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Abstract: The BC-subtree (a subtree in which any two leaves are at even distance apart) number
index is the total number of non-empty BC-subtrees of a graph, and is defined as a counting-based
topological index that incorporates the leaf distance constraint. In this paper, we provide recursive
formulas for computing the BC-subtree generating functions of multi-fan and multi-wheel graphs.
As an application, we obtain the BC-subtree numbers of multi-fan graphs, » multi-fan graphs, multi-
wheel (wheel) graphs, and discuss the change of the BC-subtree numbers between different multi-fan
or multi-wheel graphs. We also consider the behavior of the BC-subtree number in these structures
through the study of extremal problems and BC-subtree density. Our study offers a new perspective
on understanding new structural properties of cyclic graphs.

Keywords: BC-subtree number index; generating function; multi-fan graph; multi-wheel graph;
BC-subtree density

1. Introduction

A topological index is a numerical graph invariant that can quantitatively characterize
the properties of the corresponding structure. Topological indices in general have appli-
cations in numerous areas such as network design, compounds synthesis, pharmacology,
and biology. Consequently a large number (approximately four hundred) of topological
indices have been introduced during previous decades.

Among various topological indices, distance-based [1-4], degree-based [5-8], counting-
based [9-13] have received much attention [14-17], and many indices have been employed
as tools for characterization of molecular topology [18-21].

Compared to the subtree number index [22-26], the BC-subtree number index is a
counting-based topological index that incorporates leaf distance constraint. First of all,
a BC-tree is a tree in which any two leaves are at even distance apart. This important
structure was introduced by F. Harary et al. [27,28]. The BC-subtree number index or
simply the BC-subtree index was first introduced in [13], as the number of all non-empty
BC-subtrees (subtrees that are also BC-trees) of a graph.

Much work has been done on the BC-trees and BC-subtree number index. Some exam-
ples include generic chemical structures storage problem [29,30], fault-tolerant computing
and parallel scheduling [31,32], recognizing and identifying special substructures [33-35],
the flow network simplification [36], Markovian queueing systems decomposition [37],
matching problem [38,39], extremal and density problems [13,40], and enumerating algo-
rithm design [13,41].

We are particularly interested in the enumeration of BC-subtrees. Using a generating
functional approach proposed by Yan and Yeh in [12] (for general subtrees), Yang et al. [13]
presented algorithms of enumerating BC-subtrees of trees. Later Yang et al. [41] solved
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the BC-subtree enumeration problem on uni-cyclic and edge-disjoint bicyclic graphs and
further generalized this study to spiro and polyphenyl hexagonal chains [40].

Previous studies show that the multi-fan and multi-wheel graphs (Definitions 1 and 2)
have many interesting properties and applications in circuit layout and interconnection
network design. The W), 1 is also useful in designing efficient wireless ad hoc networks [42].
The wheel-transposition graphs (graphs generated by wheel graphs) could be used in
parallel and distributed system [43]. Both the multi-fan graphs and the wheel graphs
Wy41(n # 6) are among the graphs that can be determined by its Laplacian spectra [44,45].
Moreover, the Hilbert series of fan graphs, multi-fan graphs and multi-wheel graphs were
derived in [46]. Subtrees of Fan Graphs, Wheel Graphs, and “Partitions” of Wheel Graphs
under Dynamic Evolution was studied in [47]. In this paper we will consider the BC-subtree
number index for these two structures.

We first introduce related preliminary information in Section 2. The BC-subtree gen-
erating functions of multi-fan graphs and multi-wheel graphs are provided in Sections 3
and 4. Some special cases are also discussed as immediate consequences. In Section 5
we make use of our findings to consdier the behavior of the BC-subtree number in the
above mentioned structures. Extremal problems are studied. We summarize our work in
Section 6.

2. Preliminaries

Before introducing our main results there are quite some preparations to do. Let G =
(V(G),E(G); f,g) be a weighted graph with vertex set V(G), edge set E(G), vertex-weight
function f = (fo(u), fe(u)) (fo(u) and f.(u) are the odd, even weight of u € V(G), re-
spectively) and edge-weight function ¢ = g(e) for e € E(G). First we list the necessary
notations and terminologies.

2.1. Basic Notations

dg(u,v): the distance between u € V(G) and v € V(G).

G\Y: the graph after removing Y from G.

L(T): the leaf set of T.

fo(u), fe(u): the odd, even weight of u € V(G), respectively.

S(G; X): the subtree set of G containing X, where X can be a vertex set or an edge set

(or both), or a subtree of G.

e  S(G;v,0dd): the subtree set of G containing v such that all leaves (excluding v) have
odd distance from v; the subtrees in S(G; v, 0odd) are called the v,44-subtrees of G.

e 5(G;v,even): the subtree set of G containing v such that all leaves (excluding v) have
even distance from v; Note that the single vertex tree v itself is included in this set and
we call subtrees in S(G; v, even) the vyye-subtrees of G.

o wi(Ty), ws(Th): the wy, ws weight of subtree T € S(G;v), respectively.
Spc(G): the BC-subtree set of G.

e Spc(G; X): the set of BC-subtrees of G containing X, where X can be a vertex set or an

edge set (or both), or a subtree of G.

Wpe(To): the BC-weight of T, € Spc(G).

Fpc(+): the sum of BC-weight of BC-subtrees in Spc(-).

7gc(.): the number of BC-subtrees in set Spc(.).

Given T € S(G;v) and v a fixed vertex of V(G), let

So(T1) = {ulu € V(Ty) Ndr, (v,u) = 1(mod 2)}
and
Se(Ty) = {ulu € V(T1) Adr, (v,u) = 0(mod 2)}.
Then:
e the wY weight of T}, denoted by w§(T), is:
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- If Ty is a weighted single vertex v, then w§(Ty) = fo(v);
—  otherwise,
wy(T) =1+ fo(@) [T few) TI Q+fo) TI fow) T se).
ueS,(Ty) u€S.(Ty)\v uesS.(Th)\v ecE(Th)
ugL(Ty) ueL(Th)

e the wf weight of T;, denoted by w5 (T7), is defined as:

- If Ty is a weighted single vertex v, then w$(Ty) = fo(v);
- otherwise, wi(T1) = T[I fe(u) TI A+ fo(w)) TI folw) TI gle).

MGSg(Tl) MESD(Tl) MGSD(Tl) EEE(Tl)
uéL(T]) uGL(Tl)

The odd, even generating function of S(G;v) are respectively defined as

F(G f,gvodd) = ), wiy(T))= ), wi(Th),
T,€S(Gw) T1€5(G;v,0dd)
and
F(Gifgveven) = Y i(T)= ¥ wi(Ty).
T,€5(Gv) T, €S(G;v,even)

Similarly, for a given BC-subtree T, of a weighted graph G, we define
BS.(Ty) = {ulu € V(T>) Adr,(u,v;) = 0(mod 2) }
and
BSy(Tp) = {ulu € V(T2) Adr,(u,v;) = 1(mod 2)}

where v; € L(T3).
The BC-weight of T, € Spc(G) is

wpe(Ty) = [ felw) T sle)

MEBSB(Tz) EGE(Tz)

and the BC-subtree generating function of G is

Fee(Gif,8) = ).,  wiue(T).
T€Spc(G)

Similarly,
Fec(Gif,6:X) = ), wp(T).
T€Spc(G:X)

Let 77(G; v,0dd) (resp. 11(G; v, even)) denote the number of v,;;-subtrees (resp. Vepen-
subtrees) in S(G; v, 0dd) (resp. S(G; v, even)). Then

7(G;v,0dd) = F(G;(0,1),1;v,0dd),

1(G;v,even) = F(G;(0,1),1;v,even)

and
15c(G) = Fye(G;(0,1),1), 15c(G; X) = Fge(G; (0,1),1; X)

2.2. Facts

With the above notations we introduce some previously established results that will
be used in our arguments.

Let T = (V(T),E(T); f,g) be a weighted tree of order n > 1 with vertex weight
function f(u) = (fo(u), fe(u)) for u € V(T) and edge weight function g = g(e) for
e € E(T), assume @ # v; be a pendant vertex and & = (o, ii) the pendant edge of T, let
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T = (V(T'),E(T"); f',¢') of order n — 1 be the weighted tree constructed from T through
“contracting” @ as follows: V(T") = V(T)\w, E(T") = E(T)\¢, and

1oy - ) (@) (1 +8(@)fe(@)) +8(8) fe(@) if o5 =1,

folos) = {fo(vs) otherwise. @
ooy J (A +8(@)fo(@))  ifvs =1,

folws) = { fe(vs) otherwise. )

forany vs € V(T’), and g’(e) = g(e) forany e € E(T").

Lemma 1 ([13]). Following the above notations, we have F(T; f, g;v;,0dd) = F(T'; f, ¢';v;, 0dd)
and F(T; f, g;v;,even) = F(T'; f', ¢'; v, even).

Lemma 2 ([13]). Let Py, be a path on n vertices with vertex weight function f(v) = (0,y) for all
v € V(P,) and edge weight function g(e) = z for all e € E(Py). Then,

[571-1

Fgc(Pu; f,8) = (n —2i)y*2%(yz*)"!
i=1

NI
—

Lemma 3 ([13]). Let Ky, be a star on n + 1 vertices with vertex weight function f(v) = (0,y)
forallv € V(Kjy,,) and edge weight function g(e) = z for all e € E(Ky ). Then,

NN
Fpc(Kiuif,8) =), (i)yz
=2

A unicyclic graph is a connected graph whose number of edges is equal to the number
of vertices.

Lemma 4 ([41]). Let U, = (V(Uy,), E(Uy); f, g) be a weighted unicyclic graph of order n with
no pendant vertices, whose vertex weight function f(v) = (0,y) for all v € V(U,) and edge
weight function g(e) = z foralle € E(Uy). Then,

2.3. Observations

We now move on to establish some new observations to facilitate our discussion of
the main results later.

Let T = (V(T),E(T); f,g) be a weighted tree on n (> 2) vertices, with the vertex
weight function f(u) = (fo(u), fe(u)) for u € V(T) and the edge weight function g = g(e)
fore € E(T). Let T, be a subtree of T and define T;; = (V(T;), E(Ty); f*, ¢") the weighted
subtree constructed from T through contracting leaves of T recursively with V(T}) =
V(Ty), and E(T;) = E(Ty) as follows:

e Choose a pendant vertex (€ L(T)A ¢ V(Ty,)) and let é = (w, if) denote the pendant
edge;
o  Update the odd, even weight of 7, and edge weight with rule as described in Lemma 1;

Remove the vertex @, edge é and set T : T\{w, &},

e  Repeat the contracting process until the remaining tree is the weighed tree T; =

(V(Ty), E(T3); f*,8") with V(T) = V(T,), and E(T) = E(T,).

From Lemma 1 we have the following two observations as immediate consequences.
We skip the repetitive details.
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Theorem 1. Given Ty, a subtree of T = (V(T),E(T); f, g) containing vertex v, and let T; =
(V(T3),E(T:); f*,8%) be the weighted subtree defined above, then, the odd and even generating
functions of S(T; Ty), denoted by F(T; f,g; Ty, 0dd) and F(T; f, g; Ty, even), respectively, are

FrfgTooi) = ([T £ T] O+ T[] £)arfe) I1 8@
ueVy(Ty) ueVe(Ty)\v ueVe(Ty)\v ecE(Ty)
u¢L(Ty) ueL(Ty)

KT fgToee) = [1 @ T1 £ [T a+5w) TT £6)
ecE(Ty) ueV,(Ty) ueV,(Ty) ueV,(Ty)
u¢L(T}) ueL(Ty)

where Vo(Ty) = {ulu € V(T;) Ndrs(u,0) = 1(mod 2)}, and Vo(T;) = {ulu € V(T;) A
drs(u,v) = 0(mod 2)}.

Theorem 2. Given T, a subtree of T = (V(T),E(T); f,g), and let Ty = (V(T; ), E(Ty); f*,8%)

be the weighted subtree obtained from T defined above, then, the BC-subtree generating function of
T containing the subtree T, is

FBC<T;f,g;Tv>:(f;<vz> T fw [1 a+i0) I1 fi

ueVo(Ty) ueVe(Ty) ueVe(Ty)
u¢L(T}) ueL(Ty)
®)
we) T1 fw TT a+£6) TT s ) T &
ueV,( uEVo(T;‘) ueV,(Ty) ecE(Ty¥)
u¢L(Ty) ueL(Ty)

where vy € L(Ty) is a leaf, Vo(T;) = {ulu € V(Ty) Adr: (u,v;) = 1(mod 2)}, and V,(T;) =
{ulu € V(T;) ANdps(u,v;) = 0(mod 2) }.

We now establish the following for general graphs.
Theorem 3. Let graph G = (V(G), E(G); f, g) be obtained from Gy and G, by identifying the

unique common vertex c (see Figure 1), with the vertex weight function f(v) = (fo(v), fe(v)) for
v € V(G) and the edge weight function g(e) = z for e € E(G). Then

1 2
FBC(G;f/g}C) :FBC(Gl;f/g}C) WHF Gzrf ae Odd)
1
(6)
1 2
+ 700 [ T(E(Gi; f, g ¢, even) — fe(c)) + Fpe(Go; f, & ¢).
e\t i=1
If the vertex weight function f(v) = (0,y) for v € V(G), then we have
2
Fc (G f.8:¢) =Fsc(Gu; f,8:¢) + [ [ F(Gis f, 83, 0dd)
L2 i=1 (7)
+ ?H(F(Gi;f,g; c,even) —y) + Fpe(Ga; f, g ¢).
i=1

Figure 1. Weighted graph G.
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Proof. We will prove the claimed expression by considering different cases of the BC-
subtrees of G containing c:
Spc(Gic) = ThUT2UTs

where

(i) 7; is the set of BC-subtrees in Spc(G; ¢) such that all edges of each BC-subtree are only

in Gl,‘
(ii) 7> is the set of BC-subtrees in Spc(G; ¢) such that all edges of each BC-subtree are only
in Gy;
(iii) 73 is the set of BC-subtrees in Spc(G; c) such that edges of each BC-subtree are in both
G1 and Gz.
It is easy to see that the BC-subtree generating function of 77 and 7; are
Fpc(Gi; f, g ¢)
and
Fpc(Ga; f, g5 ¢)-
Next, note that
73 _ 731 U 752
where

(@) 751 = {T1 UTL|T1 € S(Gy;c,0dd), To € S(Gy;c,0dd)}, where Ty U T, are the trees
obtained from T; and T, by identifying the vertex c;

(b) 7'3)2 = {T3 U Ty| T3 € S(Gy;c,even)\c, Ty € S(Gy;c,even)\c}, where Tz U Ty are the
trees obtained from T3 and T by identifying their vertex c.

From these cases we can obtain the BC-subtree generating function of BC-subtree in

T; as

1 2 1
A5 fitey LLF (G frgicodd) + 5]

The theorem thus follows. O

2
_1(F(Gi;f,g; c,even) — fe(c))

Through similar analysis we can also obtain the odd and even generating functions of
S(G;c). We skip the technical details.

Theorem 4. Let graph G = (V(G),E(G); f, g) be obtained from Gy and G, with the unique
common vertex c (see Figure 1), with the vertex weight function f(v) = (fo(v), fe(v)) for v €
V(G) and the edge weight function g(e) = z for e € E(G). Then

F(G; f,g;c,0dd) =F(Gy; f,g;c,0dd) + F(Gy; f, g; ¢, 0dd)

+¥ﬁF(G'f g;¢,0dd) ®)
(1+f0(6)) P 1r)r&r%r
and
1 2
F(G; f,g;c even) = F(G;; f, g ¢ even). 9)
ff(c) i=1
If the vertex weight function f(v) = (0,y) for v € V(G), then we have
F(G; f, g c,0dd) =F(Gy; f, g ¢,0dd) + F(Gy; f,8; ¢, 0dd)
(10)

2
+ [ F(Gi; f, g c,0dd)

i=1
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and

F(G; f,g;c even) =

1

2
F(Gj; f, g ¢ even). (11)
=1

< |

2.4. Further Definitions

We now introduce the graph structures under consideration in this paper.

Recall that K ,, is a star on n 4 1 vertices, P, is a path on n vertices, and C, is a cycle
on n vertices. A fan graph, denoted by F,, 1, is a graph formed by adding an additional
vertex adjacent to every vertex of P,. A wheel graph W, is a graph formed from a cycle
Cn, by adding a vertex adjacent to every vertex of C,.

Assume G and G, are two disjoint graphs, a graph G = G; + G, is called the disjoint
union of Gy and G, if V(G) = V(G1) UV(Gy) and E(G) = E(Gy) U E(Gy). Moreover,
let the product G; x G, denote the graph obtained from G; + G, by adding edges (a,b)
witha € V(Gy) and b € V(Gy). In the specifal case when G, is a single vertex ¢, we write
G1 szasGl X C.

Definition 1. Let P, (i >1,andl; # li, if1 <i #j<k)(i=1,2,...,k) bekdistinct paths

k
on l; vertices, and each Pj, has n; copies with Y. n;l; = n, then, the graph
i=1

(nlpll + nZPlz +--+ leplk) X Co

k
is called a multi-fan graph, where n1 Py, + naPy, + - - - + ni Py, is the disjoint union of . n; paths
i=1

(n; is the number of paths of length I; — 1) and cy is the center vertex (see Figure 2).

Clearly, in the case of k = 1 and ny = 1, the multi-fan graph is just the fan graph F, 1. For
convenience we call the subgraph Py, x co (i = 1,2,...,k) of multi-fan graph (ny P, + na Py, +
-+ m Py ) X co the sub-fan graph F,_q. It is easy to see that the fan graph Fy is the single vertex
co for the case I; = 0, and F, is an edge for the case I; = 1.

np—1

Figure 2. The multi-fan graph (iP; + Pppr+---+ Py,) X co.
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Definition 2. Let C;, (; >3,andl; # lj, fl1<i#j<k)(i= ., k) be k distinct cycles

k
on l; vertices. Suppose each C;, has n; copies with }. n;l; = n. Then, the graph
i=1

(11Cpy, +n2Cp, + - - +mCp ) X co

k
-+ nCy, is the disjoint union of Y. n;
i=1

is called a multi-wheel graph, where n1Cy, + n2Cp, +

cycles (n; is the number of cycles of length I;) and c is the center vertex.
Clearly, in the case of k = 1 and ny = 1, the multi-wheel graph is just the wheel graph Wy, 1 1.
Similarly, we call the subgraph C;, x co (i = 1,2,...,k) of multi-wheel graph (n,Cy, + nCy, +
-+ mCy ) X co the sub-wheel graph Wy ;.

Definition 3. Let G = (n1 P, +naPy, + - - -+ m P, ) X cq be the multi-fan graph with Z nil; =

n. Then we also call G ther (1 < r < n,r is an integer) multi-fan graph, and is denoted by 1
If (nmodr) #0, thenletk =2,1y = r,ny = [%], I, = 1,ny = (nmod r), and we call
1 the r quasi-regular multi-fan graph.

Otherwzse letk=1,1y =r,ny = %], and we call F| | the r regular multi-fan graph.

n+1

3. BC-Subtree Generating Functions of Multi-Fan Graphs

We now move on to study the BC-subtree generating functions. First we consider the
multi-fan graphs in this section.

Theorem 5. Let G = (n1 P, + naPy, + -+ + n¢Py,) X co be a multi-fan graph with center
vertex cg, the vertex weight function f(v) = (0,y) for v € V(G) and the edge weight function
g(e) = z for e € E(G). For convenience we denote F(F;1; f,g;co,0dd) by Fgfil(co) and

F(Fy41; f,8; co, even) by FE" (co). Then

k-1 k—i t
RcGro =L (i@ - L[ T TI(a+ B 1))
i=1 t=1 i+1<r1<rz< ~<rp<ks=1 7
k-1
4 (]/1 (Felmfl (Co))ni _ ) [ i—k H ]/1 ns Feven )) s 1}
i=1 s=i+1
k ml o .
X () -0 & e @) -1 2

j=1

n;j—1 .
+ F?,d‘il (o) Z% [(1+ Ffr,‘f'il (co)) = 1] +niFgc(Fi1: f, & Co))
=

+1ZZ]/,

MN

k
+ Z
i=1 1

-
Il



Mathematics 2021, 9, 36

9 0f 29
and
l,——l
T +1 Zs+1 odd
Fgc(Fi+1; f,8:¢c0) =Fsc(Fii f,&co)+ Y, v° g, (o)
s=0
i1
el 2 2p+2q 1 ItPF odd
+ p; ;L—: Yy FI —2p— 2q+2(co)
l; Li+1 (13)
3] L] e gt
p+29-1yq+p peoen
+p:1 q:1 ]/ l —2p— 2q+2<C0)
LI
eoven
+2 ZZ pprFz 2p+1( 0)
p=1
with
dd dd fin k+1,2k+1 dd
F, (co) =yz + (yz + 1) FE" (o) + k; y 2 (4 R, (co))
L1, L2 - (14)
\.ZTJWz 2p+29—1. g+
+ YY) iy P(H—Fz T 2q+z(60))’
p=1 gq=1
1.
1] ) iyt |- 21,
even EZ}BH
o) = 32 (B, (o) + g R (@)
" ) (15)

and Fpc(Fp; f, 8:¢0) =0, Fgfd(co) =0, Ff/"(co) = .
Proof. First we consider two cases for the BC-subtrees of multi-fan graph G = (n1P,
n2P12 +---+ nkPlk) X Cp:

(i) ones not containing the center co;
(ii) ones containing the center c.

With Lemma 2, we have the BC-subtree generating function of case (i) as

k [31-1 ‘
Yo (i Y (i—2)y*2(y?) ). (16)
i=1 =1

With slightly more complicated structure analysis, Theorems 3 and 4, we have the
BC-subtree generating function of case (ii) as

k

~

Il
= =
|

1 k—i ¢
F((niP;,) % co; f,g:co,0dd) Y { ) HF((”rsPI,S) x co; f, 9 co,odd)}

i t=1 Li+1<ri<ry<---<ri<ks=1

1

, k
+ (F((”ipli) X ¢o; f, §; ¢o, even) — y) [yl_k [T F((nsP,) x co; f, 8 co,even) — 1} (17)
i s=i+1

I
—_

M»

Fpc((niPy,) x co; f, & co)-

Il
—_
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Similarly, the odd and even generating functions, the BC-subtree generating functions
of multi-fan graph (1;P,.) x co (i = 1,2,...,k) containing c are, respectively,

F((”ipli) X C(),'f,g; C0,0dd) = (1 + F(Fli-&-l;f/g; C(),Odd))n’ -1, (18)
F((niPy) x co; f,&; co, even) = yl’”"F(FliH;f,g; co,even)™, (19)
ni—1 .
Fc((niPy) x co; f,8:¢0) = F(F41; f, 8 co,0dd) Y [(1+ F(F,41; f, 8 co,0dd) ) — 1]
=1
ni—1 . . (20)
+ (F(Fi11; f, 8o even) —y) ) [y /F(F, 15 f, g5 co,even) —1]
=1

+niFpc(F41; f, & o)

We now label the non-center vertices of the sub-fan graph F, .1 = P, X ¢ (i =
1,2,...,k)as c1,c2,. .., ¢, in counterclockwise order. In what follows, we further focus on
computing the odd and even generating functions, and the BC-subtree generating functions
of Fj, 11 (i=1,2,...,k) containing co.

Lete; = (co, cli), then we have

S(Fli+1;C0) =SUSHUS3US,

and
Spc(Fi+1500) = STUS US3 USy

where

e 5 (resp. S)) is the set of subtrees (resp. BC-subtrees) that contain co, but not (c, c;,)
or (cj,—1,¢,);

e 5 (resp. Sj) is the set of subtrees (resp. BC-subtrees) that contain ¢y, (co, ¢;,), but not
(Cli—l/ Cll' );

e 53 (resp. S3) is the set of subtrees (resp. BC-subtrees) that contain co, (c;,—1,¢j,), but
not (Co, Cli);

e 5 (resp. Sj) is the set of subtrees (resp. BC-subtrees) that contain ¢, (co,c;;) and
(ct,—1,¢1,)-
We now study each case:

@ & =S(F;co);

(b) S» = {T1 +¢;)|T1 € S1}, where T; + ¢; is the tree obtained from T, by attaching an

edge ¢; at vertex cp;
(c) The set S3 can be written as

r

Sy ={T+ (co,cl—) + U (clh—k—ns1,ct—k—n+2)|IT € S(F,—g—r41:0) },
h=2—k

wherek=1,2,...,;,—1,r=1,2,...,;, — k;

(d) Evidently, each Ty € S; must not contain the edge (co, Cli—l)- We further consider these

k
subtrees by cases of containing edges (co, ¢;,) U (cj,—r, c;,—r41) but not (¢, _x—1,¢;,—¢),
r=1
fork=1,2,...,1; — 1, which can be rewritten as:

k

Sy = {T + (co,c1,) + | (ct,—ns ct—n31)IT € S(F—k; o) }
=1

where k =1,2,...,1; — 1. Note that S(F;; ¢p) is the single vertex c.
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By the definitions of wj weight, w; weight, odd, even generating function of subtrees
containing a fixed vertex, (a)-(d), and Theorem 1, we have the followings.

Y w(Th) = F(F; f, 8 co,0dd), (21)
T1€5
Z wi(Ty) = F(Pli;f,g; cp,even), (22)
T1€ST
) w =(1+ ) wi(Th))fe(ey)g(e)
TheS, T1€S (23)
=yz(1+ F(F,; f, & co,0dd)),
Y wi(T) = F(F,; f,g;co,even) fo(c;)g(e;) =0, (24)
TheS,
li—1 1 (-t [
¥ @(T) = & |fte-0hole) =TT (A4 folerosmn)eley1:2)
T;€8; k=1 s=1
k—1 — r—1
I_T()g((cl,-—k+5/cl,—k+s+l } {Z ( 1s ((ct—k—ssCli—k—s+1))
L2 Ly
(1 follr k2o feleyx-25) ) foley ki) 2 ) 25)
s=1

8(c0,61-0) (14 F(Fyri1if, gico, 0d) |

L] T
= Z ( Z ZZP+2¢771y‘1+P (1 + F(Fl,fzp—2q+2/f/ g o, Odd))) ,
p=1 q=1

k ]

ﬁ <1+fn Cl—k+25)) fe (cy; k+25+1))

5=0

li— L 1k

Y. wi(Ts) :kz g((co,c1,-1)) {fo ci;)
=1

T3€83

k-1
Hg((czik+s,611k+s+1))] {F(Fz,-k;ffg;co/evenﬂ

s=0
Lk ey
~(-1)
feler—k=1) Y, F(Fl—k—r+1; f, & co,even) fo(cp—g—r1) 2 (26)
r=2

‘
IN}

=]

—

r—1
< g g((er,—k—s,€l—k—s41)) (1 +fO(Cl,'—k—ZS))ff(Cl,-—k—Zs—l)>:|

1 s

I
—_

Ir+1
%2

%) L
= Zz”y”< (F,—2p+1; f, & co,even) + E quy‘UE(Hz,,qurz;f,g;CO,even)>,
p=1

)

13 k=1
L wh(Ts) =fley)a(e) 1 [flei-acn) [T (14 ey an)ilei-2)
T4€8y k=1 r=1
2k—1
q g((er -1, Cl,-—t+1)):| (14 F(F,—ak+1; f. 8 o, 0dd))
=
r41-1 7)
N kZ [ (1+f0 ¢l —or1)) fe(cy, ZV)Hg Cli—t/Cli—141))
=1 =3

fe Cl; g( )(1+F(PZ 2k,f g,Co,Odd))

I
j1o1
= Y Y14 F(R,— f, g co,0dd)),

k=1
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2: 8

T4€S,

I MN‘

[fo ci,-2%) :( L+ foleyar42))feler,2r41))
2k
I1

g((er—ts leftJrl))] F(F, o f,8; co, even)
t=1

71
2

2k—1 (28)
3 & T T (0 + foler-zreaDfler2e0) TT s(C-r-r00)|

F Fz _2k+1; f, 8 co,even)

Il MN\

v 2% F(F,_o111;f, $ co even),

with F(Fy; f, & co, odd) =0, F(F; f, g ¢co,even) = y.
Hence, by Equations (21)—(28) we have
F(F 1 f,800,0dd) = Y wi(Ti)+ Y wi(T)+ ) wf(B)+ ), w
T €S T,eS, T3€8;

-1

I;

TyeSy
[
= < Z ZZ}HqulyHP (1 + P(F7172p72q+2;f & Co,odd))>
p=1 q=1

[41-1

(29)
-+ Z ]/kJrl 2k+1(1+F(FZ 2krf g C(),Odd))
k=1

+ (yz +1)F(F;; f, 8 co,0dd) + yz
and

F(F 1 f, gcoeven) = Y wf(Ti)+ Y wi(T)+ Y, wi(Ts)+ Y w(Ty)
T1€851

TheS T3€S3
1;
L%J
p:
L+

2ryP ( (Fi,—2p+1; f, & co,even)+

2

T4€S8,

—

(30)
Zq 1qu Fl —2p— 2q+2/f g,co,even)>

Mwh i M

Y2 E( (Fi,—2k+1; f, & co,even)
k:

+ F(Fy; f, & co,even)
with F(Fy; f,g;co,0dd) =0, F(Fy; f, g5 co, even) = y.

Similarly for the BC-subtrees, through case analysis of BC-subtree generating function
BC-weight wy, (T) of T € Spc(G), and by Theorem 2, we have

Y. wue(TY) = Fee(Fy; £, 8 c0), (31)
Ty €Sy
Y. wie(Ty) = yzF(Fy; f, g co,0dd) (32)
Ty €85



Mathematics 2021, 9, 36 13 of 29
L) 152
Z wbc(T?T) = Z Z 22p+2q_1yq+pF(Fli—2p—2q+2}f/g} Co, Odd)
T€S8; p=1 g=1
13152 -p o
+ Y, yq+pF(Fli72p72q+2;f' 8 Co,even) (33)
p=1 gq=1
13 .
+ ) ZPYPE(F,—2p+1; f, & co, even),
p=1
and
li-1
5
Yo we(Ti) = Y vy (R, o f, 85 co, 0dd)
TjeS; s=1 (34)
[
+ Z ySZZSP(Fl,-—szrl}f/g?CozeVen)/
s=1

Combining the Equations (31)—(34), we have

Fec(Fq1; f,&c0) = ), wo(TH)+ Y, wi(T)+ ), wi(T3)+ ), wi(Ty)
TieS; T} €8s TieS; Ti €S}
1—1

2
=Fpc(F;f,gc0)+ Y, v 22 (B, g f, 8 c0,0dd)
s=0

7
Ly PP VWITPE(F,y, 9040: f, 85 Co, 0dd) (35)
+ Z2P+2‘7*1yq+pF(Fli_zp_2q+2}f/ g;co,even)

+2) zzpy”F(Fli_sz;f,g; co,even)
p=1

with Fgc(F2; f, 8:c0) = 0, F(Fy41; f, & co,0dd), F(Fy41; f, &; co, even) given in Equations (29)
and (30), respectively, and F(F;; f, g;co,0odd) = 0, F(Fy; f, g; co, even) = y.

Combining Equations (16)—(20), (29), (30), and (35), we have the BC-subtree generating
function of multi-fan graph G = (n1 P, +naP;, + -+ - +n;Py,) X g as claimed in (12). O

Next we consider the BC-subtree generating function of some special cases of multi-
fan graphs. First of all the BC-subtree generating function of the r multi-fan graph F
(1 <r < n,ris an integer) follows from Theorem 5.

Theorem 6. Let F; , (1 < r < n is a positive integer) be the r multi-fan graph defined in
Definition 3 with vertex wezghtfunctzon f(v) = (0,y) forv € V(F, ) and the edge weight
function g(e) = z fore € E(F} ), then

n
FBC(F;ZH;f,g):L;J (FBC(FV+1;fzg}CO) F (co) — FE(co) + Z —2))ytz 2’)

(36)

n

+ (L4 y2) L (14 B () ) 41 H(Fff’f?(cow
—(n—r[Zyz+ (15 -y -1
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with
Lz 1,2s+1 podd
Fgc(Fry1; f,8:c0) =Fpe(Fri f, g c0) + Y, 22T R (o)
s=0
bl S2p+2q—1,4+p podd
0
+ Zl Z:l pt<q— yq PFr 2 2q+2<co)
p=1 gq=
, (37)
L) 152 )-p pi21 g
EUEYL
Jrzl Zl PR Fr2p- 2q+2(C0)
p=1 g=
l5) 5
+221 ZTYPEES,, . (<o),
pf
dd dd iy k+1_2k+1 dd
FE¥ (co) =yz + (yz + DFE(co) + ), v 22 (1 + FE (co))
k=1
L5 1221 (38)
+ Z Z Z2p+2qflyq+p(1+Fo
=1 g=1

2p— 2q+2(CO))
[5)

) = 1 2w B )+ 2 2R (@)

|

(39)
E s (C0) + FE (o),
k=1
and Fpc(Fy; f, 8 c0) = 0, Ff*(co) = 0, FE™" (o) = y

Letting y = z = 1 in the above statements we immediately have the following two
consequences.

Corollary 1. Let G = (n1 P, + naP, +nPy) X co be a multi-fan graph, then the BC-
subtree number of G is
- - t
18 (G Z(1+“l+1 _1>Z[ D H<1+“l+1)ms—1>]
i=1 t=1 Lit1<r<r<---<r<ks=1
k—1 ni—1
}:<bnf+1 )(Hblﬂ ) Z( (ti+1)

jg [b](l,ﬂ) - 1]
nl-fl . (40)
+agy Y, [T +agan) —1] +nmnpe(F +1,Co)>
=1
k [41-
+) 2 ni(l; — 2f)
i=1 j=
with
i ) T2 I
npc(Fiq:c0) =nsc(Fico) + Y, Y. @g—op-ogi2) + Y A2
-1 =1
o 1, (4
L4 ity -p (4]
+ bt,—2p-20+2) +2 ) bii—2p+1);
p=1 g=1

p=1
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1411 i ) T2
agrn) =1+2a,+ ), (1+ag,_) Z Z (1+ag-2p-2942),  (42)
k=1 p=1 q=1
and
L%J i —p 4]
b, 41 (b (;—2p+1) T Y b(1172p72q+2)> +) b, —axy1) + by, (43)
p=1 q=1 k=1

and npc(Fp;co) = 0,a1 = 0,b; = 1.

Corollary 2. The BC-subtree number of the r multi-fan graph F, ;| (see Definition 3), the fan
graph F, 1 (r > 1), and the fan graph F, 11 (r > 1) containing cq are, respectively, the following:

r n n—r| 2
msc(Fy1) =L ) (msc(Frinico) = arpn = broa ) + 271 (14 ary)

(44)
o™ (o~ iy iy - —n—
b0+ (= TEDI5]1 —D+r+1) —n—2,
r r
e (Frin) = e (Frinico) + (r = [21)(151 - 1), (45)
== =1
2 2 2
nBc (Fr41;c0) =npc(Frico) + Z Z A(r—2p—29+2) T Z A(r—2s)
p=1 g=1 s=0
(46)
L5 150 L5
+ Z (r—2p—2q+2) +2 Z b(r72p+1)f
p=1 q=1 p=1
with
B L5 17221
ﬂr+1:1+2ﬂr+ Z (1+‘1r2k) Z Z (1+ﬂr2p 2q+2)) (47)
k=1 p=1 g=1
5] L5t -p L5
byi1 = Z (b(r—?.p-i-l) + Z b(r—zp—2q+2)) + Z bir—ak+1) + b, (48)
p=1 q=1 k=1

nec(F2;c0) =0,a1 =0,by = 1.

Remark 1. From Corollary 2 we have jpc (F) ;) = 2" —n — 1 for the case of 1 multi-fan graph
(i.e., the star Ky ,,), agreeing with Lemma 3.

4. BC-Subtree Generating Functions of Multi-Wheel Graphs

We now study the BC-subtree generating functions of the multi-wheel graphs
(Definition 2).

Theorem 7. Let G = (n1Cy, +n2Cy, + - - - +n,Cy, ) X cg be a multi-wheel graph with center ver-
tex co, the vertex weight function f(v) = (0,y) for v € V(G) and the edge weight function g(e) =
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zfore € E(G). Let F(W;1; f, & co,0dd) be denoted by F%:H (co), F(Wi,41; f, & co, even) by
Fﬁ\zfl‘j’il (co), F(F;41; f, & co,0dd) by Fggil (co) and F(F41; f, g co, even) by Fﬁ-;ji”l (co). Then

k—1 k—i [ t

e =% (A, er )] F [T )

=1 t=1 Lit1<r<r<---<r<ks=1

k

. k
F X (A @) ) [y TT o ) 1)
1 ! s=i+1

—_

ni—1

(R, (o) =) L b/ (g (o)) 1
j=1

+
.M*
/N

Vl,'fl .
R0 L 10+ R @) = 1]+ miFac (Wi, o)

(49)
with

[Il-—z;v

By —op—2q42

-1

" -2 [
Fj,',, (co) =2 )
I

el
Z 22p+2q71yq+p(1+l_~odd (CO))> (50)
q=1

Fi,—2p—2q+2

> 22p+2q—1yq+p (1 -+ podd (CO)))
g=1

i

_
i
VRS
—

4o
+ Y TR (o)) + (v + DEE (o) + vz,

41

; l-r
R (c0) =2 1y (FF )+ X, AiyiEgen (Co)>
]

= Fi—op—2q+2

1;—2p—2q+2

152 )-p
+ Z ZZPyP (Ff.f“’;pﬂ (co) + Z ZZfifly'iF}e:ven (CO)> (51)
i qil

and

i 2 (.2 W
Fge (W41 f, &5 ¢0) =2 Y, Y Artalyatrppd (co)

1;—2p—2q+2

" 2P 201y q+p foi’;p%z (co) (52)

+ ZzpprfZe,ZM (co)| + Fpc(Fi,41; f, & o)

with Fgc (Fy, 115 f, 85 o), Fo% (cp), Fﬁ;’i”l (co) as in Equations (13)—(15), respectively, and Fpc (F;

B

f,8:¢0) =0, F¥(co) = 0, F*" (o) = y.

Proof. Firstly, consider the BC-subtrees of multi-wheel graph G = (n1Cj, +n2Cp, +-- - +
n;Cy,) X cg in two cases:
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(i) onesnot containing the center cy;
(ii) ones containing the center co.

From Lemma 4, we have the BC-subtree generating function for case (i) as

lz
7

k
Y (n E L2 (y22) 7). (53)
i=1

Similar to the previous section, we have the BC-subtree generating function of case
(ii) as

-~
|

1

g

- t
F((n;Cy,) % co; f, 8 co,0dd) Z { Z HF n,;Cl X co;f,g;co,odd)}

t=1 Li+1<ri<r<-- <rf<ks=1

I
=~ =

-1

+ Y (F((nCy) x co; f,gico,even) — y) [yf*k [T F((ncy) ch;f,g;co,evem—l} (54)
i=1 s=i+1

M=

+ ) Fpc((niCy,) x co; f, & co)
i=1
where
F((n;Cy,) x co; f,8:co,0dd) = (14 F(Wj,41; f, 8 co,0dd))" —1, (55)
F((n,C;,) x co; f, g; co,even) = y' "F(W) _1; f, g co,even)™, (56)
ni—1

Fpc((n:Cy,) % co; f, 8 c0) = F(Wit1; f, 8 co,0dd) Y [(14 F(Wji1; f, g co,0dd))) — 1]
0

ni—1 » . (57)
+ (F(Wi11; f, & o even) —y) ) [y TF(Wiya; f, 85 co,even) —1]
j=1

+niFgc(Wi11: f, 8 co)-

Now label the I; non-center vertices of wheel graph W1 = C, X co (i = 1,2,...,k)
with cy,¢,...,¢;,. For convenience we let e; = (co,¢t) (t = 1,2,...,1)), ef = (c1,¢c1)
and ¢/, = (cl,—psCl—r41) (r = 1,2,...,1; = 1). We partition the set of S(W),1;cp) and
Spc(Wi.41;¢co) into five cases:

S(Wli+1;C0) = 31 ng U§3 U§4 Ug5

Sc(Wi1:c0) = 81 US, US; US, U S5

where

o S (resp. 315 ) is the set of subtrees (resp. BC-subtrees) that contain co, but not (cy, ¢;,);

o S, (resp. S,) is the set of subtrees (resp. BC-subtrees) that contains ¢ and (¢, ¢;,), but
neither (co, ¢;,) nor (¢;,1,¢c1,);

e S; (resp. 3;) is the set of subtrees (resp. BC-subtrees) that contain ¢y, (co, c;;) and
(Cl, Cli)/ but not (Cl,v—lf Cli);

o Sy(resp. 32) is the set of subtrees (resp. BC-subtrees) that contain ¢y, (co, ¢1,), (cj,—1, ;)
and (cy,cy,);

o S5 (resp. 3;) is the set of subtrees (resp. BC-subtrees) that contain cg, (c;,—1,¢;,) and
(c1,¢1,), but not (co, c,).

Studying each cases, we have:
(@) S1 = S(F+1;¢0);
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b) S, = S(Wi41\(¢f _; Uey);ef ). Note that W1 \ef ; = Fy, 11, thus we have =
83, where S5 = S(F,11;¢c0);
(c) Sz = S(Wiy1\ef_y;e, Uey). Similarly, S3 2 8y, where 84 = S(Fy 115 ¢0);

(d) We can further divide the subtree set S, into cases of subtrees containing edge set

k k
{e;,, U ef_,}, butnot {e;_, ;, U e, .} (recursively fork = 1,2,...,I; — 2). That s,
r=0 ! r=1

k k
Sy ={TIT € SWy,1\(ef 1 U e, —r)e, Uer- )}
r=1 r=0

wherek =1,2,...,[; — 2;
— 1 o
(e) Ss is the subtree set of S(Wj, 1 \e;;co U U ef_,). Denote by W;gj(k =0,1,..., ;-
r=0 "' i

k g k
2) the graph after removing edge set |J e, —r41 from Wy, 1. Thus Wllf +f = Wl[+1\ U e,—r1
r=1 ! r=1

and evidently Wll i

+1 = WlH*l’

g k
Similar to the previous case, we partition the set of S (Wlll_Z +f ;c0 U rLJO e ,) and Spc

. k
(W,l_l+f;co U U ej_,) into four cases:
1 r:0 1

k
~li7k' < — — —
SWseou U er—y) = Si-k1 US-k2US1-k3U Sy ks
r=0

k
Spc(Wy 10U U €f,) = Sik1 UST k2 US] 3 U ST g4
r=0
where
. gll_,k,l (resp. g;ﬁ,_k’l) is the set of subtrees (resp. BC-subtrees) that contain ¢y U LkJ eZ* o
but not ej,_ or e;‘i_k_l; =
. gli* k2 (resp. gz_ k2) is the set of subtrees (resp. BC-subtrees) that contain ¢y U LkJ el*if .
and ej, g, but not EZ—k—l; i
o S g3 (resp. 37,-4@3) is the set of subtrees (resp. BC-subtrees) that contain cy U LkJ ey
ej,— and el*iikil; T
o S _ka (resp. ngkA) is the set of subtrees (resp. BC-subtrees) that contain co U LkJ e,
and e;‘ﬁkil, but not e;,_. =0

Again, we have that Wlli";f\(eli,k U eZ—k—l) (k=0,1,...,1; — 2) is the graph obtained

k+1 ~
. li—k ~
from W), after removing edge set {ei—k—lf rL_Jl ej,—r+1}- Clearly, W' \(ef—x U e;ﬁ,-fk—l) o

k
F1\ UO(CO, Cli—r)-
r=|

We also have

)BERTICAREED DRI D S} .
b Egzl-fk,z T3 egli —k3 Ty egli—k,l
Y. WM+ ) wi(B)= ), wi(h), (59)

TES] k2 T3€8), k3 T€S) k1



Mathematics 2021, 9, 36 19 of 29

and
L owm-2 ¥ ems Y @wm,
TeS(W,i 1 couu ) NES; k1 Tes(Wy " Ul e ) (60)
r=0 !
Y. wy(T)=2 ), wi(Th)+ Y. wy(T),
T; Egji,kJ (k+1) k+1 (61)

L
TeS(WHl CUUUe, ) TesS(W/ ;couuoe;,J
e

From the cases (a)—(e), Theorem 1, and by the definitions of wg weight, w;, weight,
odd, even generating function of subtrees containing a fixed vertex, we have

Y wY(Ty) = F(F41; f, & co,0dd), (62)
T1681
Y wi(Ty) = F(F4; f, 8 co, even), (63)
Tlegl
Y, W)+ ), wi(Ty) = ), wiy(Ta) = ), wy(T), (64)
T3 633 Ty 634 T, 632 Tegll.,l
;-1 1- (-1 ’—%-l
Y own= Y% {fs(cli—j)fo(cli) =TT (O folerjoas ) felerjras) )
TES), 1 j=k+1 s=1
j—1 r—1
8((cr—jrs Cljys1) HZ (Hg ClimjssCli—j—s+1))
s=0 = s=1
L) oy
((1+fO(Clﬁj725+1))fﬁ(Cl,vfjfzs))ft)(cl,-fjfr+1) 2 ) 65

=1

%

8(c0€1-1)) (1 F(Fijori1if, gico, 0dd) |

i) /152

2 2

= E < Z Z2P+2qfly‘1+l’ (1 + F(Fl,*zp*2q+2’f’ g, co, Odd))),
1

p=l511 \ =1
wherek =0,1,...,; —2;
Y, wi(T3)+ ). wi(Ty) = ), wo(To) = ), wy(T), (66)
T3€§3 T4€§4 Tzegz Tegl.,l

‘ ﬁ (1+f0 c; ]+25))f£’(cl ]+25+1))

s=0

Ii—1
Y. wi(T) =Y g((co,c,—j)) [fo ci;)
Tegli,k/l ]:k+1
-1
Hg((cl,-—j+5/cl,—j+s+l))] {F(Fh—j?f/g?Co/eVen)Jr
s=0

o (-
feler—j—1) Y F(Fi—j—y11; f, & coeven) folcy—jrp1) 2

r=2

(67)

‘
>

r—1 L ]
( g((er—j—sct—j-s41)) g (1+fo(Cl,v—j—ZS))fe(Cl,-—j—ZS—l)):|

N‘

@
Il

—_

—_

L1]
- 2ryP (F(Fli2p+l;f/g} co,even)
p=1"2]
L%t —p -
+ Z 22T YIF(F,2p2q12; f, & co,even) |,
q=1

wherek =0,1,...,1; — 2.
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Thus, by Equations (29) and (30) and (62)-(67) we have

F(Wi11;f,gco,0dd) = ) wi(Ty) + Y, wi(To)+ Y, wi(Tz)+ Y wi(Ty)

Ty 631 T> 632 T 633 IS

b

-
Nl

N

Li—2p
v
Z Zzp+2q—1yq+P (1 + F(Fli72p72q+2;fr <5 Co, odd)))
q=1

a5}
2
izt ] /T (68)
+ 3 | X AT (L4 F(Ry-2p-2q42: f,8 co,0dd))

2
+ ) YT (14 F(R, i f, 85 00,0dd))

+ (yz+1)F(F; f, 8 co,0dd) + yz,
and

F(Wii1;f,gicoeven) = ) wy(T)+ ) wy(T2)+ ) wy(Ts)+ ), wy(Ty)

T, Egl T, Egz T3 653 Ty 634

;=2 Llﬂ
=2 22PyP | F(F,_op41; f, & co,even)+
k=0 p=| 3 |

29 IF (R —ap—2gs2: f1 85 Co,even)>

13]
+ 3 2Py <F(Fl,2p+1;f/g} co,even) -+
p=1
LE _
’ 29-1
Z YR (B ap g1 f1 & Co,even)>
q=1
13] o
+ Z Yz F(F,_pk+1; f, & Co,even)
k=1
+ F(Fy,; f, 8 co,even)

(69)

with F(Fj y1; f, &; co,0dd), F(Fy,11; f, &; co,even) as in Equations (29) and (30), respectively,
and F(Fy; f,g;co,0dd) = 0, F(Fy; f, g co, even) = y.
Through similar reasoning, we have

Y wpe(Ty) = Fpe(Fi415 £, 8 o), (70)
T;eS)
Z wa(T§)+ Z wpe(Ty) = Z whc(Tz*): Z wbc(T*)r (71)
T;€S3 T;€Sy T3S, T*€8), 1
i) T
Y @)= Y Y 2 YTPE(R, gy a0, g, 0dd)
T*€5, 11 p=rE1] 4=1
L3 L)
+ Y Y APTWYIPR(R, 5, 0500: f,8ic0,even)  (72)
p=152] 9=l
4]
+ Y ZPYPF(F,_5p41;f, 8 co even),
p=53]

wherek =0,1,...,1; — 2.
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Combining Equations (35), (70)—(72), we have

2
Y TN PE(R, o, 0040; f, &5 co,0dd)

13 L2 )-p o 73)
* 22~ yq+pF(Fli—2p—2q+2}f,g; o, even)
p=l52] =1
13 ,
+ zPyPF(F,_2p11; f, & co,even)

+ Fpc (F41; £, & o)

with FBC(Fli+1;f/ 8’ CO)/ F(Fli-‘rl;f/ g, o, Odd)/ F(Fli+l;f/ g5 Co, even) as in Equations (29)/
(30), (35), respectively, and Fgc(Fy; f,8;c0) = 0, F(Fy; f, g co,0dd) = 0, F(Fy; f, g; co, even)
Our conclusion now follows from Equations (53)—(57), (68), (69), and (73). O

The BC-subtree generating function of the wheel graph W, 1(n > 3) (where nis a
positive integer) follows from Theorem 7 and Lemma 4.

Theorem 8. Let W, 1(n > 3) be a wheel graph on n + 1 vertices with vertex weight function
f(v) =(0,y) for v € V(W,,41) and the edge weight function g(e) = z for e € E(Wy,41), then

2 2
2p+2g—1 dd
FBC(W”Jrl;f’g) =2 Z Z P qurpFI(-zn—Zn—ZHz(CO)
k=0 Fp=[51] 4=1
3] 1%52)-r pior 1
+ 22PH20-1yatp pen (o)
p=L52] =1 74)
L
L)
+ 2PYPEE  (co)| + Fac(Futa; £, 85 0)
p=52]
-1
4 ny1+1221

with Fgc(Fyv1; f,85¢0), Pl‘_ljil(co), Fgen (co) given in Equations (13)—(15), respectively, and
Fpc(Fy; f, g c0) =0, Fﬁfd(co) =0, Ff"(co) = .

Letting y = z = 1 in Theorems 7 and 8, respectively, we immediately have the
following.

Corollary 3. Let G = (n;Cy; +n2Cy, + -+ +mCy, ) X cg be the multi-wheel graph. Then the
BC-subtree number of G is
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k—1 k—i t
me(©) = L ((+aga) -1 5| T (@, 40" =1)|
i=1 t=1 Li+1<r <rn<--<rn<ks=1
k=1, ko ko ol
L (b<li+1> - 1)( Hlb(i5+1) - 1) + Zi ((b(lf+1) -1 Z% [01,41) — 1]
1= s=i+ 1= =
ni—1 (75)
+ag41) ), [(L+ag40)) — 1] +nimpc (W +1,CO))
j=1
k T41-1
+Z nllll
i=1 j=1
with
li—=2 IITJ liizzp
nec (Wi +1;¢0) =nBc(Fiq15c0) +2 ) { Z Z A(1,—2p—24+2)
k=0 Lp=[k17 q=1
L L+1 N (76)
3] L l-» L)
+ ) b,—2p—24+42) + by, 2p+1]
p=L52] 4=1 p=153]
=2 it /T L) /T2
A(141) =2 D ( )y (1+“(1f—2p—2q+2>))+ Y ( )3 (1+“(li—2p—2q+2))>
k=0 pz(k%l] q=1 p=1 q=1
(77)
[41-1
+ (T+ag,_on) +2a;, +1
k=1
and
B =2 L3 L2 -p
b1 :Zk L (b(li—2p+1)+ » b(l;—2p—2q+2)>
=0p=%"] 9= (78)
& i ]-p 13]
+ (b(l,-zp+1)+ Y b(112p2q+2)+ b, k1) + bi,s
p=1 q=1 k=1

with npc (Fy,41; o) as in Equation (41), ypc (F2;c0) = 0, a(y,41), b(j,41 as in Equations (42) and
(43), respectively, and ay = 0,b7 = 1.

Corollary 4. The BC-subtree number of Wy, 11 (n > 3) is

nap L2t 5

k=0 = p=1k1]) 9=1

5] 1%-p 5] (79)
+ Z bn_2p—2q42) T bn_2pt1)
p=52] 9=1 p= 2]
n
(-1,

where

1 1
2 T
UBC(FYH-UCO) :ﬂBC(Fn;CO) + Z (n—2p— 2q+2 Z (n—2s)
p:] s=0

(80)
3] 15t -p 53

2
+ 2 b(n—Zp—2q+2) +2 2 b(n—2p+1)r
p= p=1

—
-
Il
—



Mathematics 2021, 9, 36

23 of 29

and
[31-1 L) T2
Apy1 =1+ 2a, + 2 (l + u(nfzk)) + Z 2 1 + A(p—2p— 2q+2)) (81)
k=1 p=1 q=1
[5] -p 13
2 n—2p1) F Y bu—2p-2412)) Z (n—2k+1) (82)
p=1 g=1 k=1

with ﬁgc(Fz,Co) =0,a0=0,b; = 1.

Directly from Corollary 4 we may generate the BC-subtree number of W, ,1(n =
3,4,...,50) (see Table 1).

Table 1. The BC-subtree number of wheel graph W, (n = 3,4,...,50).

n 718c(Wa) n 18c(Wn) n 8¢ (Wn)

3 16 19 32,983,507 35 44,956,112,462,965

4 51 20 79,507,829 36 109,018,361,948,171

5 131 21 191,713,586 37 264,446,533,681,852

6 340 22 462,509,681 38 641,651,556,370,739

7 841 23 1,116,289,936 39 1,557,326,469,215,175

8 2067 24 2,695,367,516 40 3,780,724,965,944,533

9 5026 25 6,510,870,551 41 9,180,821,777,073,118

10 12,147 26 15,733,892,896 42 22,299,504,128,100,416
11 29,305 27 38,036,865,379 43 54,176,661,898,045,614
12 70,508 28 91,989,932,352 44 131,652,455,330,130,629
13 169,664 29 222,555,514,089 45 319,993,939,502,205,010
14 407,988 30 538,634,836,904 46 777,941,764,394,823,593
15 981,517 31 1,304,079,385,141 47 1,891,653,259,171,010,731
16 2,361,611 32 3,158,367,596,891 48 4,600,677,046,844,511,460
17 5,684,920 33 7,651,840,948,554 49 11,191,401,704,559,183,703

18 13,690,201 34 18,544,255,820,839 50 27,228,679,901,334,157,132

5. The Behavior of the BC-Subtrees

With the theoretical foundation that was established in the previous sections, we will
study the behavior of the BC-subtree number in the multi-fan and multi-wheel graphs. We
first mention an extremal result as a simple consequence. We also briefly discuss the change
of the BC-subtree numbers between different multi-fan or multi-wheel graphs. Lastly we
consider the BC-subtree density in these structures.

5.1. BC-Subtree Number of F;

The extremely problems with respect to a topological index concerns finding the
extremal structures, among a given class of graphs, that maximize or minimize the index.
These graphs always possess the best or worst of some desired properties [48-50]. We first
point out the following simple fact.

Proposition 1. The I-“1 L has 2" —n —1 BC subtrees, fewer than any other F) (r # 1); the
F' | has more BC- subtrees than any other F) | (r # n).

It is often interesting to know, when studying extremal problems, which graph struc-

tures have the second or third largest or smallest values of a certain index. To shed some

light on this we ran some simulation, whose result is shown in Figure 3, with Cartesian

and semi-log (Log-Y) coordinate, respectively.
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(b) BC-subtree numbers of F), 41 withn = 33,58,75,80, from 1 to 1, respectively in semi-log (Log-Y) coordinate.

Figure 3. BC-subtree numbers of F e with n = 33, 58,75, 80, r from 1 to n, respectively.

From Figure 3a, it appears thatamong all F; (2 <r <n—1), Fg;ll seems to have the

second largest BC-subtree number, and the Fg;f seems to be the third largest BC-subtree
number for odd (or sufficient large) .

It is also interesting to observe the change of the BC-subtree number as r changes,
with the “local minimum” spread out for smaller values of r

From Corollary 4 we can obtain data of similar nature for W, 1 (n > 3). Figure 4
confirms the simple fact that the BC-subtree numbers of W,, 1 increase very fast. The
asymptotic expression of the BC-subtree number of W, 1 seems to be ypc(W,11) =~
exp(0.0909 + 0.893n). This is something that can be further verified through analytic
combinatorics approaches.
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Figure 4. Original BC-subtree number and the corresponding data fitted by linear regression of
Wyi1(n=3,4,...,602).
5.2. BC-Subtree Density

The generating function approach provides us with much more information than just
the BC-subtree number. In particular, we will examine the BC-subtree density here, for r
multi-fan graph F | (1 <r < n,ris an integer) and W, 1, respectively. For some of the
work on this topic one may see [40].

Definition 4 ([40]). Assume G is a graph with n vertices and k BC-subtrees of orders ny,ny, ..., ny,

k
then upc(G) = % Y. n; denotes the average order of BC-subtrees of G, and the BC-subtree density
i=1

of G is defined as Dpc(G) = 1c(S),

n

First it is easy to see that
n(Fpp1) = n(Wppr) = n+1 (83)

Letting y = 1 in Theorem 6 and Theorem 8, we could obtain the so called edge
generating function of BC-subtrees of F)  ; and W, , 1, respectively, i.e., Fpc(F] IRy (0,1),2)
and Fpc (W15 (0,1),2)).

By the definition of BC-subtree density and Equation (83), the BC-subtree density of
G* (G* =F;_, or W,;1) is simply

d(Fpc(G;(0,1),2) x z)

%\ o) 7=
Dc(G") = B, oG 0,0, 1) < m(GT) (8

We may now provide the BC-subtree densities of F;,_ (1 < r < n) in Figure 5, with
related data in Table 2.
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Figure 5. BC-subtree densities of » multi-fan F}, 41 (1<r<22).
Table 2. Data related to BC-subtrees of F 1 withn =22andr=1,2,...,22.
r P.(F; ) nBc(Fyiq) Dgc(F;1q)
1 50,331,603 4,194,281 0.5217415249997297
2 53,106,905 4,371,427 0.5282018593848684
3 285,872,367 20,279,905 0.6128841997941354
4 473,222,721 32,609,837 0.6309415442046974
5 744,621,994 49,805,736 0.6500229070874051
6 717,819,208 48,287,696 0.6463247031419493
7 1,460,830,943 93,663,206 0.6781146144633033
8 703,383,187 47,521,825 0.6435333174946917
9 1,091,991,586 71,647,232 0.662661958015046
10 1,742,448,206 110,913,152 0.6830444927953532
11 3,063,687,819 187,270,907 0.7112894381260796
12 448,577,818 31,383,926 0.6214449840120178
13 556,641,580 38,350,250 0.6310730132420768
14 690,781,206 46,878,694 0.6406741083329001
15 857,549,247 57,340,131 0.6502383098769903
16 1,065,571,361 70,221,005 0.6597625540775962
17 1,326,780,941 86,192,884 0.6692678698344194
18 1,659,024,388 106,256,288 0.678844485235874
19 2,091,899,843 132,053,383 0.6887530256377947
20 2,680,301,328 166,568,142 0.6996226226010619
21 3,536,505,225 215,724,226 0.7127669413407951
22 4,906,885,913 292,065,325 0.73046283663632

o(Fpc(F)4:(0,1),2) x 2)

P, (F} ;) stands for

0z z=1

Similarly, with Theorem 8 we obtain the generating function Fgc(W;,11;(0,1),2).
Together with Equation (84) we can obtain the BC-subtree densities of W, (see Figure 6
and Table 3).
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Figure 6. BC-subtree densities of wheel graph W, 11 (3 <n < 24).

Table 3. Data related to BC-subtrees of wheel graph W, 1 (n =3,4...,24).

P, (Wi41) Dpc(Wiy1) k P, (Wi11) Dpc(Wik+1)
3 52 0.8125 14 4,657,240 0.7610093107313614
4 211 0.8274509803921568 15 11,924,887 0.7593403247218337
5 621 0.7900763358778626 16 30,421,819 0.7577533999908885
6 1882 0.7907563025210084 17 77,392,093 0.7563098024637501
7 5251 0.7804696789536266 18 196,372,903 0.7549499052182229
8 14,459 0.7772402300704188 19 497,180,696 0.7536807653594871
9 38,857 0.7731197771587743 20 1,256,299,889 0.7524833703900728

10 102,877 0.7699394538120149 21 3,168,978,905 0.7513525707135758
11 269,864 0.7674003298640732 22 7,981,278,895 0.7502807835703772
12 701,132 0.7649235656837631 23 20,073,455,736 0.749262321576641

13 1,812,214 0.7629423869698766 24 50,423,103,620 0.7482928145521214

9(Fpc (Wi 11;(0,1),2) x 2)
0z

P, (Wgy1) stands for

z=1

From Table 2 and Figure 5, we see that F212 ey F222 1 and P232 1 ranks the first to the
third with the smallest BC-subtree density, respectively. From Table 3 and Figure 6, we
see that the BC-subtree density of W,,;1(3 < n < 24) maximized at n = 4, and decreases
gradually when n > 6.

6. Concluding Remarks

Motivated from the past studies of BC-trees, BC-subtrees, as well as the applications of
structural properties of network graphs [51], we provide recursive formulae for computing
the BC-subtree generating functions of multi-fan and multi-wheel graphs, and also derive
the BC-subtree numbers of multi-fan graphs, r multi-fan graphs, multi-wheel (wheel)
graphs. Moreover, the behavior of the BC-subtree numbers between different multi-fan
or multi-wheel graphs, and extremal problems and BC-subtree density are also briefly
discussed. These findings are likely useful in further understanding the properties and
behaviors of these graphs. For future work it would be interesting to consider other well
known topological indices on the multi-fan and multi-wheel graphs and compare their
behaviors with that of the BC-subtree number.
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