting vectors of jerk of a point tracing out the segment s. Obviously, the
given conditions are sufficient in order to define the vector coefficients Ai of the Formula
(18). Let us express the first, the second, and the third derivatives of vector function p(t)

p′(t) =
8
∑

i=2
Ai(i− 1)ti−2, p′′ (t) =

8
∑

i=3
Ai(i− 1)(i− 2)ti−3,

p′′′ (t) =
8
∑

i=4
Ai(i− 1)(i− 2)(i− 3)ti−4.

We apply parameterization 0 ≤ t ≤ 1. In this case the values of the first four vector
coefficients can be acquired

p(0) = P1 = A1; p′(0) = P′1 = A2; p′′ (0) = P′′1 = 2A3, i.e. A3 = 1
2 P′′1 ;

p′′′ (0) = P′′′1 = 6A4, i.e. A4 = 1
6 P′′′1 .

(19)

The rest of the vector coefficients are determined through the equations

p(t2) = P2, p′(t2) = P′2, p′′ (t2) = P′′2 , p′′′ (t2) = P′′′2 ,

that lead us to the system of four linear equations

8
∑

i=1
Aiti−1

2 − P2 = 0,

8
∑

i=2
Ai(i− 1)ti−2

2 − P′2 = 0,

8
∑

i=3
Ai(i− 1)(i− 2)ti−3

2 − P′′2 = 0,

8
∑

i=4
Ai(i− 1)(i− 2)(i− 3)ti−4

2 − P′′′2 = 0.

(20)

The values of coefficients A5, A6, A7 and A8 follow from the system of Equation (20)

A5 = −35P1 + 35P2 − 20P′1 − 15P′2 − 5P′′1 +
5
2

P′′2 −
2
3

P′′′1 −
1
2

P′′′2 ,

A6 = 84P1 − 84P2 + 45P′1 + 39P′2 + 10P′′1 − 7P′′2 + P′′′1 +
1
2

P′′′2 ,

A7 = −70P1 + 70P2 − 36P′1 − 34P′2 −
15
2

P′′1 +
13
2

P′′2 −
2
3

P′′′1 −
1
2

P′′′2 ,

A8 = 20(P1 − P2) + 10(P′1 + P′2) + 2(P′′1 − P′′2 ) +
1
6
(P′′′1 + P′′′2 ).

Let us transform the expressions (19) and (20) into the matrix form
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[
A
]
=



A1

A2

A3

A4

A5

A6

A7

A8



=



1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0.5 0 0 0

0 0 0 0 0 0 1
6 0

−35 35 −20 −15 −5 5
2 − 2

3 − 1
2

84 −84 45 39 10 −7 1 1
2

−70 70 −36 −34 − 15
2

13
2 − 2

3 − 1
2

20 −20 10 10 2 −2 1
6

1
6



·



P1

P2

P′1
P′2

P′′1
P′′2
P′′′1

P′′′2



. (21)

If we substitute the expressions of vector coefficients (21) into the Formula (18), we
acquire the sought equation of a Hermite spline curve segment.

3.5. Construction of a Seventh-Degree Hermite Spline Curve of Two Segments and Generalization
for the Case of (j − 1) Segments

Let us consider connection of two segments s1 and s2 (see Figure 13) given the same
boundary conditions as for the case of one segment s previously considered in Section
3.4. Parameterization of segments is fulfilled in ranges t1 ≤ t ≤ t2 and t2 ≤ t ≤ t3 for
respective segments s1 and s2. Without loss of generality, we accept that t1 = 0 at the
initial point of segment s1 and t2 = 0 at the initial point of segment s2. Let us express the

polynomial equation of the segments in the following form: pk(t) =
8
∑

i=1
A(k)

i ti−1; k = 1, 2.

Let us express the derivatives of vector function pk(t)

p′k(t) =
8
∑

i=2
A(k)

i (i− 1)ti−2, p′′k (t) =
8
∑

i=3
A(k)

i (i− 1)(i− 2)ti−3,

p′′′k (t) =
8
∑

i=4
A(k)

i(i− 1)(i− 2)(i− 3)ti−4.Mathematics 2021, 9, x FOR PEER REVIEW 18 of 31 
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(1) 1
2 2

1
8

(1) 2
2 2

2
8

(1) 3
2 2

3
8

(1) 4
2 2

4

0,

( 1) 0,

( 1)( 2)  =0,

  ( 1)( 2)( 3) .

i
i

i

i
i

i

i
i

i

i
i

i

A t P

A i t P

A i i t P

A i i i t P

−

=

−

=

−

=

−

=

 − =

 ′− − =

 ′′− − −


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Figure 13. Seventh-degree Hermite spline curve of two segments.

For k =1 at the initial point P1(t1 = 0) of segment s1 we acquire

p1(0) = P1 = A(1)
1 , p′1(0) = P′1 = A(1)

2 , p′′1 (0) = P′′1 = 2A(1)
3 , p′′′1 (0) = P′′′1 = 6A(1)

4 . (22)

At the final point P2(t2) of segment s1 we acquire

p1(t2) = P2 =
8
∑

i=1
A(1)

i ti−1
2 , p′1(t2) = P′2 =

8
∑

i=2
A(1)

i (i− 1)ti−2
2 , p′′1 (t2) = P′′2 =

6
∑

i=3
A(1)

i (i− 1)(i− 2)ti−3
2 ,

p′′′1 (t2) =
8
∑

i=4
A(1)

i(i− 1)(i− 2)(i− 3)ti−4
2 .
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For k = 2 at the initial point P2(t2 = 0) of segment s2 we acquire

p2(0) = P2 = A(2)
1 , p′2(0) = P′2 = A(2)

2 , p′′2 (0) = P′′2 = 2A(2)
3 , p′′′2 (0) = P′′′2 = 6A2

4. (23)

At the final point P3(t3) of segment s2 we acquire

p2(t3) = P3 =
8
∑

i=1
A(2)

i ti−1
3 , p′2(t3) = P′3 =

8
∑

i=2
A(2)

i (i− 1)ti−2
3 , p′′2 (t3) = P′′3 =

8
∑

i=3
A(2)

i (i− 1)(i− 2)ti−3
3 ,

p′′′2 (t3) =
8
∑

i=4
A(2)

i(i− 1)(i− 2)(i− 3)ti−4
3 .

Thus, through (22), we acquire the expressions for the first four coefficients of the

equation for the first segment s1: A(1)
1 = P1, A(1)

2 = P′1, A(1)
3 = 1

2 P′′1 , A(1)
4 = 1

6 P′′1 . The

remaining vector coefficients A(1)
5 , A(1)

6 , A(1)
7 , A(1)

8 are determined through the system of
four linear equations 

8
∑

i=1
A(1)

i ti−1
2 − P2 = 0,

8
∑

i=2
A(1)

i (i− 1)ti−2
2 − P′2 = 0,

8
∑

i=3
A(1)

i (i− 1)(i− 2)ti−3
2 − P′′2 = 0,

8
∑

i=4
A(1)

i(i− 1)(i− 2)(i− 3)ti−4
2 − P′′′2 .

(24)

The expressions of the first four vector coefficients of segment s2 follow from (23):

A(2)
1 = P2, A(2)

2 = P′2, A(2)
3 = 1

2 P′′2 , A(2)
4 = 1

6 P′′′2 . The remaining vector coefficients A(2)
5 ,

A(2)
6 , A(2)

7 , and A(2)
8 are determined through the system of four linear equations

8
∑

i=1
A(2)

i ti−1
3 − P3 = 0,

8
∑

i=2
A(2)

i (i− 1)ti−2
3 − P′3 = 0,

8
∑

i=3
A(2)

i (i− 1)(i− 2)ti−3
3 − P′′3 = 0,

8
∑

i=4
A(2)

i(i− 1)(i− 2)(i− 3)ti−4
3 − P′′′3 .

(25)

Vectors P′2, P′′2 , and P′′′2 at the knot P2 of connection of segments s1 and s2 are unknown.
These vectors are determined through the conditions of equality of fourth, fifth, and sixth
derivatives of vector functions at the connection knot:

p′′′′1 (t = t2) =p′′′′2 (t = 0) , or in expanded form

4A(1)
5 + 120A(1)

6 t2 + 360A(1)
7 t2

2 + 840A(1)
8 t3

2 = 24A(2)
5 . (26)

p′′′′′1 (t = t2) =p′′′′′2 (t = 0) , or in expanded form

120A(1)
6 + 720A(1)

7 t2 + 2520A(1)
8 t2

2 = 120A(2)
6 . (27)

p′′′′′′1 (t = t2) =p′′′′′′2 (t = 0), or in expanded form

720A(1)
7 + 5040A(1)

8 t2 = 720A(2)
7 . (28)
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The sought vectors P′2, P′′2 , and P′′′2 are determined through the system of linear
Equations (25)–(27) taking into account the Equations (23) and (24) with parameterization
0 ≤ t ≤ 1 for segments s1 and s2

P′2 = −19
32

P′1 −
19
32

P′3 −
1
8

P′′1 +
1
8

P′′3 −
1

96
P′′′1 −

1
96

P′′′3 −
35
32

(P1 − P3), (29)

P′′2 =
39
20

P′1 −
39
20

P′3 +
7
20

P′′1 +
7
20

P′′3 +
1

40
P′′′1 −

1
40

P′′′3 +
21
5

(P1 − 2P2 + P3) (30)

P′′′2 =
105
16

P′1 +
105
16

P′3 +
15
8

P′′1 −
15
8

P′′3 +
3

16
P′′′1 +

3
16

P′′′3 +
105
16

(P1 − P3) (31)

The matrix Formula (21) and Algorithm 2 allow us to generalize to the case of the
formation of a smooth spline Hermite curve from (j − 1) segments.

In the generalized representation the matrix of vector coefficients
[
A
]
= [T] ·

[
G
]

for
the equations of (j − 1) segments of the Hermitian spline curve of the seventh-degree,
connected by the smoothness C6, has the Formula (32).

[
A
]
=



A(1)
1

A(1)
2

A(1)
3

A(1)
4

A(1)
5

A(1)
6

A(1)
7

A(1)
8

. . .

A(j−1)
1

A(j−1)
2

A(j−1)
3

A(j−1)
4

A(j−1)
5

A(j−1)
6

A(j−1)
7

A(j−1)
8



=



1 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 1 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 1
2 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0 1
6 0 . . . 0 0

−35 35 . . . 0 0 −20 −15 . . . 0 0 −5 5
2 . . . 0 0 − 3

2 − 1
2 . . . 0 0

84 −84 . . . 0 0 45 39 . . . 0 0 10 −7 . . . 0 0 1 1
2 . . . 0 0

−70 70 . . . 0 0 −36 −34 . . . 0 0 − 15
2

13
2 . . . 0 0 − 2

3 − 1
2 . . . 0 0

20 −20 . . . 0 0 10 10 . . . 0 0 2 −2 . . . 0 0 1
6

1
6 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 1 0 0 0 . . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 1
2 0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 1
6 0

0 0 . . . −35 35 0 0 . . . −20 −15 0 0 . . . −5 5
2 0 0 . . . − 2

3 − 1
2

0 0 . . . 84 −84 0 0 . . . 45 39 0 0 . . . 10 −7 0 0 . . . 1 1
2

0 0 . . . −70 70 0 0 . . . −36 −34 0 0 . . . − 15
2

13
2 0 0 . . . − 2

3 − 1
2

0 0 . . . 20 −20 0 0 . . . 10 10 0 0 . . . 2 −2 0 0 . . . 1
6

1
6



·



P1

P2

. . .

Pj−1

Pj

P′1

P′2

. . .

P′j−1

P′j

P′′1

P′′2

. . .

P′′j−1

P′′j

P′′′1

P′′′2

. . .

P′′′j−1

P′′′j



. (32)

Example 5. It is required to construct a Hermite spline curve of the seventh degree consist-
ing of three segments given the following boundary conditions: P1(20, 0, 0), P2(20, 10, 10),
P3(50, 15, 20), P4(80, 0, 20), P′1(1, 0,−1), P′4(−1, 0, 2), P′′1 (1, 1, 2), P′′4 (−1,−3, 0), P′′′1 (1, 0, 1),
P′′′4 (− 1, 1, 0).

In order to construct a spline curve, let us apply the matrix Formula (32) for the case
(j− 1) = 3. In this case, the vector parameters of the geometric matrix

[
G
]

are determined
through a uniquely solvable system of six linear equations in six unknowns.

Figure 14 depicts visual rendering of the result of the calculation. It demonstrates the
sought three segments and their subsequent connection with order of smoothness C6.
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Algorithm 2 For obtaining a spline curve with polynomial equations of the seventh degree of
segments s1 and s2 has the following text form:

1. Vector derivatives P′2, P′′2 , and P′′′2 at the joining point P2 of segments s1 and s2 are
determined based on the Formulas (29)–(31).

2. Determine the vector coefficients A(1)
i in the segment equation s1 based on the matrix (20).

In this case, the boundary conditions of the segment s1 are the given vector derivatives P′1,
P′′1 , and P′′′1 at the knot P1 and the vector derivatives P′2, P′′2 , and P′′′2 at the knot P2
determined according to item 1.

3. Determine the vector coefficients A(2)
i in the segment equation s2 based on matrix (21). In

this case, the boundary conditions of the segment s2 are the vector derivatives P′2, P′′2 , and
P′′′2 at the knot P2 determined according to item 1 and the given vector derivatives P′3, P′′3 ,
and P′′′3 at the knot P3.

Table 5 shows the calculation results from Example 5.

Table 5. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1: p1(t)
P1, t = 0 1.172603940 0.1818181818

P2, t = 1 0.02093508808 −0.09371726576

s2: p2(t)
P2, t = 0 0.02093508808 −0.09371726576

P3, t = 1 0.006860422253 −0.01505071941

s3: p3(t)
P3, t = 0 0.006860422253 −0.01505071941

P4, t = 1 0.6260990337 −0.1632653061

The mathematical models of shaping of polynomial spline curves obtained in
Sections 3.2–3.5 have scientific novelty and have not been considered in the scientific
literature known to the authors.

3.6. Construction of a Bézier Spline Curve Segment Given Boundary Derivatives of the First and
the Second Order

In works [1,12,13,15,18,21], the theoretical foundations of analytical and geometric
models of formation of Bézier spline curves are presented. In this paper we propose the
method of segmental shaping of these curves based on the same mathematical model as
used for Hermite spline curves in Sections 3.1–3.3.

The points P1(x1, y1, z1) and P2(x2, y2, z2) as well as the respective boundary condi-
tions P′1, P′′1 and P′2, P′′2 are given (see Figure 15).
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Under the given conditions it is possible to construct a Bézier spline curve segment
described by the formula [1,10,13]

p(t) =
n

∑
i=0

n!
i!(n− i)!

ti(1− t)n−i Ai+1, n = 5, t1 ≤ t ≤ t2, (33)

where the set of functions Bn
i (t) =

n!
i!(n−i)! t

i(1− t)n−i forms the Bernstein basis.
Let us express the first, the second, the third and the fourth derivatives of vector

function p(t)

p′(t) = −5(1− t)4 A1 + (5(1− t)4 − 20t(1− t)3)A2 + (20t(1− t)3 − 30t2(1− t)2)A3+

+(30t2(1− t)2 − 20t3(1− t))A4 + (20t3(1− t)− 5t4)A5 + 5t4 A6,
p′′ (t) = 20(1− t)3 A1 + (−40(1− t)3 + 60t(1− t)2)A2 + (20(1− t)3 − 120t(1− t)2 + 60t2(1− t))A3+

+(60t(1− t)2 − 120t2(1− t) + 20t3)A4 + (60t2(1− t)− 40t3)A5 + 20t3 A6,
p′′′ (t) = −60(1− t)2 A1 + (−120t(1− t) + 180(1− t)2)A2 + (−180(1− t)2 + 360t(1− t)− 60t2)A3+

+(60(1− t)2 + 180t2 − 360t(1− t))A4 + (120t(1− t)− 180t2)A5 + 60t2 A6,
p′′′′ (t) = 120(1− t)A1 − (480− 600t)A2 + (720− 1200)A3 − (480− 1200t)A4+

+(120− 600t)A5 + 120tA6.

Vectors P′1, P′2 are the first vector derivatives constituting tangent vectors at the
endpoints of the sought segment s. Vectors P′′1 , P′′2 are the second vector derivatives
constituting vectors of acceleration of a point tracing out the segment s. Vectors P′′′1 , P′′′2 are
the third vector derivatives constituting vectors of jerk of a point tracing out the segment s.
Vectors P′′′′1 , P′′′′2 are the fourth vector derivatives constituting vectors of snap of a point
tracing out the segment s.

This allows us to acquire the values of the first three vector coefficients

p(0) = P1 = A1; p′(0) = P′1 = −5A1 + 5A2, i.e. A2 = 1
5 P′1 + P1,

p′′ (0) = P′′1 = 20A1 − 40A2 + 20A3, i.e., A3 = P1 +
2
5 P′1 +

1
20 P′′1 .

(34)

The three remaining vector coefficients are determined through the equations

p(t2) = P2, p′(t2) = P′2, p′′ (t2) = P′′2 . (35)

From the Equation (35) follows the system of three linear equations

5
∑

i=0

n!
i!(n−i)! t

i(1− t2)
n−i Ai+1 − P2 = 0,

5
∑

i=0
(

120Ai+1t2
i i(1−t2)

5−i

i!(5−i)!t2
− 120Ai+1t2

i(1−t2)
5−i(5−i)

i!(5−1)!(1−t2)
)− P′2 = 0,

5
∑

i=0
(

120Ai+1t2
i i2(1−t2)

5−i(i−1)
i!(5−i)!t2

2
− 240Ai+1t2

i i(1−t2)
5−i(5−i)

i!(5−i)!t2(1−t2)
+

+
120Ai+1ti

2(1−t2)
5−i(5−i)((5−i)−1)

i!(5−i)!(1−t2)
2

)− P′′2 = 0.

(36)
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The expressions for coefficients A4, A5, and A6 follow from the system of the Equation (36)

A4 =
(t3

2 − 1)P1

t3
2

+
P2

t3
2
+

0.6P′1
t3
2
− 0.4P′2

t2
2

+
0.15(t3

2 − t2
2)P′′1

t3
2

+
0.05P′′2

t2
,

A5 =
(t4

2−4t2+3)P1
t4
2

+ (4t2−3)P2
t4
2

+
(0.8t4

2−2.4t2
2+16t2)P′1

t4
2

− (1.6t2
2+1.4t2)P′2

t4
2

+

+
0.3(t4

2−2t3
2+t2

2)P′′1
t4
2

+
0.2(t3

2−t2
2)P′′2

t4
2

,

A6 =
(t5

2−10t2
2+15t2−6)P1

t5
2

+
(10t2

2−15t2−6)P2
t5
2

+
(t5

2−6t3
2+8t2−3)P′1

t5
2

−

− (4t3
2−7t2

2+3t2)P′2
t5
2

+
0.5(t5

2−0.3t4
2+0.3t3

2−t2
2)P′′1

t5
2

+
0.5(t4

2−2t3
2+t2

2)P′′2
t5
2

.

The expressions (34) and (36) can be expressed in the matrix form with parameteriza-
tion 0 ≤ t ≤ t2 = 1

[
A
]
=



A1

A2

A3

A4

A5

A6


=



1 0 0 0 0 0

1 0 1
5 0 0 0

1 0 2
5 0 1

20 0

0 1 0 − 2
5 0 1

20

0 1 0 − 1
5 0 0

0 1 0 0 0 0


·



P1

P2

P′1
P′2
P′′1
P′′2


. (37)

3.7. Construction of a Fifth-Degree Bézier Spline Curve of Two Segments

Let us consider the connection of two segments of a fifth-degree Bézier spline curve
(see Figure 16) given the same boundary conditions as for the case of one segment s
previously considered in Section 3.6.
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Let us express the equation of the segments in the following form:

pk(t) =
n=5
∑

i=0

n!
i!(n−i)! t

i(1− t)5−i A(k)
i+1; k = 1, 2, 0 ≤ t ≤ 1. A Bézier spline segment has

control points A(k)
2 , A(k)

3 , A(k)
4 , A(k)

5 and passes through knot points A(k)
1 = Pk, A(k)

6 = Pk+1.
For k = 1 at the initial point P1(t1 = 0) of segment s1 we acquire

p1(0) = P1 = A(1)
1 , p′1(0) = P′1 = 5(−A(1)

1 + A(1)
2 ), p′′1 (0) = P′′1 = 20(A(1)

1 − 2A(1)
2 + A(1)

3 ). (38)
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For k = 1 at the final point P2(t2 = 1) of segment s1 we acquire

p1(1) = P2 = A(1)
6 , p′1(1) = P′2 = 5(−A(1)

5 + P2), p′′1 (1) = P′′2 = 20(A(1)
4 − 2A(1)

5 + P2).

For k = 2 at the initial point P2(t2 = 0) of segment s2 we acquire

p2(0) = P2 = A(2)
1 , p′2(0) = P′2 = 5(−A(2)

1 + A(2)
2 ), p′′2 (0) = P′′2 = 20(A(2)

1 − 2A(2)
2 + A(2)

3 ) (39)

At the final point P3(t3 = 1) of segment s2 we acquire

p2(1) = P3 = A(2)
6 , p′2(1) = P′3 = 5(−A(2)

5 + P3), p′′2 (1) = P′′3 = 20(A(2)
4 − 2A(2)

5 + P3).

It is required to determine eight vector coefficients corresponding to vectors of the
four control points of each segment. At the initial point of segment s1 and the final point
of segment s2 the following boundary conditions are given: P′1, P′′1 and P′3, P′′3 . Therefore,
through (38), we acquire the expressions for the first three vector coefficients of the equation

for the first segment s1: A(1)
1 = P1, A(1)

2 = 1
5 P′1 + P1 and A(1)

3 = 1
20 P′′1 + P1 +

2
5 P′1. The

remaining vector coefficients A(1)
4 , A(1)

5 , and A(1)
6 are determined through the system of

three linear equations 
A(1)

6 − P2 = 0,

−5(A(1)
5 − A(1)

6 )− P′2 = 0,

20(A(1)
4 − 2A(1)

5 + A(1)
6 )− P′′2 = 0.

(40)

Through (39) we acquire the expressions for the first three vector coefficients of the

equation for the second segment s2: A(2)
1 = P2, A(2)

2 = 1
5 P′2 + P2, A(2)

3 = 1
20 P′′2 + P2 +

2
5 P′2.

The remaining vector coefficients A(2)
4 , A(2)

5 , and A(2)
6 are determined through the system

of three linear equations 
A(2)

6 − P3 = 0,

−5(A(2)
5 − A(2)

6 )− P′3 = 0,

20(A(2)
4 − 2A(2)

5 + A(2)
6 )− P′′3 = 0.

(41)

In the connection of segments s1 and s2 at the point P2 with smoothness C4, vectors
P′2 and P′′2 are unknown. These vectors are determined through the condition of equality
of the third and the fourth derivatives of vector functions of the segments at the connection
point: p′′′1 (t = 1) =p′′′2 (t = 0) , or in expanded form

− 60(A(1)
3 + 3A(1)

4 − 3A(1)
5 ) = −60(3A(2)

2 − 3A(2)
3 + 3A(2)

4 ), (42)

and p′′′′1 (t = 1) =p′′′′2 (t = 0) , or in expanded form

120(A(1)
2 − 4A(1)

3 + 6A(1)
4 − 4A(1)

5 ) = 120(−4A(2)
2 + 6A(2)

3 − 4A(2)
4 + 4A(2)

5 ). (43)

The sought vectors P′2 and P′′2 are determined through the system of two linear
Equations (43) and (44) taking into account the system of Equations (39)–(42)

P′2 =
1

16
(−7P′1 − 15P1 − 7P′3 + 15P3 − P′′1 + P′′3 ). (44)

P′′2 =
1
3
(−20P2 + 4P′1 + 10P1 − 4P′3 + 10P3 +

1
2

P′′1 +
1
2

P′′3 ). (45)
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The Equations (44) and (45) in calculation of the unknown vector derivatives P′2 and
P′′2 at the point of connection of fifth-degree Bézier spline curve segments s1 and s2 match
the corresponding Equations (9) and (10) of the unknown vector derivatives P′2 and P′′2 at
the point of connection of fifth-degree Hermite spline curve segments s1 and s2. In this
case, in the Formulas (9) and (10), the coefficients kr(t), nr(t), r = 1, . . . , 7; α, β take values
according to (11) for 0 ≤ t ≤ 1.

This allows us to speak of universality of the proposed algorithm of determination of
the unknown vector derivatives in the tasks of formation of various polynomial curves.
Thus, the vector derivatives P′2 and P′′2 at the points of connection of fifth-degree Bézier
spline curve segments are determined through the Equations (9) and (10), same as for the
case of a Hermite spline curve. However, the acquired equations for the unknown vector
coefficients of Bézier spline curves and Hermite spline curves are different. The unknown
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. . .
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5

A(j−1)
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1 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0

1 0 . . . 0 0 1
5 0 . . . 0 0 0 0 . . . 0 0

1 0 . . . 0 0 2
5 0 . . . 0 0 1

20 0 . . . 0 0

0 1 . . . 0 0 0 − 2
5 . . . 0 0 0 1

20 . . . 0 0

0 1 . . . 0 0 0 − 1
5 . . . 0 0 0 0 . . . 0 0

0 1 . . . 0 0 0 0 . . . 0 0 0 0 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5 0 0 0 . . . 0 0

0 0 . . . 1 0 0 0 . . . 2
5 0 0 0 . . . 1

20 0

0 0 . . . 0 1 0 0 . . . 0 − 2
5 0 0 . . . 0 1

20

0 0 . . . 0 1 0 0 . . . 0 − 1
5 0 0 . . . 0 0

0 0 . . . 0 1 0 0 . . . 0 0 0 0 . . . 0 0
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P1

P2

. . .

Pj−1

Pj

P′1
P′2
. . .

P′j−1

P′j
P′′1
P′′2
. . .

P′′j−1

P′′j



. (46)

Example 6. The following conditions for the three segments are given: P1(0, 50, 0), P2(150, 100, 50),
P3(250, 200, 60), P4(300, 300, 0), P′1(−50, 100, 1), P′4(301,−210,−1), P′′1 (50,−100, 2),
P′′4 (280,−280, 1). It is required to construct a Bézier spline curve of these segments. The un-
known vector derivatives P′2, P′′2 , P′3 and P′′3 at the points of connection of the segments are
calculated as in the case of a smooth connection of three segments for a Hermite spline curve of
the fifth degree consisting of three segments (see Example 1). The unknown vector coefficients

A(k)
i , k = 1, . . . , 3; i = 1, . . . , 6 are calculated through (46).

Figure 17 depicts visual rendering of the result of the calculation. It demonstrates
the sought three segments of a Bézier spline curve and their subsequent connection with
smoothness C4.
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Figure 17. Fifth-degree Bézier spline curve of three segments.

Table 6 lists the values of curvature and torsion at the boundary points Pj of the
connected segments, where j = 1, . . . , 4.

Table 6. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1 : p1(t)
P1, t = 0 0.0002399712029 8.722088677

P2, t = 1 0.0003181576505 0.02375800221

s2 : p2(t)
P2, t = 0 0.0003181576505 0.02375800221

P3, t = 1 0.001200350474 −0.01488694419

s3: p3(t)
P3, t = 0 0.001200350474 −0.01488694419

P4, t = 1 0.0005156220501 0.04777943587

Example 7. It is required to construct a closed fifth-degree Bézier spline curve of five segments sub-
sequently connected in knot points P1(0, 0, 0), P2(0, 100, 10), P3(100, 50, 20), P4(100, 300, 100),
P5(300, 0, 0).

The unknown vector derivatives P′j and P′′j , j = 1, . . . ,5 are determined through the
matrix form of the generalized system of Equation (17). This is due to the fact that the
calculation of the unknown vector derivatives P′j and P′′j at the connection points of Hermite
and Bézier spline segments are formally identical.

The system of equations for the unknown vector derivatives for the current example
is of the following matrix form:
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Table 7. Curvature and torsion values at boundary points of the segments. 

Segment Segment Boundary Knot Point jP  Curvature Value Torsion Value 

1 1: ( )s p t  1P , t = 0 0.003100353669 0.0005995357794 

2P , t = 1 0.006264502175 –0.001862804412 

2 2:  ( )s p t  2P , t = 0 0.006264502175 –0.001862804412 

3P , t = 1 0.003451401672 –0.01338727745 
… … … … 

4 4:  ( )s p t  4P , t = 0 0.02757323507 –0.0001744660457 

5P , t = 1 0.008921353117 0.0001689425348 

5 5:  ( )s p t  5P , t = 0 0.008921353117 0.0001689425348 

1P , t = 1 0.003100353669 0.0005995357794 

The unknown vector coefficients A(k)
i , k = 1, . . . , 5; i = 1, . . . , 6 are calculated through

the system of Equation (46) expanded by adding a closing segment equation containing

the vector coefficients A(k)
i , i = 1, . . . , 6.

Figure 18 and Table 7 present the results of the construction of a closed fifth-degree
Bézier spline curve of five segments.
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Figure 18. Closed fifth-degree Bézier spline curve of five segments.

Table 7. Curvature and torsion values at boundary points of the segments.

Segment Segment Boundary Knot Point Pj Curvature Value Torsion Value

s1 : p1(t)
P1, t = 0 0.003100353669 0.0005995357794

P2, t = 1 0.006264502175 –0.001862804412

s2: p2(t)
P2, t = 0 0.006264502175 –0.001862804412

P3, t = 1 0.003451401672 –0.01338727745

. . . . . . . . . . . .

s4: p4(t)
P4, t = 0 0.02757323507 –0.0001744660457

P5, t = 1 0.008921353117 0.0001689425348

s5: p5(t)
P5, t = 0 0.008921353117 0.0001689425348

P1, t = 1 0.003100353669 0.0005995357794

The mathematical models of shaping of Bézier spline curves obtained in
Sections 3.6 and 3.7 also have scientific novelty. These models were not previously consid-
ered in the scientific literature on computational geometry known to the authors.
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The considered examples were tested using the software package of the Water-
loo Maple computer mathematics system—Maple 2020 Free Trial. Access to the com-
puter code for the examples No.1–No.7 considered in the work is possible by the link:
https://www.mapleprimes.com/posts/213421-Spline-Curves-Formation-Given-Extreme-
Derivatives?sp=213421.

4. Discussion

The mathematical models of formation of various polynomial spline curves considered
in Section 3 determine the computational algorithms of formation. These algorithms are
validated on numerous examples provided in Section 3. The uniformity and systematic
nature of the algorithms allows us to present them in the form of a general algorithm of
spline curve formation (see Figure 19).
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This general algorithm allows us to perform calculation of vector derivatives at
points of connection of segments forming a spline curve as well as vector coefficients of
polynomials. The algorithm consists of modules providing the following functions:

Module 1: Initial conditions input. The initial conditions for spline curve formation
include: the number of points of discrete array j; the vectors of discrete array of points
P1, . . . , Pj; the number of pairs of extreme derivatives m; the vectors of extreme derivatives

P′1, P′′1 , P′′′1 . . . at point P1; the vectors of extreme derivatives P′j, P′′j , P′′′j . . . at point Pj.
Module 2: Determination of order n = 2m + 1 of the polynomial.
Module 3: Conditional step: check whether the curve is closed. The curve is considered

closed if the vectors of extreme derivatives at points P1 and Pj are not given as the initial
conditions.

Module 4: Formation of a matrix of size ((N − j)× (N − j)) for the unknown vector
derivatives at connection points of a closed spline curve, where N represents the total
number of conditions.

Module 5: Formation of a matrix of size ((N − (2m + j))× (N − (2m + j))) for the
unknown vector derivatives at connection points of a non-closed spline curve, where N
represents the total number of conditions.

Module 6: Calculation of vector derivatives at segment connection points.
Module 7: Calculation of polynomial vector coefficients for each spline curve segment.
Module 8: Acquiring the vector equations of spline curve segments.
Aside from uniformity, the proposed algorithms are to a certain extent universal and

can be applied in solutions to the problems of formation of polynomial spline curves of
various types generated through Hermite splines, Bézier splines, B-splines. It has to be
mentioned that the Gauss–Jordan method has time complexity O(i3 + (log p)i), where p
is the size of the initial data for solution of a system of i equations in i unknown. These
systems are present in every computational algorithm proposed in Section 3.

Analysis of Algorithms 1–3 (Section 3.2, Section 3.5, and Section 3.7, respectively),
analysis of matrices for the formation of vector coefficients in the equations of segments
of formed spline curves (Sections 3.1–3.7) and analysis of the set of considered numerical
examples (examples 1–7, Tables 1–7) allow us to conclude about the scalability of our
proposed method of forming spline curves. The scalability of the method is reduced to

https://www.mapleprimes.com/posts/213421-Spline-Curves-Formation-Given-Extreme-Derivatives?sp=213421
https://www.mapleprimes.com/posts/213421-Spline-Curves-Formation-Given-Extreme-Derivatives?sp=213421
https://www.mapleprimes.com/posts/213421-Spline-Curves-Formation-Given-Extreme-Derivatives?sp=213421
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the obvious scalability of the matrices of vector coefficients of the segment equations,
the connection of which, according to a given degree of smoothness, forms a certain
spline curve.

The accuracy of the obtained computational results depends on the specified compu-
tation accuracy of scalar invariants at the segments junction point and does not depend on
the scalability of the proposed computation method. The examples discussed in the work
(electronic link on Page 27) support this thesis. For a given accuracy of calculations (100
decimal places) of an open spline of the Hermite curve of the fifth degree, the resulting
absolute calculation error is from 10−99 to 10−94. As an example, the formation of a spline
curve consisting of 100 knots is considered. In this case, the obtained absolute error in
calculating the curvature at the segments joining knots is as follows: knot P2 : 5.31 · 10−99,...,
knot P50 : 2.4 · 10−99,..., knot P99 : 3.0 · 10−100. The obtained absolute error in the calcula-
tion of the torsion at the knots of joining the segments is as follows: knot P2 : 9.59 · 10−94,
. . . , knot P50 : 1.05 · 10−97, . . . , knot P99 : 1.73 · 10−97. The accuracy of calculating scalar
invariants can be quite high, depending on practical feasibility, as well as on the capabilities
of the computer hardware.

Algorithm 3 For obtaining a fifth-degree Bézier spline curve of segments s1 and s2 has the
following text form:

1. Vector derivatives P′2 and P′′2 at the joining point P2 of segments s1 and s2 are determined
based on the Formulas (44) and (45).

2. Determine the vector coefficients A(1)
i in the segment equation s1 based on the matrix (37).

In this case, the boundary conditions of the segment s1 are the given vector derivatives P′1
and P′′1 at the knot P1 and the vector derivatives P′2 and P′′2 at the knot P2 determined
according to item 1.

3. Determine the vector coefficients A(2)
i in the segment equation s2 based on matrix (37). In

this case, the boundary conditions of the segment s2 are the vector derivatives P′2 and P′′2 at
the knot P2 determined according to item 1 and the given vector derivatives P′3 and P′′3 at
the knot P3.

5. Conclusions

Vector derivatives form scalar invariants at each regular point of curve p = p(t),
p(1)(t) = dp

dt 6= 0. Scalar invariants formed by vector derivatives p(1),p(2),p(3),...,p(m)

have to meet certain requirements. They have to be coordinate system independent, i.e.,
invariant with respect to coordinate system transformation; they have to be independent
of transformations of parameter t = f (t∗), where f is an analytic function of form

p(t) = p( f (t∗)) = p∗(t∗), dp∗(t∗) =
dp
dt

f (1), f (1) =
d f
dt∗
6= 0.

The formation of scalar invariants of a curve can be considered on the following
examples: scalar invariants of the first order (by the highest order of the applied vector

derivatives) (p(1)(t))
2
, scalar invariants of the second order (curvature) k(t) = G(p(1)(t),

p(2)(t)) = G∗(t), scalar invariants of the third order (torsion) χ(t) = F(p(1)(t), p(2)(t),
p(3)(t)) = F∗(t). It is obvious that the scalar invariants of the segments have to be equal
at the points of smooth connection of spline curve segments. Let us consider smooth
connection of adjacent segments sk and sk+1 of the constructed spline

sk : pk(tk) =
n

∑
i=1

Ai(k)t
i−1
k , tk ∈ [0, Tk],

sk+1 : pk+1(tk+1) =
n

∑
i=1

Ai(k+1)t
i−1
k+1, tk+1 ∈ [0, Tk+1].
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Let us express in general form the scalar functions of vector arguments (derivatives)
of the segments sk and sk+1

H(p(1)k (tk), p(2)k (tk), . . . , p(m)
k (tk)) = H∗(tk). (47)

V(p(1)k+1(tk+1), p(2)k+1(tk+1), . . . , p(m)
k+1(tk+1)) = V∗(tk+1). (48)

The scalar functions (47) and (48) are of the equivalent mathematical form, i.e., they
accept the equivalent set of vector arguments (derivatives) and perform the equivalent set
of mathematical operations over said arguments.

In order to achieve connections of segments sk and sk+1 with smoothness Cm, it is
necessary to satisfy the following conditions:
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In order to achieve connections of segments ks  and 1ks +  with smoothness mC , it is 
necessary to satisfy the following conditions: 

(1) (1)
1 1

(2) (2)
1 1

( ) ( )
1 1

( )   ( =0),
( )   ( =0),

( )   ( =0).

k k k k k

k k k k k

m m
k k k k k

p t T p t
p t T p t

p t T p t

+ +

+ +

+ +

= =

= =
− − − − − − − − − − − − − − −

= =

 (49)

In that case, the Equation (49) and the equivalence of the mathematical form of the 
scalar functions (47) and (48) result in the equality of values 1( ) ( 0)k k kH t T V t∗ ∗

+= = =  that 
effectively means the equality of scalar invariants at the point of connection with smooth-
ness mC . 

What does this mean? It means that formation of splines through smooth connection 
of segments described by polynomials of higher degree determines objective existence of 
scalar invariants of orders higher than three (as for the case of torsion) at the connection 
point. These invariants generate multidimensional number space of scalar invariants of 
segmentally formed spline curves. It has not been studied previously. To study this space 
for completeness and practicality is the objective of further development of the spline for-
mation problem considered in the present paper. We believe that further study of algo-
rithms for the formation of scalar invariants of high orders and mathematical manipula-
tion of these invariants in the indicated space will contribute to the appearance of spline 
curves of a new level of quality. As for the precision of calculation of second- and third-
order scalar invariants (curvature and torsion), the calculation results provided in Tables 
1–7 show that it can be sufficiently high and is determined on the grounds of practicality. 
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In that case, the Equation (49) and the equivalence of the mathematical form of the
scalar functions (47) and (48) result in the equality of values H∗(tk = Tk) = V∗(tk+1 = 0)
that effectively means the equality of scalar invariants at the point of connection with
smoothness Cm.

What does this mean? It means that formation of splines through smooth connection
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scalar invariants of orders higher than three (as for the case of torsion) at the connection
point. These invariants generate multidimensional number space of scalar invariants
of segmentally formed spline curves. It has not been studied previously. To study this
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of algorithms for the formation of scalar invariants of high orders and mathematical
manipulation of these invariants in the indicated space will contribute to the appearance
of spline curves of a new level of quality. As for the precision of calculation of second-
and third-order scalar invariants (curvature and torsion), the calculation results provided
in Tables 1–7 show that it can be sufficiently high and is determined on the grounds of
practicality.
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