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Abstract: This paper addresses the guaranteed cost control problem of a class of uncertain fractional-
order (FO) delayed linear systems with norm-bounded time-varying parametric uncertainty. The study
is focused on the design of state feedback controllers with delay such that the resulting closed-loop

system is asymptotically stable and an adequate level of performance is also guaranteed. Stemming

from the linear matrix inequality (LMI) approach and the FO Razumikhin theorem, a delay- and

order-dependent design method is proposed with guaranteed closed-loop stability and cost for

admissible uncertainties. Examples illustrate the effectiveness of the proposed method.
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1. Introduction

In recent years, fractional calculus and fractional-order (FO) systems became an impor-
tant topic of research in science and engineering [1,2]. Integer-order modeling techniques
may not lead to the best descriptions of a system dynamics, especially concerning the
systems with heredity and memory properties. Successful applications in control, mathe-
matics, mechanics, biology, chemistry, and signal and image processing [3-10] have shown
that fractional calculus offers a new and deeper perspective in system modeling that
overcomes the shortcomings of classical differential constitutive models [11,12].

Over the past ten years, stability, as well as robust control for FO uncertain linear
systems have been key research topics in the field of control theory. A method of observer-
based control for FO uncertain linear systems with the fractional commensurate order
1 < a < 2 based on linear matrix inequality (LMI) approach was discussed in [13].
The stability and stabilization analysis of FO linear time-invariant systems with different
derivative orders were considered in [14]. The asymptotic stability and stabilization of FO
linear systems with time-varying structured uncertainties and time-varying delay were
addressed in [15]. The robust stability and stabilization of a class of fractional order systems
under input saturation using the Lyapunov method was studied in [16]. A necessary and
sufficient condition for testing the robust D-stability of linear time-invariant (LTI) general
FO control systems was derived in [17]. Other studies regarding these topics can be found
in [18-20] and references therein.

The stability is a primary requirement for designing a controller for a real plant. More-
over it is also desirable but difficult to design a control system which not only preserves
stability, but can also guarantees an adequate level of performance. To cope with the prob-
lem, Chang and Peng proposed an alternative way, namely the so-called guaranteed cost
control approach [21]. The main advantage ia that it guarantees the robust stability of the
closed-loop system, and ensures that the deteriorated performance caused by the system
uncertainty is still inferior to the upper bound of the previously prescribed performance
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index. This approach has provided a certain degree of understanding of the extent of
system performance degradation [22]. Some significant results on guaranteed cost control for
integer-order systems have been put forward by several researchers [22-31]. Nonetheless, it
should be pointed out that input delays are unavoidable due to the time taken for trans-
portation of materials and transmission of signals in many physical phenomena, such as in
biological systems and chemical processes. The existence of input delay will eventually lead
to instability and poor system performance. Therefore, the stabilisation of input-delayed
systems is one fundamental problem. However, to our best knowledge, we find limited
results about the guaranteed cost control of FO uncertain delayed linear systems by using
feedback controller with input delay. Motivated by this observation, the paper focusses on
the guaranteed cost control controller design problem of uncertain FO linear systems with
time-delay. The time delays can appear both in the state and input. The problem consists
of the design of state-feedback controllers such that the resulting closed-loop system is
robustly stable and a specified integral-quadratic cost function has an upper bound for all
delays within the given intervals. Delay-dependent and order-dependent conditions for
the solvability of this problem are obtained in terms of matrix inequalities.

The rest of this paper is organized as follows. Preliminary notions and problem
description will be discussed in Section 2. The solution to this problem is given in Section 3.
Two examples illustrating performance of the proposed strategy are presented in Section 4.
Finally, the conclusions are given in Section 5.

2. Preliminary nOtions and Problem Description

The following symbols are used in the follow-up stands for: C([a, b], R") the set of
continuous functions mapping the interval [a,b] to R", I is the identity matrix with the
appropriate dimension, and the symbol * denotes the elements below the main diagonal of
a symmetric block matrix. The superscript T represents the transpose, diag{-} stands for
the diagonal matrix, and X > 0(< 0) is a symmetric positive definite (negative definite)
matrix. The symbol C = C([—7,0],R"), x¢(6) € C is a segment of function defined as
xt(0) =x(t+0), -1 <0 <0.

The Riemann-Liouville (RL), Griinwald-Letnikov (GL) and Caputo (C) formulations
are commonly used definitions of fractional integrals and derivatives. Here the Caputo
definition is used due to its convenience in engineering applications.

Definition 1. [32] The fractional integral of order & > 0 of a function x(t) is:

18 x(t) = F(la) /t(t o) x(t)dr,

where T(+) is the Gamma function, T'(s) = [;° 5T~ dt.

Definition 2. [32] The Caputo derivative of order « of a function x(t) is:

Cryua n—uw d" 1
Di px(t) = I d?x(t) = T(n—a)

t
/ (t — 7)1 (7)dr,
t

0

wheren —1 <a <neZt.

In the following, the notation D* is chosen as the Caputo derivative CD;"O e
Consider the following n-dimensional FO linear uncertain delayed system

D*x(t) = (A+ AA)x(t) + (Ar + AAL)x(t —T) + (B+ AB)u(t),t > 0,

x() =¢(t), te[-7,0], ey
y(t) = Cx(t),
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where n —1 < & < n € Z¥, and T(+) is the Gamma function, I'(s) = [~ le~'dt.
Moreover, x(t) = (x1(t), -+, xx(t))T € R" represents system the state vector, the FO a
belongs to the interval (0, 1]. The symbols A € R"*" and A, € R"*" represent the nominal
and the state delayed matrices, T denotes the time delay and x(t) = ¢(t) is a continuous
vector-valued initial condition on [—7,0]. The uncertain matrices AA, AA; and AB are
time-varying with appropriate dimensions subject to the following form:

[ AA AA; AB ] :ElH(t)[ FF F R ],

where Eq, Fj, F; and F; are known constant real matrices with appropriate dimensions, and
H(t) is the unknown time-varying matrix satisfying

HT(H)H(t) < L

Given positive definite symmetric matrices Q; and Qy, the following the cost function
for system (1) is used

J = 1"(111) /tOTl (Ty —s)*! (xT(s)Q1x(s) + MT(S)QZ“(S))dS/ )

where Ty > 0,and Ty > T
Associated with the cost, the cost guaranteed controller is defined as follows:

Definition 3. For the FO dynamic system (1) and the cost function (2), if there is a control law u
and a positive constant |*, so that for all the admissible uncertainties and time-delays, the obtained
closed-loop system is asymptotically stable and the closed-loop value of the cost function satisfies
J < J*, then J* is called cost guaranteed.

The uncertain FO system (1) is said to be the cost guaranteed control using linear
state-feedback controller with delay if there exists a state-feedback controller

{u(t) =—-Kx(t—1), t>T1 3)

u(t) =0, O<t<r,

such that the following closed-loop system is asymptotically stable and an adequate level
of performance is also guaranteed

{D”‘x(t) = (A+AA)x(t) + (Ar + AAr — BK — ABK)x(t — 1), @

x(t) =¢(t), te[-1,0].

Remark 1. In practical engineering applications, the controller starts working when time is greater
than 0. That is, there is not control input in the delayed system when t € [0, T], the system is an
open loop one.

For this end, the following Lemmas are presented firstly.

Lemma 1. [32] If x(t) € C"*([0, +00),R) and n — 1 < a < n, then the following formula holds

n—1 tk 2
It (D*x(t) = x(t) — ) " (0),
k=0 ¢

where Iff x(t) = ﬁ ft’;(t — 1) lx(1)dT.
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Lemma 2. [33] Let x(t) € R" be a differentiable vector-value function. Then, for any time instant
t>ty

D*(xT(t)Px(t)) < (xT(t)P)D*x(t) + (D*x(t))T Px(t),
where P € R™*™ is a symmetric positive definite matrix, a € (0,1).

Lemma 3. [34] In the nonlinear delayed system
D*x(t) = f(t,x¢), (5)

the initial states of Caputo system (5) is defined as xy, = ¢(t), which a continuous vector-valued
function on [—7,0]. The function f : [tg,o0] x C; — R™" is piecewise continuous in t and locally
Lipschitz in x on [to, o).

Suppose that wy,w, : R — R are continuous nondecreasing functions, w1 (s) and wy(s)
are positive for s > 0, and w1(0) = w»(0) = 0, and wy strictly increasing. If there exists a
continuously differentiable function V : R x R" — R such that

((lxll) < V(tx) < wlllxll), for teRx R,

and for any given ty € R the Caputo fractional derivative of V along the solution x(t) of the FO
system (5) satisfies

D*V(t,x(t)) <0,
{whenever sup V(0,x(0)) = V(tx(t), t=t,

to—T<O<t

then the FO system (5) is uniformly stable.
If, in addition, there exist two constants p,q > 0 with p < q such that

D*V(t,x(t)) < —qV(t,x(t))+p sup V(t+6,x(t+9)),

—1<60<0

fort > to, then the FO system (5) is globally uniformly asymptotically stable.

Lemma 4. [35] Given matrices Q = QT, H,E and R = RT > 0 of appropriate dimensions, the
relationship

Q+ HFE+ETFTHT <o,
for all F satisfying FTF < R, if and only if there exists some A > 0 such that

Q+AHHT + A 'ETRE < 0.

Lemma 5. [36] (Schur Complement) For matrices M, so that Mﬁl exists, the following inequality
forms are equivalent:

_ My My
M = < . My ) <O
My < 0, My-MLM;'Mp <0,
My < 0, My —MLMy My < 0.
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3. Main Results

An LMI sufficient condition for delayed state feedback guaranteed cost control laws
for the FO uncertain system (1) will be given in the subsection.

Theorem 1. For two given symmetric positive-definite matrix Qq and Qo, the asymptotic stability
of the following closed-loop system (4) is assured and the guaranteed cost control performance
is achieved by the control law u(t), if there exist a symmetric positive-definite matrix P, any
appropriately dimensioned matrix Y and a positive scalar A such that the following LMI holds

[Ty T T3 pEf AE PQ; 0 1P ]
* -p 1"23 T24 0 0 YTQQ 0
* | 0 At*a1E 0 0 0
* * * —AI 0 0 0 0
* * * * —AI 0 0 0 <0, ©)
* * * * * -1 0 0
* * * * * * - 0

| * * * * * * * —hp 1T |

where

F11 = AP + pAT + ,‘I/lp, F12 = ATP — BY, F13 = TaéxilpAT,
T3 = 7% Y(PAT —YTBT), Ty =PF —YTH,

and u(t) is given by
u(t) = —Kx(t—7) = =YP x(t — 1)
with the cost

J* = Amax(P7H) 19l

Proof. Constructing the Lyapunov function candidate V(x(t)) = x*(t)Px(t) and calculat-
ing the derivative of V(x(t)) along system (1), according to Lemma 2, yields

T(6)Qux(t) + 2" (t — T)KTQoKx(t — 1)

D*V(x(t)) + «x
< (T(H)P)D%x(t) + (D*x(t))"Px(t) + xT (1) Qux (1)
+ 2T (t = 1)KTQoKx(t — 7)
= xT()P((A+ AA)x(t) + (A + AA; — BK — ABK)x(t — 7))
+  (T()(AT+AAT) + T (t — 1) (AT + AAT — KTBT
—  KTABY))Px(t) + xT () Qix(t) + xT(t — T)KTQuKx(t — T)
= x'(t)(PA+PAA+ ATP + AATP + Qq)x(t)
+ xT(t)(PAr + PAA; — PBK — PABK)x(t — 1)

x(t
+ xM(t—1)(ATP 4+ AATP — KTBTP — KTABTP)x(t)
xT(t — 1)K QuKx(t — 7). @)

For any real matrices X = XY, Yand Z = Z7, satisfying

X Y
= >
© {YTZ]—O’
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we have

o lgT(mes() - [

where &(t) = [xT

" (- ) VE (@) ds > 0, ®)

t—T

(1), (D*x(t))"]".

For the sake of simplicity, let X = Z = I and Y = 0 in (8). It follows from (7) and (8) that

D V(x(t) +
<

+ o+ A+

when 0 is in the interval

2 (1) Qux(t) + xT(t = 1)K QoKx(t — 1)
(xT() )D*x(t) 4+ (D*x())TPx(t) + ta ¢ (1O ()

t @& (1)@ (1)ds

t— T

xT(t)(PA+ PAA + ATP + AATP + Qi + ta 11
a Y AT+ AAT) (A 4+ AA))x(t)
xT(t)(PA¢ + PAA; — PBK — PABK
0 Y (AT + AAT)(Ar + AA: — BK — ABK))x(t — 1)
xT(t—1)(AIP + AATP — KTBTP — KTABTP

0 Y (AT + AAT — KTBT — KTABT) (A 4+ AA))x(t)
xT(t— 1) (KTQuK 4 t*a 1 (AT + AAT — KTBT
KTABY)(A; + AA; — BK — ABK))x(t — 1)

[ =9V wee(nas ©

—7 <6 <0, and x(t) satisfies

V(x(t+80)) <uV(x(t)),

for some y > 1, one can obtain

Uux

T(H)Px(t) —

xT(t—1)Px(t — 1) > 0. (10)

Combining (9) and (10) results in

D*V(x(t)) +

IN

+ o+ + + o+t

where 77 (t) =

xT(H)Qux(t) + xT(t — T)KTQoKx(t — )
xT(t)(PA+ PAA+ ATP+ AATP +
a4 uP 4+ t*a Y (AT + AAT) (A
AA))x(t) + xT(t)(PA¢ + PAA; — PBK — PABK
Y AT+ AATY(Ar + AA; — BK — ABK))x(t — 7)
xT(t—1)(ALP + AATP — K'BTP — KTABTP
0 Y (AT + AAT — KTBT — KTABT) (A 4 AA))x(t)
xT(t— 1) (KTQuK — P+ v~ 1(AT 4+ AAT
KT'BT — KTAB") (A + AA; — BK — ABK))x(t — 1)

/LT (t—s)* Vel (1ee(t)ds

FOne) [ (-5 Ve )eg(nds

t—1

[T (1), xT(t =),

(11)
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[;; = PA+PAA+ATP+AATP+ Qi+ a1
uP + a1 (AT + AAT)(A + AA),

Il = PA:+PAA;—PBK— PABK

a1 (AT 4+ AAT)(Ar + AA; — BK — ABK),
KTQuK — P+ %41 (AL + AAT

— K'BT — KTABT)(A; + AA; — BK — ABK).

_|_

+

I,

In fact, IT < 0 can be rewritten as follow

E11 12 Tlxlxil(AT + AAT)
2 = x* K'Q,K—P o3 <0,
* * —ta1]

where

_
=
|

= PA+PAA+ AP+ AATP + Qi + t*a 11+ uP,
PA; + PAA; — PBK — PABK
= 1% AT + AAT — KTBT — KTABY).

1 [ 1
S
|

N
w

It is straightforward to see that (12) can be written in the form:

X1 212 T 1AT

x  KTQyK—P t*%a1(AT — KTBT)

* * —Tha 1]

PE
+ 0 H(i’)[Fl F, — 5K 0}
x~1E

F

+ | BF—K"E] |H'(H)[ ETP 0 7*%a7'ET ] <O.
0

From Lemma 4, there exist scalars A such that

211 212 ¢ 1AT
x  KTQK—P 1% 1(AL — KTBT)
* * —1%a 1
PE
+ A 0 [ E'P 0 t*alET ]
¢~ 1E
K
+ A H-K'E |[F B-FEK 0]<0,
0

where

Y11 = PA+ATP4+ Qi+ 7% +pup,
Y1, = PA;—PBK.

(12)

(13)
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Substituting (13) in to (12), and using Lemma 5, we obtain that IT < 0 is equivalent to

Ay A T 1AT Ff APE
*x DAy ta'(AT—K'BT) E] —K'F} 0
A= x | 0 At*a~lE | <O, (14)
* * * —Al 0
* * * * —AI
where
A1 = PA+ATP+ Qi+ 7% I+ uP,
A, = PA.—PBK,
Ay = K'QK-P.
By using Schur complement, A < 0 is equivalent to
[ Y11 Yoo Y13 Ff APE Oy 0 1]
— Yos FF—K'Ef 0 0 K'Q, 0
*  x =Tl 0 Y35 0 0 0
* * * —Al 0 0 0 0
* * * * —AI 0 0 0 <0, (15)
* * * * * -1 0 0
* * * * * * -y 0
o x * * * * * . | |
where
Yy; = PA+ATP+uP, Y, = PA; — PBK,
Y3 = tha AT, Y3 = a1 (AT — KTBT),
Yy = F —K'F, Y35 = At*a'E.
By pre- and post-multiplying (15) by diag{P~!,P~1,1,1,1,1,1,1} yields
[ T I T3 Iy AE P'Q; 0  ttalpl]
* —p1 I3 T4 0 0 YTQ, 0
* * =1l 0 At*a1E 0 0 0
* * * —Al 0 0 0 0
* * * * —AI 0 0 0 <0, (16)
* * * * * - 0 0
* * * * * * - 0
| * * * * * * * —rralf ]
where
I AP 14 P 1AT 4 P!, Ty = AP ' —BKP!
I = % 'PAT, I3 =t '(P'A7 — PT'K'BT),
Iy = P 'F —P'K'E].

If we take 4 — 1%, and have P~! = P, KP~! = KP = Y in (16), then, expression (16)
can be described as (6). Therefore, by using Lemma 3, the closed-loop control system (4)
under the controller (3) is asymptotically stable,

D*V(x(t)) < —x"(£)Qux(t) — xT ()K" QaKx(t) < 0. (17)
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Integrating with order a both sides of (17) from 0 to Tj, and taking Lemma 1 into
consideration, one has

V(x(Th)) = V(x(0)) < —J(u).
Since V(x(T;)) > 0, one has
J(u) < V(x(0)) = V(x(T1)) < V(x(0)) < Amax(P)[Ig]I* = J*.
This completes the proof of the theorem. [J

Remark 2. If « = 1 in the above quadratic cost function (2), then it will degenerated into the
definition of cost function in integer-order systems which were discussed in the literature [22-31].

Remark 3. In the control of real-plant including FO delayed systems, it is far from enough to
design a controller which not only robustly stabilises the uncertain system, but also ensures that
an sufficient performance level needs to be guaranteed. One effective way to solve this problem is
the so-called guaranteed cost control method. Several papers [37—41] discussed the control of FO
delayed systems, but the performance level was not taken into account.

Remark 4. The problem of finite-time and robust guaranteed cost control of uncertain fractional-
order neural networks were investigated in [42,43], and the output-feedback-guaranteed cost control
of a class of FO uncertain linear systems with time delay was discussed in [44]. However, these
results are delay- and order-independent. Here, delay- and order-dependent controller methods are
obtained, which are less conservative than those presented in [42—44].

Remark 5. Chen et al. [44] studied the guaranteed cost controller design for a class of FO uncertain
delayed linear systems by using the output-feedback controller without delay. Here, time delays both
in the state and the input are discussed.

Remark 6. The upper bound of the cost function is given herein, but it is not optimal. In fact, the
guaranteed cost in (2) depends on the choice of guaranteed cost controllers. The algorithm that
minimizes the cost in (2) is of interest and such a controller is said to be an optimal guaranteed cost
controller. Thus, the design problem of the optimal guaranteed cost controller can be formulated as
an optimization problem. For more details on this topic, readers can refer to [45—47]. Nonetheless, it
remains for future work the design of the optimal guaranteed cost controller.

4. Numerical Examples

In this section, two examples will be given to show the effectiveness of the proposed
theoretical results with computer simulations. The numerical method proposed in [48] is
used in the follow-up.

Example 1. Consider the following uncertain FO linear system (1) with parameters

-2 3 1 1 1
SRl Y R E L Y
0.1
E1 = 01 ,F1:[0.1 0.1 ],Fzz[—O.l 0.2],
FEF = —-01,4a=091t=0.1.

Suppose that all states of the system are measurable. Using the MATLAB LMI toolbox, one
obtains the feasible solution as follows from Theorem 1

p

. 0.1161 —0.0367
N —-0.0367  0.0392

],Y = [ 01374 —0.0411 ], A = 0.9689.
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The controller gain matrix is given by
K=YP'=[ 12115 0.0876 .

Hence, the above results show that all the conditions stated in Theorem 1 have been satisfied
and that the system can be stabilized by the full state controller.

Let us consider h(t) = cost and the initial state ¢ = [2 — 3]T. Figures 1 and 2 show the
minimal upper bound of the generalized cost |* = 530.6873, time response of the selected system
without and with the control input, respectively. Form the two figures, we can observe that the
states of system without input control is divergent, and that the controlled system is convergent.

X,

__L ——=x0] |

states xl(l),xz(t)

-10 -

-2 -

14+

. .
0 1 2 3 4 5 6
time(s)

Figure 1. Time response of the selected systems without control input in the Example 1.

2

x0] |
—— %,

15

1
05
ol
-0.5 “

a1k

states xl(t),xz(t)

-1.5

2F

25

-3

. . . .
0 1 2 3 4 5 6
time(s)

Figure 2. Time response of the selected systems with control input in the Example 1.

Example 2. Consider the following uncertain FO linear system (1) with parameters

-3 2 1 1 0 0 1

A= ]2 -5 1 |[A=|01 0 |[B=]|1],
3 1 4 -1 0 -1 0
[ 0.1

E, = [01|,F=[01 01 01],FL=[01 01 01],
0.2

FF = 01,a=091t=0.1



Mathematics 2021, 9, 41

11 0of 13

By using the MATLAB LMI toolbox, one obtains the feasible solution as follows from Theorem 1

0.2350 —0.2146 —0.2245

P = —0.2146 0.7076 —0.3655 |,Y = [ —0.0657 —0.2903 0.4868 ],
—0.2245 —-0.3655 0.9720
A = 0.9689.

The controller gain matrix is as follows:

K=YP'=[ -03598 —03767 0.2760 ].

Hence, the above results show that all the conditions stated in Theorem 1 have been satisfied
and that the system can be stabilized by the full state controller.

Consider h(t) = sin t and the initial state p = [1 —2 3]T. Figures 3 and 4 show the minimal
upper bound of the generalized cost |* = 1234.3, time response of the selected system without and
with the control input, respectively.

states x,, ()%, (t).x,(t)

. . . . . .
0 2 4 6 8 10 12
time(s)

Figure 3. Time response of the selected systems without control input in the Example 2.

T
X1 (O
—— 0]
—-—-x30

states x, (t).X, (t).x,(t)
i
!

. . . .
0 2 4 6 8 10 12
time(s)

Figure 4. Time response of the selected systems with control input in the Example 2.

5. Conclusions

This paper discussed the problem of guaranteed cost control for uncertain FO linear
systems with time delays both in the state and the input by employing the FO Razumikhin
theorem and a new definition of guaranteed cost function for FO systems. Delay- and
order-dependent conditions were developed, and state-feedback controllers designed. The
new approach guarantees the robust stability of the closed-loop system and an upper
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bound of the specified linear integral-quadratic cost function for all delays. Illustrative
examples demonstrated the applicability and effectiveness of the proposed method.
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